Tinkering in Uncharted Technological Territory

Total Page:16

File Type:pdf, Size:1020Kb

Tinkering in Uncharted Technological Territory FASCINATING RESEARCH PHYSICS IN THE MECHAN I CS DEPART M ENT OF THE MAX PLANCK INST I TUTE FOR PHYS I CS IN MUN I CH , THE TECHN I C I ANS CREATE I NNOVAT I VE SOLUT I ONS FOR SCIENTIFIC EXPER im ENTS The truss of the (2) CS MAGIC telescopes: I HYS The space truss P supports the mirrors FOR of the telescopes. : MPI HOTOS P Tinkering in Uncharted Technological Territory 4 4 MAX P LANCK R ESEA R CH 4/2008 4/2008 MAX P LANCK R ESEA R CH 45 FASCINATING RESEARCH PHYSICS Physicists will lower the GERDA Experiment in the mountain: The water tank in the laboratory In the Machinery Pool: Thomas Haubold heads the Mechanics detectors in rows into liquid argon. below the Gran Sasso massif harbors the GERDA experiment. Department, which also encompasses a mechanics workshop. yet unknown rest mass of these ‘ghost’ particles. t is just as well The germanium detectors will hang I that border con- in a tank in the underground labora- trols have all but tory in Gran Sasso. This tank has disappeared in Eu- roughly the circumference of a brew- rope. Otherwise, the ing vat, but is twice as high and filled scientists at the Max with about 70 cubic meters of liquid Planck Institute for Physics would argon. The tank is crowned with a have to put up with unpleasant ques- system of locks from which protrude tions time and again in the coming two tubes, each measuring four me- months when they drive to the un- ters long; the germanium detectors derground laboratory in Gran Sasso, are transported through the lock into Italy: “Why do you have two pres- the argon tank, which rests in a wa- sure cookers strapped into the child ter tank the size of a feed silo. seats? What are those connectors The details of the construction and fittings doing on the pots?” The were thought up by the staff of the physicists would be able to quickly Mechanics Department – in contin- placate the customs officers – with a uous dialog with the scientists: document that declares the pressure “Since the project started in 2004, cookers to be tested transport con- we have been getting together one tainers; each contains about two ki- morning a week to discuss technical lograms of germanium and is filled problems,” says Thomas Haubold, with the noble gas argon. who heads the Mechanics Depart- It was Karlheinz Ackermann’s idea ment at the institute in Munich. In to put the germanium into pressure those days, the only specification cookers. He is an engineer, and one was that the 14 germanium detec- of eight design engineers at the Max tors should be positioned as close Planck Institute for Physics. They together as possible, yet still develop instruments for complicated equipped with the necessary mea- physics experiments that go by such suring instruments, and suspended CS I names as GERDA, MAGIC, ATLAS, HYS in an argon tank – “from sky P CRESST and HEGRA, based on the FOR hooks.” scientists’ specifications. The work of : MPI SUSPEN di NG SIX ESCH these design engineers is all in the I HOTO KI LOGRA M S OF GER M AN I U M R P name of research, but it is also a sci- G XEL AND A C I : ence in itself and frequently leads H The design engineers use the term P RA HOTO them into uncharted technological G sky hooks when scientists want to P territory – and not always via the fix something in thin air so that it shortest route. Prototypes and models of some de- Fourteen of these crystals form the floats as freely as possible. The sci- is indistinguishable from the rare only copper, Kapton and Teflon, The engineers’ laboratory stretches tails can also be seen. The originals core of GERDA, the GERmanium De- entists have their reasons, of course: events that are so important to the which release radon in even smaller across the entire Mechanics Depart- of some of these pieces fill rooms the tector Array, which the physicists most materials in an engineer’s tool- physicists. Even minute traces of ra- doses than other materials. So Karl- ment of the institute in Munich, but size of a sports hall. want to use to detect an extremely box, and in our environment, con- don become a problem for the GER- heinz Ackermann spent six months the engineers produce their designs The researchers use many of the rare nuclear decay event in the crys- tinuously emit the radioactive noble DA experiment: a concentration of tinkering with filigree supports, try- in an open-plan office with chest- instruments to investigate exotic tals. Such events are caused by neu- gas radon. There are about ten mil- 500 radon nuclei per cubic meter in ing to support the crystals with high cabinets for