Limits to Dark Matter Annihilation Cross-Section from a Combined Analysis of MAGIC and Fermi-LAT Observations of Dwarf Satellite Galaxies

Total Page:16

File Type:pdf, Size:1020Kb

Limits to Dark Matter Annihilation Cross-Section from a Combined Analysis of MAGIC and Fermi-LAT Observations of Dwarf Satellite Galaxies Prepared for submission to JCAP Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies M. L. Ahnen1 S. Ansoldi2 L. A. Antonelli3 P. Antoranz4 A. Babic5 B. Banerjee6 P. Bangale7 U. Barres de Almeida7;25 J. A. Barrio8 J. Becerra Gonz´alez9;26 W. Bednarek10 E. Bernardini11;27 B. Biasuzzi2 A. Biland1 O. Blanch12 S. Bonnefoy8 G. Bonnoli3 F. Borracci7 T. Bretz13;28 E. Carmona14 A. Carosi3 A. Chatterjee6 R. Clavero9 P. Colin7 E. Colombo9 J. L. Contreras8 J. Cortina12 S. Covino3 P. Da Vela4 F. Dazzi7 A. De Angelis15 B. De Lotto2 E. de O~naWilhelmi16 C. Delgado Mendez14 F. Di Pierro3 D. Dominis Prester5 D. Dorner13 M. Doro15 S. Einecke17 D. Eisenacher Glawion13 D. Elsaesser13 A. Fern´andez-Barral12 D. Fidalgo8 M. V. Fonseca8 L. Font18 K. Frantzen17 C. Fruck7 D. Galindo19 R. J. Garc´ıaL´opez9 M. Garczarczyk11 D. Garrido Terrats18 M. Gaug18 P. Giammaria3 N. Godinovi´c5 A. Gonz´alez Mu~noz12 D. Guberman12 A. Hahn7 Y. Hanabata20 M. Hayashida20 J. Herrera9 J. Hose7 D. Hrupec5 G. Hughes1 W. Idec10 K. Kodani20 Y. Konno20 H. Kubo20 J. Kushida20 A. La Barbera3 D. Lelas5 E. Lindfors21 S. Lombardi3 F. Longo2 M. L´opez8 R. L´opez-Coto12 A. L´opez-Oramas12;29 E. Lorenz7 P. Majumdar6 M. Makariev22 K. Mallot11 G. Maneva22 M. Manganaro9 K. Mannheim13 L. Maraschi3 B. Marcote19 M. Mariotti15 M. Mart´ınez12 D. Mazin7;30 U. Menzel7 J. M. Miranda4 arXiv:1601.06590v2 [astro-ph.HE] 16 Feb 2016 R. Mirzoyan7 A. Moralejo12 E. Moretti7 D. Nakajima20 V. Neustroev21 A. Niedzwiecki10 M. Nievas Rosillo8 K. Nilsson21;31 K. Nishijima20 K. Noda7 R. Orito20 A. Overkemping17 S. Paiano15 J. Palacio12 M. Palatiello2 D. Paneque7 R. Paoletti4 J. M. Paredes19 X. Paredes-Fortuny19 M. Persic2;32 J. Poutanen21 P. G. Prada Moroni23 E. Prandini1;33 I. Puljak5 W. Rhode17 M. Rib´o19 J. Rico12;∗ J. Rodriguez Garcia7 T. Saito20 K. Satalecka8 C. Schultz15 T. Schweizer7 S. N. Shore23 A. Sillanp¨a¨a21 J. Sitarek10 I. Snidaric5 D. Sobczynska10 A. Stamerra3 T. Steinbring13 M. Strzys7 L. Takalo21 H. Takami20 F. Tavecchio3 P. Temnikov22 T. Terzi´c5 D. Tescaro9 M. Teshima7;30 J. Thaele17 D. F. Torres24 T. Toyama7 A. Treves2 V. Verguilov22 I. Vovk7 J. E. Ward12 M. Will9 M. H. Wu16 R. Zanin19 (the MAGIC Collaboration) J. Aleksi´c12;∗ M. Wood34;∗ B. Anderson35;36 E. D. Bloom34 J. Cohen-Tanugi37 A. Drlica-Wagner38 M. N. Mazziotta39 M. S´anchez-Conde35;36 L. Strigari40 1ETH Zurich, CH-8093 Zurich, Switzerland 2Universit`adi Udine, and INFN Trieste, I-33100 Udine, Italy 3INAF National Institute for Astrophysics, I-00136 Rome, Italy 4Universit`adi Siena, and INFN Pisa, I-53100 Siena, Italy 5Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka, University of Split and University of Zagreb, Croatia 6Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Salt Lake, Sector-1, Kolkata 700064, India 7Max-Planck-Institut f¨urPhysik, D-80805 M¨unchen, Germany 8Universidad Complutense, E-28040 Madrid, Spain 9Inst. de Astrof´ısicade Canarias, E-38200 La Laguna, Tenerife, Spain; Universidad de La Laguna, Dpto. Astrof´ısica,E-38206 La Laguna, Tenerife, Spain 10University ofL´od´z,PL-90236 Lodz, Poland 11Deutsches Elektronen-Synchrotron (DESY), D-15738 Zeuthen, Germany 12Institut de Fisica d'Altes Energies (IFAE), The Barcelona Institute of Science and Tech- nology, Campus UAB, 08193 Bellaterra (Barcelona), Spain 13Universit¨atW¨urzburg,D-97074 W¨urzburg,Germany 14Centro de Investigaciones Energ´eticas,Medioambientales y Tecnol´ogicas,E-28040 Madrid, Spain 15Universit`adi Padova and INFN, I-35131 Padova, Italy 16Institute for Space Sciences (CSIC/IEEC), E-08193 Barcelona, Spain 17Technische Universit¨atDortmund, D-44221 Dortmund, Germany 18Unitat de F´ısicade les Radiacions, Departament de F´ısica,and CERES-IEEC, Universitat Aut`onomade Barcelona, E-08193 Bellaterra, Spain 19Universitat de Barcelona, ICC, IEEC-UB, E-08028 Barcelona, Spain 20Japanese MAGIC Consortium, ICRR, The University of Tokyo, Department of Physics and Hakubi Center, Kyoto University, Tokai University, The University of Tokushima, KEK, Japan 21Finnish MAGIC Consortium, Tuorla Observatory, University of Turku and Department of Physics, University of Oulu, Finland 22Inst. for Nucl. Research and Nucl. Energy, BG-1784 Sofia, Bulgaria *Corresponding author. 