2.4 Colisión De Galaxias

Total Page:16

File Type:pdf, Size:1020Kb

2.4 Colisión De Galaxias Simulación de colisión de dos galaxias para estudiar la formación de las galaxias enanas esferoidales satélites de la Vía Láctea Omar Alfonso Bohórquez Pacheco Universidad Nacional de Colombia Facultad de Ciencias, Departamento de Física Bogotá, Colombia 2016 Simulación de colisión de dos galaxias para estudiar la formación de las galaxias enanas esferoidales satélites de la Vía Láctea Omar Alfonso Bohórquez Pacheco Trabajo de grado presentado como requisito parcial para optar al título de: Magister en Ciencias - Física Director: Dr. rer. nat. Rigoberto Casas Miranda Grupo de Investigación: Astrofísica Universidad Nacional de Colombia Facultad de Ciencias, Departamento de Física Bogotá, Colombia 2016 A mis padres y en especial a mi abuela Esther Vega viuda de Pacheco, sin su ayuda no hubiera sido posible. Posible es que me equivoque y tome por oro y diamantes lo que solo es cobre y vidrio. René Descartes Agradecimientos Un gran agradecimiento al CECAD - Centro de Computación de Alto Desempeño de la Universidad Distrital “Francisco José de Caldas” y a mis amigos José Benavides, Diana Judith Cubillos Jara y Yeimy Camargo, sin su ayuda no habría sido posible. Resumen y Abstract IX Resumen En la actualidad dentro del área de la astrofísica se presentan un sinnúmero de problemas sin resolver, entre ellos el problema del origen de las galaxias satélite de la VL. Estas galaxias se caracterizan por ser de tipo enana esferoidal. La mayoría de estas se encuentran distribuidas en una estructura tipo disco que se encuentra dispuesta de casi forma perpendicular al plano de la galaxia, esta estructura es conocida con el nombre de disco de satélites (DoS) o Vast Polar Structure Of Satellite Galaxies (VPOS). Hasta el momento no se ha podido encontrar un modelo que dé cuenta de la cantidad y de la distribución espacial de estas galaxias. Sin embargo se han presentado varias propuestas de solución para el caso de la VL, una de las cuales propone que estas tuvieron origen en la colisión de dos galaxias de disco hace miles de millones de años. En este trabajo se llevaron a cabo simulaciones numéricas de N-cuerpos con el software Gadget2 para colisiones entre dos galaxias de disco que pudieron dar origen al disco de satélites de la VL. Se puede decir que bajo las condiciones iniciales planteadas para estas simulaciones no es posible generar las características dinámicas y espaciales de lo que se denomina el disco de galaxias satélite la VL (DoS), sin embargo, esto no descarta por completo el modelo propuesto para este estudio, ya que si bien no refleja los resultados esperados, se pueden proponer trabajos futuros para realizar simulaciones y modificar los parámetros de impacto y las relaciones de masa y así poder enmarcar las condiciones físicas bajo las cuales sería posible este evento. Los resultados de este trabajo permiten acotar aún más el espacio de condiciones iniciales orbitales y de masa de eventuales progenitores del DoS de la VL. Palabras clave: Grupo Local, Galaxias Enanas, Vía Láctea X Colisión de dos Galaxias de Disco Abstract At present within the area of astrophysics there are a number of unresolved problems, including the problem of the origin of the satellite galaxies of the Milky Way. These galaxies are characterized by dwarf spheroidal galaxies type. Most of them are distributed in a disk-like structure which is arranged almost perpendicular to the plane of the galaxy, this structure is known as satellite disk (DoS) or Polar Structure Of Vast Satellite Galaxies (VPOS). So far there is not a model that fully reproduces the amount and spatial distribution of these galaxies. However there have been several proposed for the solutions, one of which suggests that these originated in the collision of two disk galaxies billions of years ago. In this work we have performed N-bodies numerical simulations of with Gadget2 of the collision between two disk galaxies that could give rise to disc of VL satellites. It can be said that under the initial conditions set for these simulations is not possible to generate dynamic and spatial characteristics of what is called the satellite the disc of Milky Way (DoS) galaxies, however, this does not preclude in any way the model proposed for this study because although it does not reflect the expected