dividers, and walls species from the particle menagerie trinos, and the researchers expect lion radon nuclei per cubic meter of the apparatus is sufficient to render three nylon threads, or with steel that are covered with structural of physics. The germanium crystals there to be less than one nuclear de- air in a building, which presents no the measurement useless. wires for one or more detectors on drawings and photographs from lots in the pressure cookers, which are cay event per year in one kilogram risk to health. But in the Gran Sasso This means that most plastics, trays. Ackermann keeps the result of of projects and devices that have used as detectors in the GERDA ex- of germanium. The results will main- detector, the nuclear decay of the ra- metals and glasses are ruled out as his exercises in suspension in a been dreamt up and realized here. periment, serve this same purpose. ly serve to gain insight into the as don nuclei can produce a signal that possible materials. Physicists accept plastic dish next to his PC: more 4 6 MAX P LANCK R ESEA R CH 4/2008 4/2008 MAX P LANCK R ESEA R CH 47 FASCINATING RESEARCH PHYSICS Working in a dust-free atmosphere: The muon detectors for the ATLAS experiment The brains behind this plan. After the detectors for ATLAS have been manufactured, at the Large Hadron Collider were assembled in a clean room at the institute. Thomas Haubold also checks whether they have been installed correctly. could recognize at a glance that this piece of copper, which looks like a hexagonal stamp the size of your palm with an impractically shaped and perforated handle, is complicated to produce. Markus Eichenlaub has already ti- dily arranged five of these contact plates side by side on his workbench. Each one requires 26 production steps and more than a day’s work. They are produced on a programma- ble CNC machine that Eichenlaub taught when and where to mill away copper and where to drill holes. RUST AN D DI RT THREATEN GERDA’S LI FE The end results of this protracted work are supports, tracks and skids. Assembling these parts into a fin- ished device sometimes requires a screwdriver, sometimes a welding torch. As we speak, Marco Wehr- meister is working with a welding torch in the metals workshop. He is welding together a stainless steel housing the size of a milk carton: “It will hold a small cable drum,” says Wehrmeister, pulling down the visor on his helmet, only to discover that he cannot work with the pistol- shaped welding electrode inside the housing. He needs to shorten the (2) ESCH I electrode. R G After a small adjustment, Wehr- XEL A meister holds a wire to the open edge : HOTOS of the housing and strikes the arc, P which, when viewed through the vi- CS than a dozen of these parts together shop, a precision mechanics work- scene in the workshop. The devices I sor of his helmet, shines about as effort here, because rust and dirt are treatment, the weld gleams again in HYS weigh a mere 34 grams, but they shop, and one where plastics are required for GERDA present a chal- P brightly as the flame of a cigarette life-threatening to GERDA. steel-gray. In the future, the fin- can support more than six kilo- processed. Reinhard Hofmann is the lenge not only for Karlheinz Acker- FOR lighter. He briskly moves it along the “We have specially procured a ished cable box will hold a cable to grams. Since the components of the master craftsman in the production mann, the engineer, but also for : MPI joint, leaving behind a small blue- device to remove the oxides,” ex- a measuring device that will be HOTO supports cannot be bought, either engineering section and organizes the technicians – even when we are P black bead. Not only does this look plains Wehrmeister, bringing a lowered into the argon tank togeth- individually or as a set, the staff of the work of 18 staff members, in- talking about such an unassuming sloppy, it also points to the presence transformer on a kind of trolley er with the germanium detectors. the Mechanics Department must cluding those in the metals and the item as a contact plate: the germa- of oxides, which act as a breeding closer to his workbench. He rubs an The crystals themselves are sus- manufacture them themselves. The plastics workshops. nium detectors are suspended from ground for rust. Wehrmeister would oily liquid onto the weld and moves pended from ten-meter-long chains institute has its own workshops for The light green paint of more it, and it also serves to provide an usually remove these discolorations an electrode the width of two fin- along which the cables for the de- this kind of precision work: a car- than a dozen drills, milling ma- electrical contact to the detectors.
