Discovery of Milky Way Dwarf Galaxies in the Dark Energy Survey

Total Page:16

File Type:pdf, Size:1020Kb

Discovery of Milky Way Dwarf Galaxies in the Dark Energy Survey Discovery of Milky Way Dwarf Galaxies in the Dark Energy Survey Ting Li on behalf of the DES Collaborations Milky Way Working Group Department of Physics and Astronomy Texas A&M University APS DFP2015 Aug 4, Ann Arbor 1 Credit: Reidar Hahn, Yuanyuan Zhang The formation of Milky Way • ELS Monolithic Collapse Model (top-down) Eggen, Lynden-Bell and Sandage 1962 Milky Way formed from the rapid collapse of a large proto-galac@c nebula • SZ Merger and Accretion Model (bottom-up) Searle & Zinn 1978 Galaxies are built up from merging or accre@ng smaller fragments N-body simula@ons under ΛCDM context 2 Milky Way Satellite Galaxies The Milky Way is surrounded by small satellite galaxies Segue 1 Distances ranges from 25 kpc to a few hundred kpc Luminosities range 7 3 M. Geha from 10 L⊙ to 10 L⊙ The stars are moving too fast to be explained by visible Fornax mass ——— dark matter dominated Astrophysically simple and clean D. Malin 3 30Birth kpc of near-field (Bullock, Geha, Powell) cosmology Dwarf Galaxies as Cosmological Probes • Missing Satellites Problem? • CDM simulations predict thousands of dark matter substructures • Only dozens of dwarf galaxies are found • “Too big to fail” Problem? • Circular velocities of known dwarf galaxies are significantly smaller than predicted by simulations. • Cold dark matter? • Density profile of dark matter halo • Warm dark matter? • cusp vs core problem • Self-interacting dark matter? • Or other? • Gamma rays from dark matter annihilation • Study the property of dark matter particles 4 Finding Milky Way Satellite Galaxies 5 Classical Dwarf Spheroidal Galaxies (dSph) Sculptor ESO/DSS2 6 Milky Way Satellite Galaxies Discovery Timeline 7 4 Finding Milky Way Advances in Astronomy 14 Satellite14 4 Galaxies14 14 Advances in Astronomy 20 kpc 100 kpc 16 45216 WALSH,16 WILLMAN, & JERJEN16 Vol. 137 14 14 Table 1 14 14 Angular Sizes of the Satellites Detected in SDSS 20 kpc 100 kpc Koposov et al. r 18(2008) r 18 r 18 Object r 18 rh (arcmin) Walsh et al. (2009) 16 16 Bootes¨ 12.6 16 16 Bootes¨ II 4.2 Willman et al. (2010)20 20 20 Canes Venatici20 8.9 Canes Venatici II 1.6 Coma Berenices 6.0 r Hercules 8.6 r 22 22 18 22 r 18 22 18 r 18 0.5 010.5 1.5 0.5 010.5 1.5 0.5 010.5 Leo IV1.5 0.5 010.5 2.5 1.5 − − − Leo V− 0.8 g r g r g r Leo Tg r 1.4 − − − Segue 1− 4.4 (a) 20 (b) (c) 20 Ursa Major(d) 11.3 20 20 Color-Magnitude Ursa Major II 16.0 Willman 1 2.3 DomainFigure 1: A color-magnitude (CM) filter used to suppress the noise from foreground stars while preserving the signal from dwarf galaxy stars at a specific distance. (a) and (c) CM filters for22 an old and metal-poor stellar population at22 a distance modulus of 16.5 and 20.0, respectively.22 22 The solid lines show Girardi isochrones for 8 and 14Gyr populations with [Fe/H] 1.5system and to2. avoid3. (b) projection and (d) Theseeffects. CM We then filters convolve overplotted this two- 2 0.5 010.5 1.5= − dimensional0.5− (2D)01 array0.5 with a spatial kernel1.5 corresponding0.5 to 010.5 1.5 0.5 010.5 1.5 on stars from a 1 deg field to illustrate the character− of the foreground contamination asthe a− expected function surface of dwarf density distance. profile of Data a dSph. are We from refer SDSS− to this − DR7. Figure 1. (g r, r)CMDshowingthetworeddestandtwobluesttheoreticalg r smoothed spatial arrayg as A r.Forourspatialkernelweusea g r g r isochrones for− old stellar populations ([Fe/H] 2−.27, 1.5andage 8, 14 − − − = − − = Plummer profile with a 4.