23Universit`adi Pisa, and INFN Pisa, I-56126 Pisa, Italy 24ICREA and Institute for Space Sciences (CSIC/IEEC), E-08193 Barcelona, Spain 25now at Centro Brasileiro de Pesquisas F´ısicas(CBPF/MCTI), R. Dr. Xavier Sigaud, 150 - Urca, Rio de Janeiro - RJ, 22290-180, Brazil 26now at NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA and Department of Physics and Department of Astronomy, University of Maryland, College Park, MD 20742, USA 27Humboldt University of Berlin, Institut f¨urPhysik Newtonstr. 15, 12489 Berlin Germany 28now at Ecole polytechnique f´ed´eralede Lausanne (EPFL), Lausanne, Switzerland 29now at Laboratoire AIM, Service d'Astrophysique, DSM/IRFU, CEA/Saclay FR-91191 Gif-sur-Yvette Cedex, France 30also at Japanese MAGIC Consortium 31now at Finnish Centre for Astronomy with ESO (FINCA), Turku, Finland 32also at INAF-Trieste 33also at ISDC - Science Data Center for Astrophysics, 1290, Versoix (Geneva) 34W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stan- ford University, Stanford, CA 94305, USA 35Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden 36The Oskar Klein Centre for Cosmoparticle Physics, AlbaNova, SE-106 91 Stockholm, Swe- den 37Laboratoire Univers et Particules de Montpellier, Universit´eMontpellier, CNRS/IN2P3, Montpellier, France 38Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, IL 60510, USA 39Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari, Italy 40Texas A&M University, Department of Physics and Astronomy, College Station, TX 77843- 4242, USA E-mail: [email protected], [email protected], [email protected] Abstract. We present the first joint analysis of gamma-ray data from the MAGIC Cherenkov tele- scopes and the Fermi Large Area Telescope (LAT) to search for gamma-ray signals from dark matter annihilation in dwarf satellite galaxies. We combine 158 hours of Segue 1 observations with MAGIC with 6-year observations of 15 dwarf satellite galaxies by the Fermi-LAT. We obtain limits on the annihilation cross-section for dark matter particle masses between 10 GeV and 100 TeV { the widest mass range ever explored by a single gamma-ray analysis. These limits improve on previously published Fermi-LAT and MAGIC results by up to a factor of two at certain masses. Our new inclusive analysis approach is completely generic and can be used to perform a global, sensitivity-optimized dark matter search by combining data from present and future gamma-ray and neutrino detectors. Keywords: dark matter experiments, gamma ray experiments, neutrino experiments, dwarf galaxies Contents 1 Introduction1 2 Instruments and Observations2 2.1 The MAGIC telescopes2 2.2 The Fermi-LAT3 3 Analysis 4 3.1 Dark Matter annihilation flux4 3.2 Likelihood analysis5 4 Results 7 5 Discussion and Conclusions 11 A Comparison with previous MAGIC results 12 1 Introduction The existence of a non-baryonic, neutral and cold dark matter (DM) component in the Uni- verse is supported by an overwhelming body of observational evidence, mainly involving its gravitational effects on the dynamics of cosmic structures like galaxy clusters (first observed by Zwicky in 1933 [1]) and spiral galaxies [2,3], and on the power spectrum of temperature anisotropies of the cosmic microwave background [4,5]. Several theories beyond the Stan- dard Model postulate the existence of a new neutral, stable and weakly interacting massive particle (generically known as WIMP [6]), with mass in the TeV scale, and that could account for the measured DM