Recommended publications
  • Very High Energy Emission from Blazars Interpreted Through Simultaneous Multiwavelength Observations
    UNIVERSITA` DEGLI STUDI DI SIENA FACOLTA` DI SCIENZE MATEMATICHE, FISICHE E NATURALI Dipartimento di Fisica Very High Energy emission from blazars interpreted through simultaneous multiwavelength observations Relatore/Supervisor: Candidato/Candidate: Dr. Antonio Stamerra Giacomo Bonnoli Tutore/Tutor: Prof. Riccardo Paoletti Ph.D. School in Physics Cycle XXI December 2010 Abstract In the framework of Astroparticle Physics the understanding of the particle acceleration process and related high energy electromagnetic emission within astrophysical sources is an issue of fundamental importance to unravel the structure and evolution of many classes of celestial objects, on different scales from micro{quasars to active galactic nuclei. This has an important role not only for astrophysics itself, but for many related topics of cosmic ray physics and High Energy physics, such as the search for dark matter. Also cosmology is interested, as deepening our knowledge on Active Galactic Nuclei and their interaction with the environment can help to clarify open issues on the formation of cosmic structures and evolution of universe on large scales. The present view on sources emitting high energy radiation is now gaining new insight thanks to multiwavelength observations. This approach allows to explore the spectral energy distribution of the sources all across the electromagnetic spectrum, therefore granting the best achievable understanding of the physical processes that originate the radiation that we see, and their mutual relationships. Our theories model the sources in terms of parameters that can be inferred from the observables quantities measured, and the multiwavelength observations are a key instrument in order to rule out or support some selected models out of the many that compete in the effort of describing the processes at work.
    [Show full text]
  • DANIEL MAZIN Föhringer Ring 6, 80805 Munich, Germany Tel: +49 89 32354 255 Email: [email protected]
    DANIEL MAZIN Föhringer Ring 6, 80805 Munich, Germany Tel: +49 89 32354 255 Email: [email protected] PUBLICATION LIST I have published more than 80 publications in high-energy astroparticle physics under peer review process; 30+ in small collaborations (typically 2-5 persons), 15 as first or only author. According to INSPIRES-HEP database my works are cited more than 4000 times with an h-index of 38. TOP 10 SELECTED PUBLICATIONS WHERE I AM THE CORRESPONDING AUTHOR: [1] Mazin, D., Raue, M., Behera, B. et al., Potential of EBL and cosmology studies with the Cherenkov Telescope Array, APh 43 (2013) 241, doi: 10.1016/ j.astropartphys.2012.09.002 [2] Aleksic et al (The MAGIC Collaboration), MAGIC Discovery of Very High Energy Emission from the FSRQ PKS 1222+21, ApJ 730 (2011) L8 [3] Raue, M. and Mazin D., Potential of the next generation VHE instruments to probe the EBL (I): The low- and mid-VHE, Astroparticle Physics 34 (2010) 245 [4] Acciari, et al. (The MAGIC, H.E.S.S and VERITAS Collaborations and VLBA 43 GHz M87 Monitoring Team), Radio Imaging of the Very-High-Energy Gamma- Ray Emission Region in the Central Engine of a Radio Galaxy , Science Express, 2nd July 2009 [5] Tavecchio, F. & Mazin, D. Intrinsic absorption in 3C 279 at GeV-TeV energies and consequences for estimates of the EBL, MNRAS Astronomy 392 (2009) L40- L44 [6] Raue, M., Kneiske T.M., & Mazin, D. First stars and the extragalactic background light: How recent gamma-ray observations constrain the early universe, Astronomy & Astrophysics, 498 (2009) 25-35 [7] Albert, J.