results can be proposed for future work simulations and modify the parameters of impact and the mass ratios to frame the physical conditions under which this event possible. The results of this work allow limiting further orbital space initial conditions and eventual mass progenitors of DoS VL. Keywords: Local Group, Dwarf Galaxies, Milky Way Contenido XI Contenido Pág. Resumen ........................................................................................................... IX Lista de figuras .............................................................................................. XIV Lista de tablas ............................................................................................ XXIV Introducción ....................................................................................................... 1 1. Galaxias, Grupo Local y Galaxias Satélites ................................................. 5 1.1 Galaxias ........................................................................................................... 5 1.1.1 Secuencia de Hubble .............................................................................. 6 1.1.2 Galaxias elípticas ................................................................................... 6 1.1.3 Galaxias espirales .................................................................................. 8 1.1.4 Galaxias irregulares ............................................................................... 9 1.1.5 Galaxias enanas ..................................................................................... 9 1.1.6 Vía Láctea (VL) ...................................................................................11 1.2 Grupo Local .................................................. ¡Error! Marcador no definido. 1.2.1 Distribución espacial del Grupo Local ..................................................16 1.2.2 Propiedades del Grupo Local ................................................................19 1.2.3 Galaxias enanas del Grupo Local ..........................................................22 1.3 Galaxias enanas satélite de la Vía Láctea ........................................................25 1.3.1 Disco de satélites de la Vía Láctea (DoS) .............................................28 1.3.2 Hipótesis de formación del disco de galaxias (DoS) ...............................30 2. Marco teórico ............................................................................................. 35 2.1 Componentes de una galaxia de disco .............................................................35 2.1.1 Bulbo central ........................................................................................36 2.1.2 Disco ....................................................................................................36 2.1.3 Halo estelar ..........................................................................................36 2.1.4 Halo de materia oscura .........................................................................36 2.2 Modelos teóricos para el potencial gravitacional de las estructuras (Bulbo, Disco y Halo de materia oscura) ................................................................................37 2.2.1 Potencial de Hernquist (Bulbo central) ................................................37 XII Colisión de dos Galaxias de Disco 2.2.2 Perfil de densidad (Disco) .................................................................... 38 2.2.3 Potencial de Hernquist (Halo de materia oscura) ................................. 39 2.3 Orbita pre-colisión .......................................................................................... 40 2.3.1 Parámetro de impacto .......................................................................... 41 2.4 Colisión de galaxias ........................................................................................ 42 2.4.1 Sistemas no colisiónales ........................................................................ 42 2.4.2 Sistemas estelares interactuantes (definiciones) .................................... 43 2.4.3 Encuentro de galaxias en rotación ........................................................ 44 2.4.4 Encuentros de discos planos (estabilidad) ............................................ 46 2.4.5 Fricción dinámica ................................................................................. 