relic density (e.g. [7]). A promising way to identify the nature of DM and to measure its properties is to search for the Standard Model (SM) particles produced through WIMP annihilation or decay at DM over-densities, or halos, in the local Universe. Among those SM products, gamma rays and neutrinos are the only stable neutral particles. They travel from their production sites to Earth unaffected by magnetic deflection, and as such are ideal messengers for astronomical DM searches. Current gamma-ray instruments like the Fermi Large Area Telescope (LAT)1 in space, the ground-based Cherenkov telescopes MAGIC2, H.E.S.S.3 and VERITAS4, the new-generation water Cherenkov detector HAWC5, as well as neutrino telescopes like Antares6, IceCube7, and SuperKamiokande8, are sensitive to overlapping and/or complementary DM particle mass ranges (from ∼1 GeV to ∼100 TeV). All these instruments have dedicated programs 1http://fermi.gsfc.nasa.gov 2http://magic.mpp.mpg.de 3http://www.mpi-hd.mpg.de/hfm/HESS 4http://veritas.sao.arizona.edu 5http://www.hawc-observatory.org 6http://antares.in2p3.fr 7http://icecube.wisc.edu 8http://www-sk.icrr.u-tokyo.ac.jp/sk/index-e.html { 1 { to look for WIMP signals coming from, e.g., the Galactic Center and halo [8{17], galaxy clusters [18{22], dwarf spheroidal galaxies (dSphs) [23{34] and other targets [35{37]. A natural step forward within this collective effort is the combination of data from different experiments and/or observational targets, which allows a global and sensitivity- optimized search [38]. This can be achieved in a relatively straightforward way since, for a given DM particle model, a joint likelihood function can be written as the product of the particular likelihood functions for each of the measurements/instruments. One advantage of such an approach is that the details of each experiment, such as event lists or instrument response functions (IRFs), do not need to be combined or averaged. In this paper, we present a new global analysis framework for DM searches, applicable to observations from gamma-ray and neutrino instruments, and the results of applying it to the MAGIC and Fermi-LAT observations of dSphs.
Recommended publications
  • Arxiv:1303.1406V1 [Astro-Ph.HE] 6 Mar 2013 the flux of Gamma-Rays from Dark Matter Annihilation Takes a Surprisingly Simple Form 2
    4th Fermi Symposium : Monterey, CA : 28 Oct-2 Nov 2012 1 The VERITAS Dark Matter Program Alex Geringer-Sameth∗ for the VERITAS Collaboration Department of Physics, Brown University, 182 Hope St., Providence, RI 02912 The VERITAS array of Cherenkov telescopes, designed for the detection of gamma-rays in the 100 GeV-10 TeV energy range, performs dark matter searches over a wide variety of targets. VERITAS continues to carry out focused observations of dwarf spheroidal galaxies in the Local Group, of the Milky Way galactic center, and of Fermi-LAT unidentified sources. This report presents our extensive observations of these targets, new statistical techniques, and current constraints on dark matter particle physics derived from these observations. 1. Introduction Earth's atmosphere as a target for high-energy cosmic particles. An incoming gamma-ray may interact in the The characterization of dark matter beyond its Earth's atmosphere, initiating a shower of secondary gravitational interactions is currently a central task particles that travel at speeds greater than the local of modern particle physics. A generic and well- (in air) speed of light. This entails the emission of motivated dark matter candidate is a weakly in- ultraviolet Cherenkov radiation. The four telescopes teracting massive particle (WIMP). Such particles of the VERITAS array capture images of the shower have masses in the GeV-TeV range and may inter- using this Cherenkov light. The images are analyzed act with the Standard Model through the weak force. to reconstruct the direction of the original particle as Searches for WIMPs are performed at particle accel- well as its energy.