    [Show full text]
  • Fachverband Teilchenphysik (T) Ubersicht¨
    Fachverband Teilchenphysik (T) Ubersicht¨ Fachverband Teilchenphysik (T) Reinhold Ruckl¨ Lehrstuhl fur¨ Theoretische Physik II Universit¨at Wurzburg¨ Am Hubland 97074 Wurzburg¨ [email protected] Ubersicht¨ der Hauptvortr¨age und Fachsitzungen (H¨ors¨ale KGI-HS 1010, KGI-HS 1015, KGI-HS 1016, KGI-HS 1019, KGI-HS 1021, KGI-HS 1023, KGI-HS 1024, KGI-HS 1032, KGI-HS 1098, KGI-HS 1108, KGI-HS 1132, KGI-HS 1134, KGI-HS 1199, KGI-HS 1221, KGI-HS 1224, KGI-HS 1228, KGII-Audimax, KGII-HS 2004, KGII-HS 2006, Peterhof-HS 2 und Peterhof-HS 4) Hauptvortr¨age T 1.1 Di 9:00– 9:45 KGII-Audimax HERA and proton structure — •Daniel Pitzl T 1.2 Di 9:45–10:30 KGII-Audimax Herausforderungen der LHC-Physik an die Theorie — •Michael Kramer¨ T 2.1 Mi 8:30– 9:15 KGII-Audimax Electroweak Physics at HERA and at the Tevatron and Searches for Higgs Bosons — •Rainer Wallny T 2.2 Mi 9:15–10:00 KGII-Audimax QCD and Jets — •Uta Klein T 3.1 Do 8:30– 9:10 KGII-Audimax Neue Ergebnisse zur Charm- und Bottom-Physik — •Ulrich Uwer T 3.2 Do 9:10– 9:50 KGII-Audimax Neue Ergebnisse zur solaren Neutrinoastronomie — •Franz von Feilitzsch T 3.3 Do 9:50–10:30 KGII-Audimax Standard Model, SUSY, GUTs: Implications from String Theory — •Hans-Peter Nilles T 4.1 Do 11:45–12:30 KGII-Audimax Neuentwicklungen in der Beschleunigertechnologie — •Hans Weise T 5.1 Fr 9:00– 9:45 KGII-Audimax Recent developments in High Energy Cosmic Ray Physics — •Pasquale D.
    [Show full text]
  • Summary Talk: Challenges in Particle Astrophysics
    SUMMARY TALK: CHALLENGES IN PARTICLE ASTROPHYSICS HINRICH MEYER Bergische Universit¨at Wuppertal, Fachbereich Physik, Gaussstr. 20, D-42119 Wuppertal, Germany, and DESY Hamburg, Notkestr. 85, 22607 Hamburg, Germany Introduction At this meeting we had 42 talks which covered most of the important sub- jects of the field of particle astrophysics. In addition, on one afternoon more details were presented in 5 parallel sessions with another 42 shorter talks. Particle Physics is very nicely described in terms of the rather com- plete ‘Standard Model’ with 6 quarks and 6 leptons interacting through the exchange of photons, weak gauge bosons and gluons. So far no significant deviations have surfaced. More and more details have been added to com- arXiv:0705.2972v1 [astro-ph] 21 May 2007 plete the picture and there is no serious hint of a discrepancy that would indicate new physics beyond the Standard Model. Only the “Higgs” is not found yet. But in the last 10 years or so there have been great advances in the field of Particle Astrophysics adding new information to particle physics while simultaneously opening up new windows of observation in astrophysics and astronomy. 1. Neutrino oscillations have been discovered in studies of neutrinos cre- ated in energy production in the sun and through cosmic ray interac- tions in the earth atmosphere. Furthermore, neutrinos from SN 1987 A 1 have been detected, confirming qualitatively the basic expectations for a supernova explosion. These important discoveries have been impres- sively confirmed with oscillation observations of neutrinos from power reactors and particle accelerators. 2. Extensive studies performed with radiodetectors on satellites, on bal- loons and on earth of the 2.7◦ K cosmic microwave background (CMB) have revealed a flat universe (Ω = 1) and supported by observations of supernova of type 1A out to distances beyond z = 1, an energy content of the universe dominated by Dark Energy and Dark Matter with only a smallish fraction in the form of baryonic matter.