′5scalelength.Thisvalueprovides Gyr) at a distance modulus of m M 16.5( 20 kpc), generated from Girardi an effective compromise between the angular scale lengths et al. (2004). The shaded region− shows= pixels∼ that pass the selection criteria. (a) of compact and/or distant(b) objects with those of closer/more (c) (d) extended objects. For reference the angular sizes of the new populated by old, metal-poor stars. Simon & Geha (2007)ob- satellites are listed in Table 1.Weusetherh values derived by Spatial tained spectraFigure of stars in eight1: A of color-magnitude the newly discovered dwarfs— (CM) filter used to suppress the noise from foreground stars while preserving the signal from dwarf galaxy stars 0.5 0.5 Martin et al.0.5 (2008)exceptforLeoV(Belokurovetal.2008). CVn, CVn II,at Com, a specific Her, Leo IV, distance. Leo T, UMa, (a) and UMa and II—and (c) CM filtersThe normalized for an signal old inand each metal-poor pixel of A,denotedby stellarS,gives population at a distance modulus of 16.5 and 20.0, respectively. Domain found mean metallicities in the range 2.29 < [Fe/H]< 1.97. the number of standard deviations above the local mean for each − − Based on thisThe result, solid we consider lines show isochrones Girardi for populations isochroneselement: for 8 and 14Gyr populations with [Fe/H] 1.5 and 2.3. (b) and (d) These CM filters overplotted with metallicities of [Fe/H] 1.5and2 2.27 (the lower = − − 0 limit in Girardion et stars al. 2004 from)andwithages8and14Gyr.Four0 = − a 1 deg−field to illustrate the character0 of theA foregroundA contamination as a function of dwarf distance. Data are from SDSS ¯ isochrones in these ranges can be used to bound the region of S − . DR7. = Aσ dec (degrees) CMD space we are interested in, namely the four combina- dec (degrees) dec (degrees) δ δ tions of [Fe/H] 1.5and 2.27 and ages 8 and 14 Gyr. The arraysδ of running means, A,andrunningstandarddevia- Figure 1 shows these= − four isochrones− projected to a distance of ¯ 0.5 0.5 tions, Aσ ,arebothcalculatedovera00.5 ◦.9 0◦.9windowaround − 20 kpc. − − × each pixel of A.Inparticular,Aσ is given by We define the selection criteria by the CMD envelope inclu- sive of these isochrones +/ the 1σ (g r)colormeasurement 2 2 error as a function of r magnitude.− Shifting− these isochrones n(A A) B ((A A) B) 8 0.5 0 0.5 0.5 0 0.5 Aσ −0.5¯ ∗ − 0 − ¯ ∗ 0.5. over distances− between0.5m M 16.5 and 24.0 in 0.5 mag steps− = ! 0.5 n(n 1) − 0.5 δ ra (degrees)defines 16 different selection− criteria= appropriateδ ra (degrees) for old stellar δ ra− (degrees) populations between d 20 kpc and 630 kpc. We truncate B is a box filter with n elements and is the same size as (a) ∼ ! (b) (c) our color–magnitude selection template at a faint magnitude the running average window. The resulting array Aσ gives limit of r 22.0, beyond which photometric uncertainties in the standard deviation value for each pixel of A as measured = Figure 2: (a) Map of all stars inthe the colors field and around star/galaxy the Ursa separation Major limit I dwarf the ability satellite, to detectM over5.5, thed 0◦.91000◦. kpc.9spanofthefilter.Inthenextsection,wewill (b) Map of stars passing the CM V = − = × filter projected to m M 20these.0 shown populations. in Figure We also0 1(c) truncate. (c) Spatially the selection smoothed template number at define density the mapdetection of the threshold stars0 of in this (b). survey The Ursa in terms Major of S,as I 0 − = g r 1.0, as including2 redder objects adds more noise from well as in terms of the local stellar density E. dwarf galaxy has a µV,0 of onlyMW 27.5− dwarf mag= arcsecstars than[63 signal]. Data from are more