Technical Performance of the MAGIC Telescopes
Total Page:16
File Type:pdf, Size:1020Kb
PROCEEDINGS OF THE 31st ICRC, ŁOD´ Z´ 2009 1 Technical Performance of the MAGIC Telescopes Juan Cortina∗, Florian Goebel†, Thomas Schweizer†, for the MAGIC Collaboration ∗Institut de Fisica d’Altes Energies, Cerdanyola del Valles, E-08193 Spain †Max-Planck-Institut fur¨ Physik, D-80805 Munchen,¨ Germany Abstract. The MAGIC-I telescope is the largest single-dish Imaging Atmospheric Cherenkov tele- scope in the world. A second telescope, MAGIC-II, will operate in coincidence with MAGIC-I in stereo- scopic mode. MAGIC-II is a clone of MAGIC-I, but with a number of significant improvements, namely a highly pixelized camera with a wider trigger area, improved optical analog signal transmission and a 2-4 GSps fast readout. All the technical elements of MAGIC-II were installed by the end of 2008. The telescope is currently undergoing commissioning Fig. 1: The two MAGIC telescopes in April 2009. The and integration with MAGIC-I. An update of the first telescope, on the left, operates regularly since 2004. technical performance of MAGIC-I, a description of The second telescope can be seen on the right. The all the hardware elements of MAGIC-II and first frame, mirrors, active mirror control and drive hardware results of the combined technical performance of the were installed in Summer 2008. two telescopes will be reported. Keywords: MAGIC, VHE, performance. I. INTRODUCTION are significantly improved. This results in an better The 17m diameter MAGIC [1] telescope is as of today angular and energy resolution and a reduced analysis the largest single dish Imaging Atmospheric Cherenkov energy threshold. The overall sensitivity is expected to telescope (IACT) for very high energy gamma ray as- increase by a factor of 2 over the whole energy range and tronomy with the lowest energy threshold among exist- foreseably larger below 100 GeV. Following the results ing IACTs. It is installed at the Roque de los Muchachos of a dedicated MC study showing moderate dependence on the Canary Island La Palma at 2200 m altitude and of the sensitivity on the distance of the two telescopes has been in scientific operation since summer 2004. the second MAGIC telescope has been installed at a In the past years MAGIC has been upgraded by the distance of 85 m from the first telescope. construction of a twin telescope with advanced photon In order to minimize the time and the resources detectors and readout electronics. The two telescope required for design and production the second MAGIC system, is designed to achieve an improved sensitivity telescope is in most fundamental parameters a clone of in stereoscopic/coincidence operation mode and simul- the first telescope. The lightweight carbon fiber rein- taneously lower the energy threshold. forced plastic telescope frame, the drive system [2] and All aspects of the wide physics program addressed the active mirror control (AMC) are only marginally by the MAGIC collaboration ranging from astrophysics improved copies of the first telescope. Both telescopes arXiv:0907.1211v1 [astro-ph.IM] 7 Jul 2009 to fundamental physics will benefit from an increased will be able to reposition within 30-60 seconds to any sensitivity of the instrument. The expected lower energy sky position for fast reaction to GRB alerts. threshold of the MAGIC two telescopes will have an Newly developed components are employed whenever impact on pulsar studies and extend the accessible they allow cost reduction, improved reliability or most redshift range, which is limited by the absorption of importantly increased physics potential of the new tele- high energy γ-rays by the extragalactic background light. scope with reasonable efforts. Larger 1 m2 mirror ele- Simultaneous observations with the FERMI satellite will ments have been developed for MAGIC-II reducing cost allow detailed studies of the high energy phenomena in and installation efforts. The newly developed MAGIC- the Universe in the wide energy range between 100 MeV II readout system features ultra fast sampling rates and and 10 TeV. low power consumption. In the first phase the camera Detailed Monte Carlo studies have been performed has been equipped with increased quantum efficiency to study