    [Show full text]
  • Contribution to the High Frequency Electronics of the MAGIC Gamma
    UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS FÍSICAS DEPARTAMENTO DE FÍSICA APLICADA III Contributions to the high frequency electronics of MAGIC II Gamma Ray Telescope Thesis presented by Pedro Antoranz Canales For the degree of Doctor of Philosophy in the subject of Physics Thesis Advisor Dr. José Miguel Miranda Pantoja June 2009, Madrid Para Mere. Para Fuencisla. Gracias. A mis padres y a mi hermano. Por estar ahí incluso cuando yo no estoy. Acknowledgments AGRADECIMIENTOS He dedicado bastante tiempo a reflexionar acerca de cómo empezar esta sección, intentando ser original. Pero cuanto más pienso en ello, más claro está en mi mente: si algo se convierte en estándar, es porque normalmente es la mejor opción. Sin embargo, no sólo los convencionalismos, sino también lo que realmente siento es lo que me ha decidido sobre a quién dar las gracias en primer lugar. A las dos personas que me ‘secuestraron’ y me introdujeron en este mundo de Ciencia. Un mundo lleno de decepciones, de frustraciones y, desgraciadamente, lleno a veces de lágrimas por compañeros que se van. Pero, sin lugar a dudas, un mundo lleno también de satisfacciones, de nuevos descubrimientos y de gente a la que se puede llamar amigo. Estas dos personas son, por supuesto, mi Director de Tesis, José Miguel Miranda, y la Investigadora Principal del grupo UCM en el experimento MAGIC, María Victoria Fonseca. Gracias. Según pasaban los años, el ‘Síndrome de Estocolmo’ se hacía cada vez más fuerte, y la lista de gente a la que agradecer su apoyo iba también creciendo. I want to have a special word on Florian Goebel.
    [Show full text]
  • German Astroparticle P
    ASTROPARTICLE PHYSICS German astroparticle p Despite strong pressure on the budget for education and research, astroparticle physics in On 16-18 September 2003 German astroparticle physicists and ministry representatives met at the University of Karlsruhe to dis­ cuss recent scientific advances, future funding and organizational support by the German Ministry of Education and Research (BMBF). The Karlsruhe workshop was the third in a series initiated by BMBF deputy director-general Hermann-Friedrich Wagner to maintain a close contact between scientists and the ministry. These open dis­ cussions have allowed each side to understand the other's needs better, and have led to the very fast and fruitful development of astroparticle physics in Germany. As in the previous workshops, which took place in 1999 and 2001 atDESYZeuthen (CERN Courier November 2001 pl7), high- energy and nuclear physicists, astronomers and astrophysicists also joined and participated in lively cross-disciplinary debates. The large increase in the number of participants (rising from 57 and 124 in 1999 and 2001, respectively, to more than 240 in 2003) reflects the growing interest in astroparticle physics. Fig. 1. The neutrino sky as seen byAMANDA-ll. The map does not show The workshop began with special lectures for students, and any evidence for extra-terrestrial neutrino sources but is compatible Werner Hofmann of MPI for Nuclear Physics, Heidelberg, gave an with neutrino production by cosmic-ray interactions in the atmosphere. entertaining and surprising evening talk on two very different fictional futures of high-energy physics. Scientific achievements, future prospects and new ideas were then presented in sessions dedicated to selected astroparticle-physics topics.