from distant SDSS red giant DR7. branch dec (degrees) 3.4. dec (degrees) Detection Threshold(s) (RGB) stars. Finally we do not include stars with δg or δr> dec (degrees) δ δ 0.3 mag in our analysis. To efficiently select stars within this In a large survey such as ours, it is critical to set detection δ CMD envelope, we treat the CMD as an image of 0.025 0.125 0.5 × thresholds strict enough0.5 to eliminate false detections but loose 0.5 (color mag) pixels− and determine which stars fall into pixels enough to retain known− objects and promising candidates. To − (iii) Identify Statisticallyclassified Significant× as “good” according Overdensities. to the selectionA criteria.possible Figure overdensities1 of point sources expected in the sky. 2 characterize the frequency and magnitude of purely random search of 10 000 deg of SDSSshows data, an example optimized of the selection for dwarfs criteria, inFor this case example, for fluctuations in stellar in the density abundant analyzed with tidal our debrisalgorithm, in we m M 16.5( 20 kpc). The shaded region highlights pixels at 16 different distances, and a single choice of stellar the Milky Way’smeasure halo the or maximum (un)bound value of S starfor 199,000 clusters 5◦.5 could3◦ simulated be that− would= be classed∼ as “good” for a system at 20 kpc. × population and scale size require evaluating the statistical0.5 ∼detected.0 It is0.5fields essential of randomly to obtain distributed follow-up stars that0.5 photometry have been smoothed0 to 0.5 0.5 0 0.5 3.3. Spatial Smoothing − as described in the previous section. The only difference is − − significance of 600 million data pixels that do not necessarily δ rafind (degrees) the color-magnitudethat there is no sequence gradient in stellar of stars density expected acrossδ ra each(degrees) for field.
Recommended publications
  • Arxiv:1303.1406V1 [Astro-Ph.HE] 6 Mar 2013 the flux of Gamma-Rays from Dark Matter Annihilation Takes a Surprisingly Simple Form 2
    4th Fermi Symposium : Monterey, CA : 28 Oct-2 Nov 2012 1 The VERITAS Dark Matter Program Alex Geringer-Sameth∗ for the VERITAS Collaboration Department of Physics, Brown University, 182 Hope St., Providence, RI 02912 The VERITAS array of Cherenkov telescopes, designed for the detection of gamma-rays in the 100 GeV-10 TeV energy range, performs dark matter searches over a wide variety of targets. VERITAS continues to carry out focused observations of dwarf spheroidal galaxies in the Local Group, of the Milky Way galactic center, and of Fermi-LAT unidentified sources. This report presents our extensive observations of these targets, new statistical techniques, and current constraints on dark matter particle physics derived from these observations. 1. Introduction Earth's atmosphere as a target for high-energy cosmic particles. An incoming gamma-ray may interact in the The characterization of dark matter beyond its Earth's atmosphere, initiating a shower of secondary gravitational interactions is currently a central task particles that travel at speeds greater than the local of modern particle physics. A generic and well- (in air) speed of light. This entails the emission of motivated dark matter candidate is a weakly in- ultraviolet Cherenkov radiation. The four telescopes teracting massive particle (WIMP). Such particles of the VERITAS array capture images of the shower have masses in the GeV-TeV range and may inter- using this Cherenkov light. The images are analyzed act with the Standard Model through the weak force. to reconstruct the direction of the original particle as Searches for WIMPs are performed at particle accel- well as its energy.