the expected performance of the telescope (QE) photomultiplier tubes (PMTs), while a modular system [3]. In stereo observation mode, i.e. simultane- camera design allows upgrades with high QE hybrid ously observing air showers with both telescopes, the photo detectors (HPDs). A uniform camera with 1039 shower reconstruction and background rejection power identical 0.1o field of view (FoV) pixels (see figure II) 2 JUAN CORTINA et al. TECHNICAL MAGIC allows an increased trigger area compared to MAGIC-I. 1000 927 1001 928 834 1002 929 835 833 1003 930 836 738 926 1004 931 837 739 832 1005 932 838 740 737 925 1006 933 839 741 647 831 999 The entire signal chain from the PMTs to the FADCs 1007 934 840 742 648 736 924 935 841 743 649 646 830 998 936 842 744 650 562 735 923 937 843 745 651 563 645 829 997 938 844 746 652 564 561 734 922 939 845 747 653 565 483 644 828 996 846 748 654 566 484 560 733 921 is designed to have a total bandwidth as high as 500 847 749 655 567 485 482 643 827 995 848 750 656 568 486 410 559 732 920 849 751 657 569 487 411 481 642 826 994 752 658 570 488 412 409 558 731 919 753 659 571 489 413 343 480 641 825 993 754 660 572 490 414 344 408 557 730 918 850 661 573 491 415 345 342 479 640 824 992 MHz. The Cherenkov pulses from γ-ray showers are 662 574 492 416 346 282 407 556 729 917 755 575 493 417 347 283 341 478 639 823 851 576 494 418 348 284 281 406 555 728 916 940 663 495 419 349 285 227 340 477 638 822 756 496 420 350 286 228 280 405 554 727 915 852 577 421 351 287 229 226 339 476 637 821 941 664 422 352 288 230 178 279 404 553 726 914 very short (1-3 ns). The parabolic shape of the reflector 757 497 353 289 231 179 225 338 475 636 820 853 578 354 290 232 180 177 278 403 552 725 942 665 423 291 233 181 135 224 337 474 635 819 1008 758 498 292 234 182 136 176 277 402 551 724 854 579 355 235 183 137 134 223 336 473 634 818 943 666 424 236 184 138 98 175 276 401 550 723 of the MAGIC telescope preserves the time structure of 1009 759 499 293 185 139 99 133 222 335 472 633 855 580 356 186 140 100 97 174 275 400 549 722 944 667 425 237 141 101 67 132 221 334 471 632 1010 760 500 294 142 102 68 96 173 274 399 548 913 856 581 357 187 103 69 66 131 220 333 470 817 945 668 426 238 104 70 42 95 172 273 398 721 1011 761 501 295 143 71 43 65 130 219 332 631 912 the light pulses. A fast signal chain therefore allows one 857 582 358 188 72 44 41 94 171 272 547 816 946 669 427 239 105 45 23 64 129 218 469 720 991 1012 762 502 296 144 46 24 40 93 170 397 630 911 858 583 359 189 73 25 22 63 128 331 546 815 947 670 428 240 106 26 10 39 92 271 468 719 990 1013 763 503 297 145 47 11 21 62 217 396 629 910 859 584 360 190 74 12 9 38 169 330 545 814 to minimize the integration time and thus to reduce the 948 671 429 241 107 27 3 20 127 270 467 718 989 1014 764 504 298 146 48 4 8 91 216 395 628 909 860 585 361 191 75 13 2 61 168 329 544 813 1039 949 672 430 242 108 28 1 37 126 269 466 717 988 1015 765 505 299 147 49 5 19 90 215 394 627 908 861 586 362 192 76 14 7 60 167 328 543 812 1038 950 673 431 243 109 29 6 36 125 268 465 716 987 influence of the background from the light of the night 766 506 300 148 50 15 18 89 214 393 626 907 862 587 363 193 77 30 17 59 166 327 542 811 1037 951 674 432 244 110 51 16 35 124 267 464 715 986 767 507 301 149 78 31 34 88 213 392 625 906 863 588 364 194 111 52 33 58 165 326 541 810 1036 952 675 433 245 150 79 32 57 123 266 463 714 985 768 508 302 195 112 53 56 87 212 391 624 905 sky (LONS). In addition a precise measurement of the 864 589 365 246 151 80 55 86 164 325 540 809 1035 676 434 303 196 113 54 85 122 265 462 713 984 769 509 366 247 152 81 84 121 211 390 623 904 865 590 435 304 197 114 83 120 163 324 539 808 1034 677 510 367 248 153 82 119 162 264 461 712 983 770 591 436 305 198 115 118 161 210 389 622 903 678 511 368 249 154 117 160 209 323 538 807 1033 time structure of the γ-ray signal can help to reduce the 771 592 437 306 199 116 159 208 263 460 711 982 866 679 512 369 250 155 158 207 262 388 621 902 772 593 438 307 200 157 206 261 322 537 806 1032 867 680 513 370 251 156 205 260 321 459 710 981 773 594 439 308 201 204 259 320 387 620 901 868 681 514 371 252 203 258 319 386 536 805 953 774 595 440 309 202 257 318 385 458 709 980 background due to hadronic background events [9].