48 2.4.6 Algunas colisiones reales y simulación .................................................. 48 3. Condiciones iniciales ................................................................................... 51 3.1 Software Zeno ................................................................................................. 51 3.2 Parámetros de la Vía Láctea........................................................................... 52 3.2.1 Condiciones iniciales baja resolución Vía Láctea .................................. 53 3.2.2 Condiciones iniciales alta resolución Vía Láctea ................................... 54 3.2.3 Masa del halo de materia oscura .......................................................... 55 3.3 Galaxias satélites ............................................................................................ 56 3.3.1 Redimensionamiento
Recommended publications
  • Arxiv:1303.1406V1 [Astro-Ph.HE] 6 Mar 2013 the flux of Gamma-Rays from Dark Matter Annihilation Takes a Surprisingly Simple Form 2
    4th Fermi Symposium : Monterey, CA : 28 Oct-2 Nov 2012 1 The VERITAS Dark Matter Program Alex Geringer-Sameth∗ for the VERITAS Collaboration Department of Physics, Brown University, 182 Hope St., Providence, RI 02912 The VERITAS array of Cherenkov telescopes, designed for the detection of gamma-rays in the 100 GeV-10 TeV energy range, performs dark matter searches over a wide variety of targets. VERITAS continues to carry out focused observations of dwarf spheroidal galaxies in the Local Group, of the Milky Way galactic center, and of Fermi-LAT unidentified sources. This report presents our extensive observations of these targets, new statistical techniques, and current constraints on dark matter particle physics derived from these observations. 1. Introduction Earth's atmosphere as a target for high-energy cosmic particles. An incoming gamma-ray may interact in the The characterization of dark matter beyond its Earth's atmosphere, initiating a shower of secondary gravitational interactions is currently a central task particles that travel at speeds greater than the local of modern particle physics. A generic and well- (in air) speed of light. This entails the emission of motivated dark matter candidate is a weakly in- ultraviolet Cherenkov radiation. The four telescopes teracting massive particle (WIMP). Such particles of the VERITAS array capture images of the shower have masses in the GeV-TeV range and may inter- using this Cherenkov light. The images are analyzed act with the Standard Model through the weak force. to reconstruct the direction of the original particle as Searches for WIMPs are performed at particle accel- well as its energy.
    [Show full text]
  • A Complete Spectroscopic Survey of the Milky Way Satellite Segue 1: the Darkest Galaxy
    Haverford College Haverford Scholarship Faculty Publications Astronomy 2011 A Complete Spectroscopic Survey of the Milky Way Satellite Segue 1: The Darkest Galaxy Joshua D. Simon Marla Geha Quinn E. Minor Beth Willman Haverford College Follow this and additional works at: https://scholarship.haverford.edu/astronomy_facpubs Repository Citation A Complete Spectroscopic Survey of the Milky Way satellite Segue 1: Dark matter content, stellar membership and binary properties from a Bayesian analysis - Martinez, Gregory D. et al. Astrophys.J. 738 (2011) 55 arXiv:1008.4585 [astro-ph.GA] This Journal Article is brought to you for free and open access by the Astronomy at Haverford Scholarship. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Haverford Scholarship. For more information, please contact [email protected]. The Astrophysical Journal, 733:46 (20pp), 2011 May 20 doi:10.1088/0004-637X/733/1/46 C 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A. A COMPLETE SPECTROSCOPIC SURVEY OF THE MILKY WAY SATELLITE SEGUE 1: THE DARKEST GALAXY∗ Joshua D. Simon1, Marla Geha2, Quinn E. Minor3, Gregory D. Martinez3, Evan N. Kirby4,8, James S. Bullock3, Manoj Kaplinghat3, Louis E. Strigari5,8, Beth Willman6, Philip I. Choi7, Erik J. Tollerud3, and Joe Wolf3 1 Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101, USA; [email protected] 2 Astronomy Department, Yale University, New Haven, CT 06520, USA; [email protected]
    [Show full text]
  • Is There Tension Between Observed Small Scale Structure and Cold Dark Matter?