    [Show full text]
  • A Complete Spectroscopic Survey of the Milky Way Satellite Segue 1: the Darkest Galaxy
    Haverford College Haverford Scholarship Faculty Publications Astronomy 2011 A Complete Spectroscopic Survey of the Milky Way Satellite Segue 1: The Darkest Galaxy Joshua D. Simon Marla Geha Quinn E. Minor Beth Willman Haverford College Follow this and additional works at: https://scholarship.haverford.edu/astronomy_facpubs Repository Citation A Complete Spectroscopic Survey of the Milky Way satellite Segue 1: Dark matter content, stellar membership and binary properties from a Bayesian analysis - Martinez, Gregory D. et al. Astrophys.J. 738 (2011) 55 arXiv:1008.4585 [astro-ph.GA] This Journal Article is brought to you for free and open access by the Astronomy at Haverford Scholarship. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Haverford Scholarship. For more information, please contact [email protected]. The Astrophysical Journal, 733:46 (20pp), 2011 May 20 doi:10.1088/0004-637X/733/1/46 C 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A. A COMPLETE SPECTROSCOPIC SURVEY OF THE MILKY WAY SATELLITE SEGUE 1: THE DARKEST GALAXY∗ Joshua D. Simon1, Marla Geha2, Quinn E. Minor3, Gregory D. Martinez3, Evan N. Kirby4,8, James S. Bullock3, Manoj Kaplinghat3, Louis E. Strigari5,8, Beth Willman6, Philip I. Choi7, Erik J. Tollerud3, and Joe Wolf3 1 Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101, USA; [email protected] 2 Astronomy Department, Yale University, New Haven, CT 06520, USA; [email protected]
    [Show full text]
  • Is There Tension Between Observed Small Scale Structure and Cold Dark Matter?
    Is there tension between observed small scale structure and cold dark matter? Louis Strigari Stanford University Cosmic Frontier 2013 March 8, 2013 Predictions of the standard Cold Dark Matter model 26 3 1 1. Density profiles rise towards the centersσannv 3of 10galaxies− cm s− (1) h i' ⇥ ⇢ Universal for all halo masses ⇢(r)= s (2) (r/r )(1 + r/r )2 Navarro-Frenk-White (NFW) model s s 2. Abundance of ‘sub-structure’ (sub-halos) in galaxies Sub-halos comprise few percent of total halo mass Most of mass contained in highest- mass sub-halos Subhalo Mass Function Mass[Solar mass] 1 Problems with the standard Cold Dark Matter model 1. Density of dark matter halos: Faint, dark matter-dominated galaxies appear less dense that predicted in simulations General arguments: Kleyna et al. MNRAS 2003, 2004;Goerdt et al. APJ2006; de Blok et al. AJ 2008 Dwarf spheroidals: Gilmore et al. APJ 2007; Walker & Penarrubia et al. APJ 2011; Angello & Evans APJ 2012 2. ‘Missing satellites problem’: Simulations have more dark matter subhalos than there are observed dwarf satellite galaxies Earilest papers: Kauffmann et al. 1993; Klypin et al. 1999; Moore et al. 1999 Solutions to the issues in Cold Dark Matter 1. The theory is wrong i) Not enough physics in theory/simulations (Talks yesterday by M. Boylan-Kolchin, M. Kuhlen) [Wadepuhl & Springel MNRAS 2011; Parry et al. MRNAS 2011; Pontzen & Governato MRNAS 2012; Brooks et al. ApJ 2012] ii) Cosmology/dark matter is wrong (Talk yesterday by A. Peter) 2. The data is wrong i) Kinematics of dwarf spheroidals (dSphs) are more difficult than assumed ii) Counting satellites a) Many more faint satellites around the Milky Way b) Milky Way is an oddball [Liu et al.