    [Show full text]
  • Limits to Dark Matter Annihilation Cross-Section from a Combined Analysis of MAGIC and Fermi-LAT Observations of Dwarf Satellite Galaxies
    Prepared for submission to JCAP Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies M. L. Ahnen1 S. Ansoldi2 L. A. Antonelli3 P. Antoranz4 A. Babic5 B. Banerjee6 P. Bangale7 U. Barres de Almeida7;25 J. A. Barrio8 J. Becerra Gonz´alez9;26 W. Bednarek10 E. Bernardini11;27 B. Biasuzzi2 A. Biland1 O. Blanch12 S. Bonnefoy8 G. Bonnoli3 F. Borracci7 T. Bretz13;28 E. Carmona14 A. Carosi3 A. Chatterjee6 R. Clavero9 P. Colin7 E. Colombo9 J. L. Contreras8 J. Cortina12 S. Covino3 P. Da Vela4 F. Dazzi7 A. De Angelis15 B. De Lotto2 E. de O~naWilhelmi16 C. Delgado Mendez14 F. Di Pierro3 D. Dominis Prester5 D. Dorner13 M. Doro15 S. Einecke17 D. Eisenacher Glawion13 D. Elsaesser13 A. Fern´andez-Barral12 D. Fidalgo8 M. V. Fonseca8 L. Font18 K. Frantzen17 C. Fruck7 D. Galindo19 R. J. Garc´ıaL´opez9 M. Garczarczyk11 D. Garrido Terrats18 M. Gaug18 P. Giammaria3 N. Godinovi´c5 A. Gonz´alez Mu~noz12 D. Guberman12 A. Hahn7 Y. Hanabata20 M. Hayashida20 J. Herrera9 J. Hose7 D. Hrupec5 G. Hughes1 W. Idec10 K. Kodani20 Y. Konno20 H. Kubo20 J. Kushida20 A. La Barbera3 D. Lelas5 E. Lindfors21 S. Lombardi3 F. Longo2 M. L´opez8 R. L´opez-Coto12 A. L´opez-Oramas12;29 E. Lorenz7 P. Majumdar6 M. Makariev22 K. Mallot11 G. Maneva22 M. Manganaro9 K. Mannheim13 L. Maraschi3 B. Marcote19 M. Mariotti15 M. Mart´ınez12 D. Mazin7;30 U. Menzel7 J. M. Miranda4 arXiv:1601.06590v2 [astro-ph.HE] 16 Feb 2016 R. Mirzoyan7 A.
    [Show full text]
  • Dissertation Nigro Cosimo.Pdf
    Study of Persistent and Flaring Gamma-Ray Emission from Active Galactic Nuclei with the MAGIC Telescopes and Prospects for Future Open Data Formats in Gamma-Ray Astronomy DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach: Physik Spezialisierung: Experimentalphysik eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät der Humboldt-Universität zu Berlin von Cosimo Nigro Präsident der Humboldt-Universität zu Berlin: Prof. Dr.-Ing. Dr. Sabine Kunst Dekan der Mathematisch-Naturwissenschaftlichen Fakultät: Prof. Dr. Elmar Kulke Gutachter: 1. Prof. Dr. Elisa Bernardini 2. Dr. Gernot Maier 3. Prof. Dr. Alberto Franceschini Tag der mündlichen Prüfung: 23 September 2019 Ai miei genitori Rocco e Lucia, a mio fratello Diego. Abstract Powered by the accretion of matter to a supermassive black hole residing at their centre, active galaxies constitute the most powerful and persistent sources of radiation in the universe. A tenth of these sources shows collimated relativistic outfows of plasma commonly referred to as jets. Their electromagnetic emission can extend in some cases in the gamma-ray domain. The aim of this work is to characterise the mechanisms and the sites beyond this highly-energetic emission. To accomplish this task we employ observations of two jetted active galaxies at hundreds of GeV conducted with the MAGIC imaging atmospheric Cherenkov telescopes. We support the physical in- terpretation with observations at lower energies (100 MeV − 100 GeV) by the Fermi Gamma-ray Space Telescope and with multi-wavelength data sets collected from instruments observing the sky at lower frequencies. We examine two peculiar jetted active galaxies: PKS 1510-089 and NGC 1275.