    Is there tension between observed small scale structure and cold dark matter? Louis Strigari Stanford University Cosmic Frontier 2013 March 8, 2013 Predictions of the standard Cold Dark Matter model 26 3 1 1. Density profiles rise towards the centersσannv 3of 10galaxies− cm s− (1) h i' ⇥ ⇢ Universal for all halo masses ⇢(r)= s (2) (r/r )(1 + r/r )2 Navarro-Frenk-White (NFW) model s s 2. Abundance of ‘sub-structure’ (sub-halos) in galaxies Sub-halos comprise few percent of total halo mass Most of mass contained in highest- mass sub-halos Subhalo Mass Function Mass[Solar mass] 1 Problems with the standard Cold Dark Matter model 1. Density of dark matter halos: Faint, dark matter-dominated galaxies appear less dense that predicted in simulations General arguments: Kleyna et al. MNRAS 2003, 2004;Goerdt et al. APJ2006; de Blok et al. AJ 2008 Dwarf spheroidals: Gilmore et al. APJ 2007; Walker & Penarrubia et al. APJ 2011; Angello & Evans APJ 2012 2. ‘Missing satellites problem’: Simulations have more dark matter subhalos than there are observed dwarf satellite galaxies Earilest papers: Kauffmann et al. 1993; Klypin et al. 1999; Moore et al. 1999 Solutions to the issues in Cold Dark Matter 1. The theory is wrong i) Not enough physics in theory/simulations (Talks yesterday by M. Boylan-Kolchin, M. Kuhlen) [Wadepuhl & Springel MNRAS 2011; Parry et al. MRNAS 2011; Pontzen & Governato MRNAS 2012; Brooks et al. ApJ 2012] ii) Cosmology/dark matter is wrong (Talk yesterday by A. Peter) 2. The data is wrong i) Kinematics of dwarf spheroidals (dSphs) are more difficult than assumed ii) Counting satellites a) Many more faint satellites around the Milky Way b) Milky Way is an oddball [Liu et al.
    [Show full text]
  • Draft181 182Chapter 10
    Chapter 10 Formation and evolution of the Local Group 480 Myr <t< 13.7 Gyr; 10 >z> 0; 30 K > T > 2.725 K The fact that the [G]alactic system is a member of a group is a very fortunate accident. Edwin Hubble, The Realm of the Nebulae Summary: The Local Group (LG) is the group of galaxies gravitationally associ- ated with the Galaxy and M 31. Galaxies within the LG have overcome the general expansion of the universe. There are approximately 75 galaxies in the LG within a 12 diameter of ∼3 Mpc having a total mass of 2-5 × 10 M⊙. A strong morphology- density relation exists in which gas-poor dwarf spheroidals (dSphs) are preferentially found closer to the Galaxy/M 31 than gas-rich dwarf irregulars (dIrrs). This is often promoted as evidence of environmental processes due to the massive Galaxy and M 31 driving the evolutionary change between dwarf galaxy types. High Veloc- ity Clouds (HVCs) are likely to be either remnant gas left over from the formation of the Galaxy, or associated with other galaxies that have been tidally disturbed by the Galaxy. Our Galaxy halo is about 12 Gyr old. A thin disk with ongoing star formation and older thick disk built by z ≥ 2 minor mergers exist. The Galaxy and M 31 will merge in 5.9 Gyr and ultimately resemble an elliptical galaxy. The LG has −1 vLG = 627 ± 22 km s with respect to the CMB. About 44% of the LG motion is due to the infall into the region of the Great Attractor, and the remaining amount of motion is due to more distant overdensities between 130 and 180 h−1 Mpc, primarily the Shapley supercluster.