    [Show full text]
  • Very High Energy Emission from Blazars Interpreted Through Simultaneous Multiwavelength Observations
    UNIVERSITA` DEGLI STUDI DI SIENA FACOLTA` DI SCIENZE MATEMATICHE, FISICHE E NATURALI Dipartimento di Fisica Very High Energy emission from blazars interpreted through simultaneous multiwavelength observations Relatore/Supervisor: Candidato/Candidate: Dr. Antonio Stamerra Giacomo Bonnoli Tutore/Tutor: Prof. Riccardo Paoletti Ph.D. School in Physics Cycle XXI December 2010 Abstract In the framework of Astroparticle Physics the understanding of the particle acceleration process and related high energy electromagnetic emission within astrophysical sources is an issue of fundamental importance to unravel the structure and evolution of many classes of celestial objects, on different scales from micro{quasars to active galactic nuclei. This has an important role not only for astrophysics itself, but for many related topics of cosmic ray physics and High Energy physics, such as the search for dark matter. Also cosmology is interested, as deepening our knowledge on Active Galactic Nuclei and their interaction with the environment can help to clarify open issues on the formation of cosmic structures and evolution of universe on large scales. The present view on sources emitting high energy radiation is now gaining new insight thanks to multiwavelength observations. This approach allows to explore the spectral energy distribution of the sources all across the electromagnetic spectrum, therefore granting the best achievable understanding of the physical processes that originate the radiation that we see, and their mutual relationships. Our theories model the sources in terms of parameters that can be inferred from the observables quantities measured, and the multiwavelength observations are a key instrument in order to rule out or support some selected models out of the many that compete in the effort of describing the processes at work.
    [Show full text]
  • A Complete Spectroscopic Survey of the Milky Way Satellite Segue 1: the Darkest Galaxy
    Haverford College Haverford Scholarship Faculty Publications Astronomy 2011 A Complete Spectroscopic Survey of the Milky Way Satellite Segue 1: The Darkest Galaxy Joshua D. Simon Marla Geha Quinn E. Minor Beth Willman Haverford College Follow this and additional works at: https://scholarship.haverford.edu/astronomy_facpubs Repository Citation A Complete Spectroscopic Survey of the Milky Way satellite Segue 1: Dark matter content, stellar membership and binary properties from a Bayesian analysis - Martinez, Gregory D. et al. Astrophys.J. 738 (2011) 55 arXiv:1008.4585 [astro-ph.GA] This Journal Article is brought to you for free and open access by the Astronomy at Haverford Scholarship. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Haverford Scholarship. For more information, please contact [email protected]. The Astrophysical Journal, 733:46 (20pp), 2011 May 20 doi:10.1088/0004-637X/733/1/46 C 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A. A COMPLETE SPECTROSCOPIC SURVEY OF THE MILKY WAY SATELLITE SEGUE 1: THE DARKEST GALAXY∗ Joshua D. Simon1, Marla Geha2, Quinn E. Minor3, Gregory D. Martinez3, Evan N. Kirby4,8, James S. Bullock3, Manoj Kaplinghat3, Louis E. Strigari5,8, Beth Willman6, Philip I. Choi7, Erik J. Tollerud3, and Joe Wolf3 1 Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101, USA; [email protected] 2 Astronomy Department, Yale University, New Haven, CT 06520, USA; [email protected]
    [Show full text]
  • Is There Tension Between Observed Small Scale Structure and Cold Dark Matter?