    [Show full text]
  • 2106.05516.Pdf (1.129Mb)
    Access to this work was provided by the University of Maryland, Baltimore County (UMBC) ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR) platform. Please provide feedback Please support the ScholarWorks@UMBC repository by emailing [email protected] and telling us what having access to this work means to you and why it’s important to you. Thank you. Astronomy & Astrophysics manuscript no. Mrk421_2017_accepted_version ©ESO 2021 June 11, 2021 Investigation of the correlation patterns and the Compton dominance variability of Mrk 421 in 2017 MAGIC Collaboration: V. A. Acciari1, S. Ansoldi2, L. A. Antonelli3, A. Arbet Engels4;z?, M. Artero5, K. Asano6, A. Babic´8, A. Baquero9, U. Barres de Almeida10, J. A. Barrio9, I. Batkovic´11, J. Becerra González1, W. Bednarek12, L. Bellizzi13, E. Bernardini14, M. Bernardos11, A. Berti15, J. Besenrieder16, W. Bhattacharyya14, C. Bigongiari3, O. Blanch5, Ž. Bošnjak8, G. Busetto11, R. Carosi17, G. Ceribella16, M. Cerruti18, Y. Chai16, A. Chilingarian19, S. Cikota8, S. M. Colak5, E. Colombo1, J. L. Contreras9, J. Cortina20, S. Covino3, G. D’Amico16, V. D’Elia3, P. Da Vela17; 38, F. Dazzi3, A. De Angelis11, B. De Lotto2, M. Delfino5; 39, J. Delgado5; 39, C. Delgado Mendez20, D. Depaoli15, F. Di Pierro15, L. Di Venere21, E. Do Souto Espiñeira5, D. Dominis Prester22, A. Donini2, M. Doro11, V. Fallah Ramazani24; 40, A. Fattorini7, G. Ferrara3, M. V. Fonseca9, L. Font25, C. Fruck16, S. Fukami6, R. J. García López1, M. Garczarczyk14, S. Gasparyan26, M. Gaug25, N. Giglietto21, F. Giordano21, P. Gliwny12, N. Godinovic´27, J. G. Green3, D. Green16, D. Hadasch6, A.
    [Show full text]
  • CERN Courier Is Distributed to Member-State Governments, Institutes and Laboratories Affiliated with CERN, and to Their Personnel
    I n t e r n at I o n a l Jo u r n a l o f HI g H -en e r g y PH y s I c s CERN COURIERV o l u m e 49 nu m b e r 5 J u n e 2009 It’s a kind of MAGIC! IYA2009 ASTROPARTICLES COSMOLOGY Astronomy celebrates with Borexino pins down George Smoot: in the an international year p8 solar neutrinos p13 footsteps of Galileo p17 CCJun09Cover2.indd 1 19/5/09 10:20:46 itech_219x288_3_OUT.inddUntitled-1 1 1 5/18/0918/5/09 7:50:09 09:41:42 AM CONTENTS Covering current developments in high- energy physics and related fields worldwide CERN Courier is distributed to member-state governments, institutes and laboratories affiliated with CERN, and to their personnel. It is published monthly, except for January and August. The views expressed are not necessarily those of the CERN management. Editor Christine Sutton Editorial assistant Carolyn Lee CERN CERN, 1211 Geneva 23, Switzerland E-mail [email protected] Fax +41 (0) 22 785 0247 Web cerncourier.com Advisory board James Gillies, Rolf Landua and Maximilian Metzger COURIERo l u m e u m b e r u N e Laboratory correspondents: V 49 N 5 J 2009 Argonne National Laboratory (US) Cosmas Zachos Brookhaven National Laboratory (US) P Yamin Cornell University (US) D G Cassel DESY Laboratory (Germany) Ilka Flegel, Ute Wilhelmsen EMFCSC (Italy) Anna Cavallini Enrico Fermi Centre (Italy) Guido Piragino Fermi National Accelerator Laboratory (US) Judy Jackson Forschungszentrum Jülich (Germany) Markus Buescher GSI Darmstadt (Germany) I Peter IHEP, Beijing (China) Tongzhou Xu IHEP, Serpukhov (Russia) Yu Ryabov INFN (Italy) Romeo Bassoli Jefferson Laboratory (US) Steven Corneliussen JINR Dubna (Russia) B Starchenko KEK National Laboratory (Japan) Youhei Morita Lawrence Berkeley Laboratory (US) Spencer Klein One eye on the T2K Daruma Doll p7 Pinning down neutrinos p13 A taste of Galileo’s excitement p17 Los Alamos National Laboratory (US) C Hoffmann NIKHEF Laboratory (Netherlands) Paul de Jong Novosibirsk Institute (Russia) S Eidelman News 5 NCSL (US) Geoff Koch Orsay Laboratory (France) Anne-Marie Lutz KEKB breaks luminosity record.