    [Show full text]
  • Tiny, Ancient Galaxy Preserves Record of Catastrophic Event 21 March 2016
    Tiny, ancient galaxy preserves record of catastrophic event 21 March 2016 discovered last year show that these heavy elements are likely left over from rare collisions between two neutron stars. The work is published by Nature. The new galaxy, called Reticulum II because of its location in the southern constellation Reticulum, commonly known as The Net, is one of the smallest and closest to us known. Its proximity made it a tempting target for a team of astronomers including Carnegie's Josh Simon, who have been studying the chemical content of nearby galaxies. "Reticulum II has more stars bright enough for chemical studies than any other ultra-faint dwarf galaxy found so far," Simon explained. Such ultra-faint galaxies are relics from the era when the universe's first stars were born. They orbit our own Milky Way galaxy and their chemical simplicity can help astronomers understand the An image of Reticulum II obtained by the Dark Energy history of stellar processes dating back to the Survey, using the Blanco 4-meter telescope at Cerro ancient universe, including element formation. Tololo Inter-American Observatory. The nine stars described in the paper are circled in red. The insets Many elements are formed by nuclear fusion, in show the very strong presence of barium, one of the which two atomic nuclei fuse together and release main neutron capture elements the team observed, in energy, creating a different, heavier atom. But three stars. Background image is courtesy of Dark elements heavier than zinc are made by a process Energy Survey/Fermilab. Foreground image is courtesy of Alexander Ji, Anna Frebel, Anirudh Chiti, and Josh called neutron capture, during which an existing Simon.
    [Show full text]
  • Gaia RR Lyrae Stars in Nearby Ultra-Faint Dwarf Satellite Galaxies
    Draft version January 7, 2020 Typeset using LATEX twocolumn style in AASTeX62 Gaia RR Lyrae Stars in Nearby Ultra-Faint Dwarf Satellite Galaxies A. Katherina Vivas,1 Clara Mart´ınez-Vazquez´ ,1 and Alistair R. Walker1 1Cerro Tololo Inter-American Observatory, NSF's National Optical-Infrared Astronomy Research Laboratory, Casilla 603, La Serena, Chile Submitted to ApJSS ABSTRACT We search for RR Lyrae stars in 27 nearby (< 100 kpc) ultra-faint dwarf satellite galaxies using the Gaia DR2 catalog of RR Lyrae stars. Based on proper motions, magnitudes and location on the sky, we associate 47 Gaia RR Lyrae stars to 14 different satellites. Distances based on RR Lyrae stars are provided for those galaxies. We have identified RR Lyrae stars for the first time in the Tucana II dwarf galaxy, and find additional members in Ursa Major II, Coma Berenices, Hydrus I, Bootes I and Bootes III. In addition we have identified candidate extra-tidal RR Lyrae stars in six galaxies which suggest they may be undergoing tidal disruption. We found 10 galaxies have no RR Lyrae stars neither in Gaia nor in the literature. However, given the known completeness of Gaia DR2 we cannot conclude these galaxies indeed lack variable stars of this type. Keywords: galaxies: dwarf | galaxies: stellar content | Local Group | stars: variables: RR Lyrae stars 1. INTRODUCTION horizontal branch (HB), which makes the task of mea- Ultra-Faint dwarfs (UFDs) are the most common suring an accurate distance to the UFDs very difficult. type among the satellite galaxies of the Milky Way. The main sequence turnoff is not generally available These tiny galaxies are valuable for our understanding from the discovery (survey) photometry if the galaxy of galaxy formation since they are the smallest dark- is more than ∼ 50 kpc distant, and in addition, the con- matter dominated systems known.