    Is there tension between observed small scale structure and cold dark matter? Louis Strigari Stanford University Cosmic Frontier 2013 March 8, 2013 Predictions of the standard Cold Dark Matter model 26 3 1 1. Density profiles rise towards the centersσannv 3of 10galaxies− cm s− (1) h i' ⇥ ⇢ Universal for all halo masses ⇢(r)= s (2) (r/r )(1 + r/r )2 Navarro-Frenk-White (NFW) model s s 2. Abundance of ‘sub-structure’ (sub-halos) in galaxies Sub-halos comprise few percent of total halo mass Most of mass contained in highest- mass sub-halos Subhalo Mass Function Mass[Solar mass] 1 Problems with the standard Cold Dark Matter model 1. Density of dark matter halos: Faint, dark matter-dominated galaxies appear less dense that predicted in simulations General arguments: Kleyna et al. MNRAS 2003, 2004;Goerdt et al. APJ2006; de Blok et al. AJ 2008 Dwarf spheroidals: Gilmore et al. APJ 2007; Walker & Penarrubia et al. APJ 2011; Angello & Evans APJ 2012 2. ‘Missing satellites problem’: Simulations have more dark matter subhalos than there are observed dwarf satellite galaxies Earilest papers: Kauffmann et al. 1993; Klypin et al. 1999; Moore et al. 1999 Solutions to the issues in Cold Dark Matter 1. The theory is wrong i) Not enough physics in theory/simulations (Talks yesterday by M. Boylan-Kolchin, M. Kuhlen) [Wadepuhl & Springel MNRAS 2011; Parry et al. MRNAS 2011; Pontzen & Governato MRNAS 2012; Brooks et al. ApJ 2012] ii) Cosmology/dark matter is wrong (Talk yesterday by A. Peter) 2. The data is wrong i) Kinematics of dwarf spheroidals (dSphs) are more difficult than assumed ii) Counting satellites a) Many more faint satellites around the Milky Way b) Milky Way is an oddball [Liu et al.
    [Show full text]
  • DANIEL MAZIN Föhringer Ring 6, 80805 Munich, Germany Tel: +49 89 32354 255 Email: [email protected]
    DANIEL MAZIN Föhringer Ring 6, 80805 Munich, Germany Tel: +49 89 32354 255 Email: [email protected] PUBLICATION LIST I have published more than 80 publications in high-energy astroparticle physics under peer review process; 30+ in small collaborations (typically 2-5 persons), 15 as first or only author. According to INSPIRES-HEP database my works are cited more than 4000 times with an h-index of 38. TOP 10 SELECTED PUBLICATIONS WHERE I AM THE CORRESPONDING AUTHOR: [1] Mazin, D., Raue, M., Behera, B. et al., Potential of EBL and cosmology studies with the Cherenkov Telescope Array, APh 43 (2013) 241, doi: 10.1016/ j.astropartphys.2012.09.002 [2] Aleksic et al (The MAGIC Collaboration), MAGIC Discovery of Very High Energy Emission from the FSRQ PKS 1222+21, ApJ 730 (2011) L8 [3] Raue, M. and Mazin D., Potential of the next generation VHE instruments to probe the EBL (I): The low- and mid-VHE, Astroparticle Physics 34 (2010) 245 [4] Acciari, et al. (The MAGIC, H.E.S.S and VERITAS Collaborations and VLBA 43 GHz M87 Monitoring Team), Radio Imaging of the Very-High-Energy Gamma- Ray Emission Region in the Central Engine of a Radio Galaxy , Science Express, 2nd July 2009 [5] Tavecchio, F. & Mazin, D. Intrinsic absorption in 3C 279 at GeV-TeV energies and consequences for estimates of the EBL, MNRAS Astronomy 392 (2009) L40- L44 [6] Raue, M., Kneiske T.M., & Mazin, D. First stars and the extragalactic background light: How recent gamma-ray observations constrain the early universe, Astronomy & Astrophysics, 498 (2009) 25-35 [7] Albert, J.
    [Show full text]
  • Galactic Archaeology with the Oldest Stars in the Milky Way
    Galactic Archaeology with the oldest stars in the Milky Way Anke Arentsen Leibniz-Institut für Astrophysik Potsdam (AIP) Kumulative dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) in der Wissenschaftsdisziplin Astrophysik Eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät Institut für Physik und Astronomie der Universität Potsdam und das Leibniz-Institut für Astrophysik Potsdam (AIP) Potsdam, 16.09.2020 Betreuer: Dr. Else Starkenburg/Prof. Dr. Matthias Steinmetz 1. Gutachter: Dr. Else Starkenburg Leibniz-Institut für Astrophysik Potsdam 2. Gutachter: Prof. Dr. Matthias Steinmetz Leibniz-Institut für Astrophysik Potsdam/Universität Potsdam 3. Gutachter: Prof. Dr. Norbert Christlieb Zentrum für Astronomie der Universität Heidelberg/Landessternwarte Published online on the Publication Server of the University of Potsdam: https://doi.org/10.25932/publishup-47602 https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-476022 “... it is difficult to resist the impression that the evolution of „ the stellar universe proceeds at a slow majestic pace ...” — Sir A. S. Eddington (The internal constitution of the stars, 1920) Contents Summary/Zusammenfassung i 1 Introduction 1 1.1 What can we learn from metal-poor stars about the First Stars? . .4 1.1.1 Using observations to set constraints on the First Stars . .5 1.1.2 Models of CEMP star origins . .6 1.1.3 3D/NLTE effects on the carbon abundance . .7 1.1.4 Contribution of this thesis to the field . .9 1.2 Galactic archaeology with pristine stars . .9 1.2.1 How to find metal-poor stars . 10 1.2.2 Photometric surveys . 10 1.2.3 Recent metal-poor Milky Way results .