    [Show full text]
  • MAGIC Highlights
    MAGIC highlights VIA lecture 4 April 2008 Manel Martinez Outline: 0- Introduction 1- The MAGIC telescope 2- Extragalactic highlights 3- Galactic highlights 4- MAGIC II Thanks to Florian Goebel, Michael Rissi, Robert Wagner and Juan Cortina for many slides 0- Introduction The VHE γ-ray Physics Program SNRs Origin of Cosmic Rays Pulsars Galactic Binary systems GRBs Extragalactic Cold Dark Matter AGNs Cosmological Test of the speed γ-Ray Horizon of light invariance 1- The MAGIC telescope The MAGIC Collaboration Major Atmospheric Gamma-Ray Imaging Cherenkov Telescope International collaboration of over 20 institutions from more than 10 countries (~180 collaborators, updated list at http://wwwmagic.mppmu.mp.de) IAA, Granada, Spain IAC, Tenerife, Spain IEEC, Barcelona, Spain INAF, Italy Institut de Física d’Altes Energies, Barcelona, Spain Institute for Research and Nuclear Energy, Sofia, Bulgaria Institute for Particle Physics, ETH Zürich, Switzerland DESY–Zeuthen, Berlin, Germany Max-Planck-Institut für Physik, München. Germany Tuorla Observatory, Pikkiö, Finland Universidad Complutense, Madrid, Spain Università di Padova, and INFN Padova, Italy Università di Siena, and INFN Pisa,Italy Università di Udine, and INFN Trieste, Italy Universitat Autònoma de Barcelona, Spain Universitat de Barcelona, Spain Universität Dortmund, Germany Universität Würzburg, Germany University of Lodz, Poland University of California, Davis, USA Yerevan Physics Institute, Cosmic Ray Division, Yerevan, Armenia to detect γ–ray sources in the unexplored energy Main
    [Show full text]
  • Pointing Optimization for Iacts on Indirect Dark Matter Searches
    Pointing optimization for IACTs on indirect dark matter searches J. Palacio1, D. Navarro-Girones, J. Rico Institut de F´ısica dAltes Energies (IFAE), The Barcelona Institute of Science and Technology (BIST), E-08193 Bellaterra (Barcelona), Spain Abstract We present a procedure to optimize the offset angle (usually also known as the wobble distance) and the signal integration region for the observations and analysis of extended sources by Imaging Atmospheric Cherenkov Telescopes (IACTs) such as MAGIC, HESS, VERITAS or (in the near future), CTA. Our method takes into account the off-axis instrument performance and the emission profile of the gamma-ray source. We take as case of study indirect dark matter searches (where an a priori knowledge on the expected signal morphology can be assumed) and provide optimal pointing strategies to perform searches of dark matter on a set of dwarf spheroidal galaxies with current and future IACTs. Keywords: IACTs, off-axis performance, dark matter 1. Introduction Imaging Atmospheric Cherenkov Telescopes (IACTs) are ground based instru- ments capable of detecting gamma rays with energies from ∼50 GeV to ∼100 TeV. IACT's typical fields of view (FoVs) are of the order of ∼1-10◦. Observations are often performed in the so called wobble mode (Fomin et al., 1994), in which the nominal pointing of the telescope has an offset (by a certain angle w, called the wobble distance) w.r.t. the position of the source under observation (or, for extended sources, to its center). Signal (or ON) region is integrated inside a circular region of angular size θc around the source while background control (or OFF) region can be defined equally around a ghost region placed symmetrically w.r.t.
    [Show full text]