    [Show full text]
  • Arxiv:1508.03622V2 [Astro-Ph.GA] 6 Nov 2015 – 2 –
    Eight Ultra-faint Galaxy Candidates Discovered in Year Two of the Dark Energy Survey 1; 2;3; 4;5 6;7 6;7 8;4;5 A. Drlica-Wagner ∗, K. Bechtol y, E. S. Rykoff , E. Luque , A. Queiroz , Y.-Y. Mao , R. H. Wechsler8;4;5, J. D. Simon9, B. Santiago6;7, B. Yanny1, E. Balbinot10;7, S. Dodelson1;11, A. Fausti Neto7, D. J. James12, T. S. Li13, M. A. G. Maia7;14, J. L. Marshall13, A. Pieres6;7, K. Stringer13, A. R. Walker12, T. M. C. Abbott12, F. B. Abdalla15;16, S. Allam1, A. Benoit-L´evy15, G. M. Bernstein17, E. Bertin18;19, D. Brooks15, E. Buckley-Geer1, D. L. Burke4;5, A. Carnero Rosell7;14, M. Carrasco Kind20;21, J. Carretero22;23, M. Crocce22, L. N. da Costa7;14, S. Desai24;25, H. T. Diehl1, J. P. Dietrich24;25, P. Doel15, T. F. Eifler17;26, A. E. Evrard27;28, D. A. Finley1, B. Flaugher1, P. Fosalba22, J. Frieman1;11, E. Gaztanaga22, D. W. Gerdes28, D. Gruen29;30, R. A. Gruendl20;21, G. Gutierrez1, K. Honscheid31;32, K. Kuehn33, N. Kuropatkin1, O. Lahav15, P. Martini31;34, R. Miquel35;23, B. Nord1, R. Ogando7;14, A. A. Plazas26, K. Reil5, A. Roodman4;5, M. Sako17, E. Sanchez36, V. Scarpine1, M. Schubnell28, I. Sevilla-Noarbe36;20, R. C. Smith12, M. Soares-Santos1, F. Sobreira1;7, E. Suchyta31;32, M. E. C. Swanson21, G. Tarle28, D. Tucker1, V. Vikram37, W. Wester1, Y. Zhang28, J. Zuntz38 (The DES Collaboration) arXiv:1508.03622v2 [astro-ph.GA] 6 Nov 2015 { 2 { *[email protected] [email protected] 1Fermi National Accelerator Laboratory, P.
    [Show full text]
  • Snake in the Clouds: a New Nearby Dwarf Galaxy in the Magellanic Bridge ∗ Sergey E
    MNRAS 000, 1{21 (2018) Preprint 19 April 2018 Compiled using MNRAS LATEX style file v3.0 Snake in the Clouds: A new nearby dwarf galaxy in the Magellanic bridge ∗ Sergey E. Koposov,1;2 Matthew G. Walker,1 Vasily Belokurov,2;3 Andrew R. Casey,4;5 Alex Geringer-Sameth,y6 Dougal Mackey,7 Gary Da Costa,7 Denis Erkal8, Prashin Jethwa9, Mario Mateo,10, Edward W. Olszewski11 and John I. Bailey III12 1McWilliams Center for Cosmology, Carnegie Mellon University, 5000 Forbes Ave, 15213, USA 2Institute of Astronomy, University of Cambridge, Madingley road, CB3 0HA, UK 3Center for Computational Astrophysics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, USA 4School of Physics and Astronomy, Monash University, Clayton 3800, Victoria, Australia 5Faculty of Information Technology, Monash University, Clayton 3800, Victoria, Australia 6Astrophysics Group, Physics Department, Imperial College London, Prince Consort Rd, London SW7 2AZ, UK 7Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia 8Department of Physics, University of Surrey, Guildford, GU2 7XH, UK 9European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany 10Department of Astronomy, University of Michigan, 311 West Hall, 1085 S University Avenue, Ann Arbor, MI 48109, USA 11Steward Observatory, The University of Arizona, 933 N. Cherry Avenue., Tucson, AZ 85721, USA 12Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands Accepted XXX. Received YYY; in original form ZZZ ABSTRACT We report the discovery of a nearby dwarf galaxy in the constellation of Hydrus, between the Large and the Small Magellanic Clouds. Hydrus 1 is a mildy elliptical ultra-faint system with luminosity MV 4:7 and size 50 pc, located 28 kpc from the Sun and 24 kpc from the LMC.