    [Show full text]
  • Astronomy 2009 Index
    Astronomy Magazine 2009 Index Subject Index 1RXS J160929.1-210524 (star), 1:24 4C 60.07 (galaxy pair), 2:24 6dFGS (Six Degree Field Galaxy Survey), 8:18 21-centimeter (neutral hydrogen) tomography, 12:10 93 Minerva (asteroid), 12:18 2008 TC3 (asteroid), 1:24 2009 FH (asteroid), 7:19 A Abell 21 (Medusa Nebula), 3:70 Abell 1656 (Coma galaxy cluster), 3:8–9, 6:16 Allen Telescope Array (ATA) radio telescope, 12:10 ALMA (Atacama Large Millimeter/sub-millimeter Array), 4:21, 9:19 Alpha (α) Canis Majoris (Sirius) (star), 2:68, 10:77 Alpha (α) Orionis (star). See Betelgeuse (Alpha [α] Orionis) (star) Alpha Centauri (star), 2:78 amateur astronomy, 10:18, 11:48–53, 12:19, 56 Andromeda Galaxy (M31) merging with Milky Way, 3:51 midpoint between Milky Way Galaxy and, 1:62–63 ultraviolet images of, 12:22 Antarctic Neumayer Station III, 6:19 Anthe (moon of Saturn), 1:21 Aperture Spherical Telescope (FAST), 4:24 APEX (Atacama Pathfinder Experiment) radio telescope, 3:19 Apollo missions, 8:19 AR11005 (sunspot group), 11:79 Arches Cluster, 10:22 Ares launch system, 1:37, 3:19, 9:19 Ariane 5 rocket, 4:21 Arianespace SA, 4:21 Armstrong, Neil A., 2:20 Arp 147 (galaxy pair), 2:20 Arp 194 (galaxy group), 8:21 art, cosmology-inspired, 5:10 ASPERA (Astroparticle European Research Area), 1:26 asteroids. See also names of specific asteroids binary, 1:32–33 close approach to Earth, 6:22, 7:19 collision with Jupiter, 11:20 collisions with Earth, 1:24 composition of, 10:55 discovery of, 5:21 effect of environment on surface of, 8:22 measuring distant, 6:23 moons orbiting,
    [Show full text]
  • 2.4 Colisión De Galaxias
    Simulación de colisión de dos galaxias para estudiar la formación de las galaxias enanas esferoidales satélites de la Vía Láctea Omar Alfonso Bohórquez Pacheco Universidad Nacional de Colombia Facultad de Ciencias, Departamento de Física Bogotá, Colombia 2016 Simulación de colisión de dos galaxias para estudiar la formación de las galaxias enanas esferoidales satélites de la Vía Láctea Omar Alfonso Bohórquez Pacheco Trabajo de grado presentado como requisito parcial para optar al título de: Magister en Ciencias - Física Director: Dr. rer. nat. Rigoberto Casas Miranda Grupo de Investigación: Astrofísica Universidad Nacional de Colombia Facultad de Ciencias, Departamento de Física Bogotá, Colombia 2016 A mis padres y en especial a mi abuela Esther Vega viuda de Pacheco, sin su ayuda no hubiera sido posible. Posible es que me equivoque y tome por oro y diamantes lo que solo es cobre y vidrio. René Descartes Agradecimientos Un gran agradecimiento al CECAD - Centro de Computación de Alto Desempeño de la Universidad Distrital “Francisco José de Caldas” y a mis amigos José Benavides, Diana Judith Cubillos Jara y Yeimy Camargo, sin su ayuda no habría sido posible. Resumen y Abstract IX Resumen En la actualidad dentro del área de la astrofísica se presentan un sinnúmero de problemas sin resolver, entre ellos el problema del origen de las galaxias satélite de la VL. Estas galaxias se caracterizan por ser de tipo enana esferoidal. La mayoría de estas se encuentran distribuidas en una estructura tipo disco que se encuentra dispuesta de casi forma perpendicular al plano de la galaxia, esta estructura es conocida con el nombre de disco de satélites (DoS) o Vast Polar Structure Of Satellite Galaxies (VPOS).