    [Show full text]
  • Perseus I and the NGC 3109 Association in the Context of the Local Group Dwarf Galaxy Structures
    MNRAS 440, 908–919 (2014) doi:10.1093/mnras/stu321 Advance Access publication 2014 March 15 Perseus I and the NGC 3109 association in the context of the Local Group dwarf galaxy structures Marcel S. Pawlowski‹ and Stacy S. McGaugh Department of Astronomy, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA Accepted 2014 February 13. Received 2014 February 13; in original form 2014 January 8 ABSTRACT The recently discovered dwarf galaxy Perseus I appears to be associated with the dominant Downloaded from plane of non-satellite galaxies in the Local Group (LG). We predict its velocity dispersion and those of the other isolated dwarf spheroidals Cetus and Tucana to be 6.5, 8.2 and 5.5 km s−1, respectively. The NGC 3109 association, including the recently discovered dwarf galaxy Leo P, aligns with the dwarf galaxy structures in the LG such that all known nearby non-satellite http://mnras.oxfordjournals.org/ galaxies in the northern Galactic hemisphere lie in a common thin plane (rms height 53 kpc; diameter 1.2 Mpc). This plane has an orientation similar to the preferred orbital plane of the Milky Way (MW) satellites in the vast polar structure. Five of seven of these northern galaxies were identified as possible backsplash objects, even though only about one is expected from cosmological simulations. This may pose a problem, or instead the search for local backsplash galaxies might be identifying ancient tidal dwarf galaxies expelled in a past major galaxy encounter. The NGC 3109 association supports the notion that material preferentially falls towards the MW from the Galactic south and recedes towards the north, as if the MW were moving through a stream of dwarf galaxies.
    [Show full text]
  • Galactic Archaeology with the Oldest Stars in the Milky Way
    Galactic Archaeology with the oldest stars in the Milky Way Anke Arentsen Leibniz-Institut für Astrophysik Potsdam (AIP) Kumulative dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) in der Wissenschaftsdisziplin Astrophysik Eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät Institut für Physik und Astronomie der Universität Potsdam und das Leibniz-Institut für Astrophysik Potsdam (AIP) Potsdam, 16.09.2020 Betreuer: Dr. Else Starkenburg/Prof. Dr. Matthias Steinmetz 1. Gutachter: Dr. Else Starkenburg Leibniz-Institut für Astrophysik Potsdam 2. Gutachter: Prof. Dr. Matthias Steinmetz Leibniz-Institut für Astrophysik Potsdam/Universität Potsdam 3. Gutachter: Prof. Dr. Norbert Christlieb Zentrum für Astronomie der Universität Heidelberg/Landessternwarte Published online on the Publication Server of the University of Potsdam: https://doi.org/10.25932/publishup-47602 https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-476022 “... it is difficult to resist the impression that the evolution of „ the stellar universe proceeds at a slow majestic pace ...” — Sir A. S. Eddington (The internal constitution of the stars, 1920) Contents Summary/Zusammenfassung i 1 Introduction 1 1.1 What can we learn from metal-poor stars about the First Stars? . .4 1.1.1 Using observations to set constraints on the First Stars . .5 1.1.2 Models of CEMP star origins . .6 1.1.3 3D/NLTE effects on the carbon abundance . .7 1.1.4 Contribution of this thesis to the field . .9 1.2 Galactic archaeology with pristine stars . .9 1.2.1 How to find metal-poor stars . 10 1.2.2 Photometric surveys . 10 1.2.3 Recent metal-poor Milky Way results .