    [Show full text]
  • Retainment of R-Process Material in Dwarf Galaxies
    MNRAS 000, 1–?? (0000) Preprint 29 April 2018 Compiled using MNRAS LATEX style file v3.0 Retainment of r-process material in dwarf galaxies Paz Beniamini1,2, Irina Dvorkin3, Joe Silk3,4 1Department of Physics, The George Washington University, Washington, DC 20052, USA 2Astronomy, Physics and Statistics Institute of Sciences (APSIS) 3Institut d’Astrophysique de Paris UMR 7095 Universit´ePierre et Marie Curie-Paris 06; CNRS 98 bis bd Arago, 75014 Paris, France 4Department of Physics and Astronomy, The Johns Hopkins University, Baltimore MD21218 USA 29 April 2018 ABSTRACT The synthesis of r-process elements is known to involve extremely energetic explosions. At the same time, recent observations find significant r-process enrichment even in ex- tremely small ultra-faint dwarf (UFD) galaxies. This raises the question of retainment of those elements within their hosts. We estimate the retainment fraction and find that it is large ∼ 0.9, unless the r-process event is very energetic (& 1052erg) and / or the host has lost a large fraction of its gas prior to the event. We estimate the r-process mass per event and rate as implied by abundances in UFDs, taking into account im- perfect retainment and different models of UFD evolution. The results are consistent with previous estimates (Beniamini et al. 2016b) and with the constraints from the recently detected macronova accompanying a neutron star merger (GW170817). We also estimate the distribution of abundances predicted by these models. We find that ∼ 0.07 of UFDs should have r-process enrichment. The results are consistent with both the mean values and the fluctuations of [Eu/Fe] in galactic metal poor stars, supporting the possibility that UFDs are the main ’building blocks’ of the galactic halo population.
    [Show full text]
  • Neutron-Star Mergers Create Heaviest Elements
    CERN Courier July/August 2016 Astrowatch C OMPILED BY M ARC TÜRLER , ISDC AND O BSERVATORY OF THE U NIVERSITY OF G ENEVA , AND CHIPP, U NIVERSITY OF Z URICH Neutron-star mergers create heaviest elements The origin of some of the heaviest chemical would result in stronger differences from one elements is due to rapid neutron capture, but galaxy to the other. the precise location where this cosmic alchemy Alexander Ji from the Massachusetts takes place has been under debate for several Institute of Technology, US, and colleagues decades. While core-collapse supernovae were lucky to fi nd extreme relative were thought to be the prime production site, a abundances of r-process elements in stars new study suggests that elements heavier than located in the ultra-faint dwarf galaxy zinc originate from the merger of two neutron Reticulum II. Although nearby and in orbit stars. Such a dramatic event would have been around the Milky Way, this galaxy was only responsible for the extreme heavy-element recently discovered and found to be among enrichment observed in several stars of an the most metal-poor galaxies known. This ancient dwarf galaxy called Reticulum II. means that Reticulum II formed all of its Nuclear fusion in the core of massive stars stars within about the fi rst three-billion Dana Berry/SkyworksDana Inc./The Digital, Foundation Kavli produces elements up to and including iron, years after the Big Bang, and is therefore which is a stable nucleus with the highest only enriched in elements heavier than binding energy per nucleon.
    [Show full text]
  • 44 ) Frebel Mit Physics Annual 2018 by Anna Frebel
    We’re made from star stuff. And neutron star merger stuff. 44 ) frebel mit physics annual 2018 by Anna Frebel ost people are familiar with Carl Sagan’s famous quote M “We’re made from star stuff.” For decades, it conveyed to the general public the idea that the chemical elements are made in stars. It explained a connection between us and the cosmos that is usually hard to grasp. Recent discoveries in the fields of stellar archaeology and gravitational wave physics now suggest this connection to be even deeper; there is actually more to the story than previously thought. Elements up to and including iron continue to be made in the hot cores of short- lived stars more massive than about eight solar masses. Through various nuclear fusion processes, protons are converted successively into heavier elements which produce the energy needed for a star to shine. But elements even heavier are made differently, and not necessarily exclusively in stars. Seed nuclei which find themselves in environments with a high density of free neutrons (greater than 106 neutrons per cm3) grow by capturing those free neutrons. But very neutron-rich nuclei are mit physics annual 2018 frebel ( 45 radioactive, so they decay into all the heavy elements found in the bottom portion of the periodic table. The so-called “slow” neutron-capture process (s-process) mostly occurs in the late stages of stellar evolution for stars in the mass range of one to about ten times the solar mass. Roughly half of the isotopes that make up all elements beyond iron are made this way.