    [Show full text]
  • Fachverband Teilchenphysik (T) Ubersicht¨
    Fachverband Teilchenphysik (T) Ubersicht¨ Fachverband Teilchenphysik (T) Reinhold Ruckl¨ Lehrstuhl fur¨ Theoretische Physik II Universit¨at Wurzburg¨ Am Hubland 97074 Wurzburg¨ [email protected] Ubersicht¨ der Hauptvortr¨age und Fachsitzungen (H¨ors¨ale KGI-HS 1010, KGI-HS 1015, KGI-HS 1016, KGI-HS 1019, KGI-HS 1021, KGI-HS 1023, KGI-HS 1024, KGI-HS 1032, KGI-HS 1098, KGI-HS 1108, KGI-HS 1132, KGI-HS 1134, KGI-HS 1199, KGI-HS 1221, KGI-HS 1224, KGI-HS 1228, KGII-Audimax, KGII-HS 2004, KGII-HS 2006, Peterhof-HS 2 und Peterhof-HS 4) Hauptvortr¨age T 1.1 Di 9:00– 9:45 KGII-Audimax HERA and proton structure — •Daniel Pitzl T 1.2 Di 9:45–10:30 KGII-Audimax Herausforderungen der LHC-Physik an die Theorie — •Michael Kramer¨ T 2.1 Mi 8:30– 9:15 KGII-Audimax Electroweak Physics at HERA and at the Tevatron and Searches for Higgs Bosons — •Rainer Wallny T 2.2 Mi 9:15–10:00 KGII-Audimax QCD and Jets — •Uta Klein T 3.1 Do 8:30– 9:10 KGII-Audimax Neue Ergebnisse zur Charm- und Bottom-Physik — •Ulrich Uwer T 3.2 Do 9:10– 9:50 KGII-Audimax Neue Ergebnisse zur solaren Neutrinoastronomie — •Franz von Feilitzsch T 3.3 Do 9:50–10:30 KGII-Audimax Standard Model, SUSY, GUTs: Implications from String Theory — •Hans-Peter Nilles T 4.1 Do 11:45–12:30 KGII-Audimax Neuentwicklungen in der Beschleunigertechnologie — •Hans Weise T 5.1 Fr 9:00– 9:45 KGII-Audimax Recent developments in High Energy Cosmic Ray Physics — •Pasquale D.
    [Show full text]
  • Summary Talk: Challenges in Particle Astrophysics
    SUMMARY TALK: CHALLENGES IN PARTICLE ASTROPHYSICS HINRICH MEYER Bergische Universit¨at Wuppertal, Fachbereich Physik, Gaussstr. 20, D-42119 Wuppertal, Germany, and DESY Hamburg, Notkestr. 85, 22607 Hamburg, Germany Introduction At this meeting we had 42 talks which covered most of the important sub- jects of the field of particle astrophysics. In addition, on one afternoon more details were presented in 5 parallel sessions with another 42 shorter talks. Particle Physics is very nicely described in terms of the rather com- plete ‘Standard Model’ with 6 quarks and 6 leptons interacting through the exchange of photons, weak gauge bosons and gluons. So far no significant deviations have surfaced. More and more details have been added to com- arXiv:0705.2972v1 [astro-ph] 21 May 2007 plete the picture and there is no serious hint of a discrepancy that would indicate new physics beyond the Standard Model. Only the “Higgs” is not found yet. But in the last 10 years or so there have been great advances in the field of Particle Astrophysics adding new information to particle physics while simultaneously opening up new windows of observation in astrophysics and astronomy. 1. Neutrino oscillations have been discovered in studies of neutrinos cre- ated in energy production in the sun and through cosmic ray interac- tions in the earth atmosphere. Furthermore, neutrinos from SN 1987 A 1 have been detected, confirming qualitatively the basic expectations for a supernova explosion. These important discoveries have been impres- sively confirmed with oscillation observations of neutrinos from power reactors and particle accelerators. 2. Extensive studies performed with radiodetectors on satellites, on bal- loons and on earth of the 2.7◦ K cosmic microwave background (CMB) have revealed a flat universe (Ω = 1) and supported by observations of supernova of type 1A out to distances beyond z = 1, an energy content of the universe dominated by Dark Energy and Dark Matter with only a smallish fraction in the form of baryonic matter.