    [Show full text]
  • Astronomy 2009 Index
    Astronomy Magazine 2009 Index Subject Index 1RXS J160929.1-210524 (star), 1:24 4C 60.07 (galaxy pair), 2:24 6dFGS (Six Degree Field Galaxy Survey), 8:18 21-centimeter (neutral hydrogen) tomography, 12:10 93 Minerva (asteroid), 12:18 2008 TC3 (asteroid), 1:24 2009 FH (asteroid), 7:19 A Abell 21 (Medusa Nebula), 3:70 Abell 1656 (Coma galaxy cluster), 3:8–9, 6:16 Allen Telescope Array (ATA) radio telescope, 12:10 ALMA (Atacama Large Millimeter/sub-millimeter Array), 4:21, 9:19 Alpha (α) Canis Majoris (Sirius) (star), 2:68, 10:77 Alpha (α) Orionis (star). See Betelgeuse (Alpha [α] Orionis) (star) Alpha Centauri (star), 2:78 amateur astronomy, 10:18, 11:48–53, 12:19, 56 Andromeda Galaxy (M31) merging with Milky Way, 3:51 midpoint between Milky Way Galaxy and, 1:62–63 ultraviolet images of, 12:22 Antarctic Neumayer Station III, 6:19 Anthe (moon of Saturn), 1:21 Aperture Spherical Telescope (FAST), 4:24 APEX (Atacama Pathfinder Experiment) radio telescope, 3:19 Apollo missions, 8:19 AR11005 (sunspot group), 11:79 Arches Cluster, 10:22 Ares launch system, 1:37, 3:19, 9:19 Ariane 5 rocket, 4:21 Arianespace SA, 4:21 Armstrong, Neil A., 2:20 Arp 147 (galaxy pair), 2:20 Arp 194 (galaxy group), 8:21 art, cosmology-inspired, 5:10 ASPERA (Astroparticle European Research Area), 1:26 asteroids. See also names of specific asteroids binary, 1:32–33 close approach to Earth, 6:22, 7:19 collision with Jupiter, 11:20 collisions with Earth, 1:24 composition of, 10:55 discovery of, 5:21 effect of environment on surface of, 8:22 measuring distant, 6:23 moons orbiting,
    [Show full text]
  • Arxiv:1311.0282V1 [Astro-Ph.CO] 1 Nov 2013 Eue Ocntanteseienurn Rpris by Can Properties
    Sterile neutrino dark matter bounds from galaxies of the Local Group Shunsaku Horiuchi,1, ∗ Philip J. Humphrey,1 Jose O˜norbe,1 Kevork N. Abazajian,1 Manoj Kaplinghat,1 and Shea Garrison-Kimmel1 1Center for Cosmology, Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA 92697-4575 (Dated: date) We show that the canonical oscillation-based (non-resonant) production of sterile neutrino dark matter is inconsistent at > 99% confidence with observations of galaxies in the Local Group. We set lower limits on the non-resonant sterile neutrino mass of 2.5 keV (equivalent to 0.7 keV thermal mass) using phase-space densities derived for dwarf satellite galaxies of the Milky Way, as well as limits of 8.8 keV (equivalent to 1.8 keV thermal mass) based on subhalo counts of N-body simulations of M 31 analogues. Combined with improved upper mass limits derived from significantly deeper X-ray data of M 31 with full consideration for background variations, we show that there remains little room for non-resonant production if sterile neutrinos are to explain 100% of the dark matter abundance. Resonant and non-oscillation sterile neutrino production remain viable mechanisms for generating sufficient dark matter sterile neutrinos. PACS numbers: 14.60.St 95.35.+d I. INTRODUCTION At the same time, sterile neutrinos are not completely stable and their radiative decays into active neutrinos provides a compelling search opportunity [23]. Due to de- The particle nature of dark matter (DM) is among the tector capabilities, current X-ray searches probe masses most intriguing questions in modern physics, and many of a few keV and above.
    [Show full text]
  • Searches for Dark Matter Annihilation Signatures in the Segue 1 Satellite
    Formatted to JCAP style Searches for Dark Matter annihilation signatures in the Segue 1 satellite galaxy with the MAGIC-I telescope MAGIC Collaboration J. Aleksi´c1 E. A. Alvarez2 L. A. Antonelli3 P. Antoranz4 M. Asensio2 M. Backes5 J. A. Barrio2 D. Bastieri6 J. Becerra Gonz´alez7,8 W. Bednarek9 A. Berdyugin10 K. Berger7,8 E. Bernardini11 A. Biland12 O. Blanch1 R. K. Bock13 A. Boller12 G. Bonnoli3 D. Borla Tridon13 I. Braun12 T. Bretz14,26 A. Ca˜nellas15 E. Carmona13 A. Carosi3 P. Colin13 E. Colombo7 J. L. Contreras2 J. Cortina1 L. Cossio16 S. Covino3 F. Dazzi16,27 A. De Angelis16 E. De Cea del Pozo17 B. De Lotto16 C. Delgado Mendez7,28 A. Diago Ortega7,8 M. Doert5 A. Dom´ınguez18 D. Dominis Prester19 D. Dorner12 M. Doro20 D. Elsaesser14 D. Ferenc19 M. V. Fonseca2 L. Font20 C. Fruck130 R. J. Garc´ıa L´opez7,8 M. Garczarczyk7 D. Garrido20 G. Giavitto1 N. Godinovi´c19 D. Hadasch17 D. H¨afner13 A. Herrero7,8 D. Hildebrand12 D. H¨ohne-M¨onch14 J. Hose13 D. Hrupec19 B. Huber12 T. Jogler13 S. Klepser1 T. Kr¨ahenb¨uhl12 J. Krause13 A. La Barbera3 D. Lelas19 E. Leonardo4 E. Lindfors10 S. Lombardi6 M. L´opez2 E. Lorenz12,13 M. Makariev21 G. Maneva21 N. Mankuzhiyil16 K. Mannheim14 L. Maraschi3 M. Mariotti6 M. Mart´ınez1 D. Mazin1,13 M. Meucci4 J. M. Miranda4 R. Mirzoyan13 H. Miyamoto13 J. Mold´on15 A. Moralejo1 P. Munar-Androver15 D. Nieto2 K. Nilsson10,29 13 2 6 13 4 2 arXiv:1103.0477v2 [astro-ph.HE] 10 Jul 2011 R.
    [Show full text]
  • Discovery of Milky Way Dwarf Galaxies in the Dark Energy Survey
    Discovery of Milky Way Dwarf Galaxies in the Dark Energy Survey Ting Li on behalf of the DES Collaborations Milky Way Working Group Department of Physics and Astronomy Texas A&M University APS DFP2015 Aug 4, Ann Arbor 1 Credit: Reidar Hahn, Yuanyuan Zhang The formation of Milky Way • ELS Monolithic Collapse Model (top-down) Eggen, Lynden-Bell and Sandage 1962 Milky Way formed from the rapid collapse of a large proto-galac@c nebula • SZ Merger and Accretion Model (bottom-up) Searle & Zinn 1978 Galaxies are built up from merging or accre@ng smaller fragments N-body simula@ons under ΛCDM context 2 Milky Way Satellite Galaxies The Milky Way is surrounded by small satellite galaxies Segue 1 Distances ranges from 25 kpc to a few hundred kpc Luminosities range 7 3 M. Geha from 10 L⊙ to 10 L⊙ The stars are moving too fast to be explained by visible Fornax mass ——— dark matter dominated Astrophysically simple and clean D. Malin 3 30Birth kpc of near-field (Bullock, Geha, Powell) cosmology Dwarf Galaxies as Cosmological Probes • Missing Satellites Problem? • CDM simulations predict thousands of dark matter substructures • Only dozens of dwarf galaxies are found • “Too big to fail” Problem? • Circular velocities of known dwarf galaxies are significantly smaller than predicted by simulations. • Cold dark matter? • Density profile of dark matter halo • Warm dark matter? • cusp vs core problem • Self-interacting dark matter? • Or other? • Gamma rays from dark matter annihilation • Study the property of dark matter particles 4 Finding Milky Way Satellite Galaxies 5 Classical Dwarf Spheroidal Galaxies (dSph) Sculptor ESO/DSS2 6 Milky Way Satellite Galaxies Discovery Timeline 7 4 Finding Milky Way Advances in Astronomy 14 Satellite14 4 Galaxies14 14 Advances in Astronomy 20 kpc 100 kpc 16 45216 WALSH,16 WILLMAN, & JERJEN16 Vol.