    [Show full text]
  • Arxiv:1311.0282V1 [Astro-Ph.CO] 1 Nov 2013 Eue Ocntanteseienurn Rpris by Can Properties
    Sterile neutrino dark matter bounds from galaxies of the Local Group Shunsaku Horiuchi,1, ∗ Philip J. Humphrey,1 Jose O˜norbe,1 Kevork N. Abazajian,1 Manoj Kaplinghat,1 and Shea Garrison-Kimmel1 1Center for Cosmology, Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA 92697-4575 (Dated: date) We show that the canonical oscillation-based (non-resonant) production of sterile neutrino dark matter is inconsistent at > 99% confidence with observations of galaxies in the Local Group. We set lower limits on the non-resonant sterile neutrino mass of 2.5 keV (equivalent to 0.7 keV thermal mass) using phase-space densities derived for dwarf satellite galaxies of the Milky Way, as well as limits of 8.8 keV (equivalent to 1.8 keV thermal mass) based on subhalo counts of N-body simulations of M 31 analogues. Combined with improved upper mass limits derived from significantly deeper X-ray data of M 31 with full consideration for background variations, we show that there remains little room for non-resonant production if sterile neutrinos are to explain 100% of the dark matter abundance. Resonant and non-oscillation sterile neutrino production remain viable mechanisms for generating sufficient dark matter sterile neutrinos. PACS numbers: 14.60.St 95.35.+d I. INTRODUCTION At the same time, sterile neutrinos are not completely stable and their radiative decays into active neutrinos provides a compelling search opportunity [23]. Due to de- The particle nature of dark matter (DM) is among the tector capabilities, current X-ray searches probe masses most intriguing questions in modern physics, and many of a few keV and above.
    [Show full text]
  • Searches for Dark Matter Annihilation Signatures in the Segue 1 Satellite
    Formatted to JCAP style Searches for Dark Matter annihilation signatures in the Segue 1 satellite galaxy with the MAGIC-I telescope MAGIC Collaboration J. Aleksi´c1 E. A. Alvarez2 L. A. Antonelli3 P. Antoranz4 M. Asensio2 M. Backes5 J. A. Barrio2 D. Bastieri6 J. Becerra Gonz´alez7,8 W. Bednarek9 A. Berdyugin10 K. Berger7,8 E. Bernardini11 A. Biland12 O. Blanch1 R. K. Bock13 A. Boller12 G. Bonnoli3 D. Borla Tridon13 I. Braun12 T. Bretz14,26 A. Ca˜nellas15 E. Carmona13 A. Carosi3 P. Colin13 E. Colombo7 J. L. Contreras2 J. Cortina1 L. Cossio16 S. Covino3 F. Dazzi16,27 A. De Angelis16 E. De Cea del Pozo17 B. De Lotto16 C. Delgado Mendez7,28 A. Diago Ortega7,8 M. Doert5 A. Dom´ınguez18 D. Dominis Prester19 D. Dorner12 M. Doro20 D. Elsaesser14 D. Ferenc19 M. V. Fonseca2 L. Font20 C. Fruck130 R. J. Garc´ıa L´opez7,8 M. Garczarczyk7 D. Garrido20 G. Giavitto1 N. Godinovi´c19 D. Hadasch17 D. H¨afner13 A. Herrero7,8 D. Hildebrand12 D. H¨ohne-M¨onch14 J. Hose13 D. Hrupec19 B. Huber12 T. Jogler13 S. Klepser1 T. Kr¨ahenb¨uhl12 J. Krause13 A. La Barbera3 D. Lelas19 E. Leonardo4 E. Lindfors10 S. Lombardi6 M. L´opez2 E. Lorenz12,13 M. Makariev21 G. Maneva21 N. Mankuzhiyil16 K. Mannheim14 L. Maraschi3 M. Mariotti6 M. Mart´ınez1 D. Mazin1,13 M. Meucci4 J. M. Miranda4 R. Mirzoyan13 H. Miyamoto13 J. Mold´on15 A. Moralejo1 P. Munar-Androver15 D. Nieto2 K. Nilsson10,29 13 2 6 13 4 2 arXiv:1103.0477v2 [astro-ph.HE] 10 Jul 2011 R.
    [Show full text]