    [Show full text]
  • Astro2020 Science White Paper Searching for Sources of Tev Particle Dark Matter in the Southern Hemisphere
    Astro2020 Science White Paper Searching for Sources of TeV Particle Dark Matter in the Southern Hemisphere Thematic Areas: Planetary Systems Star and Planet Formation Formation and Evolution of Compact Objects 3Cosmology and Fundamental Physics Stars and Stellar Evolution Resolved Stellar Populations and their Environments Galaxy Evolution Multi-Messenger Astronomy and Astrophysics Principal Author: Name: Andrea Albert Institution: Los Alamos National Laboratory Email: [email protected] Phone: 505-665-7076 Co-authors: K.S.Caballero-Mora (UNACH, Mexico),´ P. M. Chadwick (Durham University, UK) B. L. Dingus (Los Alamos National Lab), K. L. Engel (University of Maryland), J. A. Goodman (University of Maryland), T. Greenshaw (University of Liverpool, UK), J. P. Harding (Los Alamos National Laboratory), P. Huentemeyer (Michigan Tech), J. S. Lapington (University of Leicester, UK), J. Lundeen (Michigan State University), J. Mart´ınez-Castro (Centro de Investigacion´ en Computacion-IPN,´ Mexico),´ M. U. Nisa (University of Rochester),H. Schoorlemmer (Max-Planck-Institut fur¨ Kerphysik, Heidelberg Germany), K. Tollefson (Michigan State University, USA), A. Viana (Instituto de F´ısica de Sao˜ Carlos, Universidade de Sao˜ Paulo) A. Zepeda (Cinvestav) Abstract: Evidence suggests that the majority of the mass in the Universe is dark matter. Many promising models hypothesize that dark matter is a particle that can annihilate or decay and produce secondary gamma rays. Several searches have been performed by GeV and TeV gamma-ray experiments, none of which has detected a definitive signal. The Southern Hemisphere is home to many key dark matter targets, like the dwarf galaxy Reticulum II and the Fornax galaxy cluster. So far, only a few Southern Hemisphere targets have been observed by the current H.E.S.S.
    [Show full text]
  • Monitoring Survey of Pulsating Giant Stars in the M
    Journal of Physics: Conference Series PAPER • OPEN ACCESS Related content - MASS LOSS AND R 136A-TYPE STARS. Monitoring survey of pulsating giant stars in the M. S. Vardya - M33 IR Variable Stars Local Group galaxies: survey description, science K. B. W. McQuinn, Charles E. Woodward, goals, target selection S. P. Willner et al. - MASS LOSS FROM EVOLVED STARS Robert J. Sopka To cite this article: E Saremi et al 2017 J. Phys.: Conf. Ser. 869 012068 View the article online for updates and enhancements. This content was downloaded from IP address 160.5.148.227 on 19/10/2017 at 09:54 Frontiers in Theoretical and Applied Physics/UAE 2017 (FTAPS 2017) IOP Publishing IOP Conf. Series: Journal of Physics: Conf. Series 1234567890869 (2017) 012068 doi :10.1088/1742-6596/869/1/012068 Monitoring survey of pulsating giant stars in the Local Group galaxies: survey description, science goals, target selection E Saremi1,2, A Javadi2, J Th van Loon3, H Khosroshahi2, A Abedi1, J Bamber3, S A Hashemi4, F Nikzat5 and A Molaei Nezhad2 1 Physics Department, University of Birjand, Birjand 97175-615, Iran 2 School of Astronomy, Institute for Research in Fundamental Sciences (IPM), Tehran, 19395-5531, Iran 3 Lennard-Jones Laboratories, Keele University, ST5 5BG, UK 4 Physics Department, Sharif University of Tecnology, Tehran 1458889694, Iran 5 Instituto de Astrofisica, Facultad de Fisica, Pontificia Universidad Catolica de Chile, Av. Vicuna Mackenna 4860, 782-0436 Macul, Santiago, Chile Email: [email protected] Abstract. The population of nearby dwarf galaxies in the Local Group constitutes a complete galactic environment, perfect suited for studying the connection between stellar populations and galaxy evolution.
    [Show full text]