    [Show full text]
  • Highly R-Process Enhanced Stars in Ultra-Faint Dwarf Galaxies
    MNRAS 000,1–12 (2019) Preprint 28 June 2021 Compiled using MNRAS LATEX style file v3.0 Highly r-process enhanced stars in ultra-faint dwarf galaxies Myoungwon Jeon1¢, Gurtina Besla2, and Volker Bromm3 1School of Space Research, Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do 17104, Korea 2Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA 3Department of Astronomy, University of Texas, Austin, TX 78712, USA Accepted XXX. Received YYY; in original form ZZZ ABSTRACT Highly r-process enhanced metal-poor stars (MP r-II, »Eu/Fe¼ ¡ 1 and »Fe/H¼ . −1.5) have been observed in ultra-faint dwarf (UFD) galaxy, specifically in Reticulum II (Ret II). The fact that only a few UFDs contain such stars implies that the r-process site may reflect very rare, but individually prolific events, such as neutron star mergers (NSMs). Considering the relatively short star formation history (SFH) of UFDs, it is puzzling how they could experience such a rare phenomenon. In this work, we show 7 8 3 4 the results of cosmological hydrodynamic zoom-in simulations of isolated UFDs ("vir ≈ 10 − 10 " and "∗ ≈ 10 − 10 " at I = 0) to explain the formation of MP r-II stars in UFDs. We employ a simple toy model for NSM events, adopting parameters 5 −5 consistent with observations, such as the NSM rate (1 per "∗ ≈ 10 " ) and europium (Eu) mass ("Eu ≈ 10 " ). We 7 3 identify only one simulated galaxy (Mvir ≈ 4.6 × 10 M , "∗ ≈ 3.4 × 10 " at I = 0) with abundances similar to Ret II in a simulation volume that hosts ∼ 30 UFD analogs, indicating that such abundances are possible but rare.
    [Show full text]
  • Galactic Archaeology with the Oldest Stars in the Milky Way
    Galactic Archaeology with the oldest stars in the Milky Way Anke Arentsen Leibniz-Institut für Astrophysik Potsdam (AIP) Kumulative dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) in der Wissenschaftsdisziplin Astrophysik Eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät Institut für Physik und Astronomie der Universität Potsdam und das Leibniz-Institut für Astrophysik Potsdam (AIP) Potsdam, 16.09.2020 Betreuer: Dr. Else Starkenburg/Prof. Dr. Matthias Steinmetz 1. Gutachter: Dr. Else Starkenburg Leibniz-Institut für Astrophysik Potsdam 2. Gutachter: Prof. Dr. Matthias Steinmetz Leibniz-Institut für Astrophysik Potsdam/Universität Potsdam 3. Gutachter: Prof. Dr. Norbert Christlieb Zentrum für Astronomie der Universität Heidelberg/Landessternwarte Published online on the Publication Server of the University of Potsdam: https://doi.org/10.25932/publishup-47602 https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-476022 “... it is difficult to resist the impression that the evolution of „ the stellar universe proceeds at a slow majestic pace ...” — Sir A. S. Eddington (The internal constitution of the stars, 1920) Contents Summary/Zusammenfassung i 1 Introduction 1 1.1 What can we learn from metal-poor stars about the First Stars? . .4 1.1.1 Using observations to set constraints on the First Stars . .5 1.1.2 Models of CEMP star origins . .6 1.1.3 3D/NLTE effects on the carbon abundance . .7 1.1.4 Contribution of this thesis to the field . .9 1.2 Galactic archaeology with pristine stars . .9 1.2.1 How to find metal-poor stars . 10 1.2.2 Photometric surveys . 10 1.2.3 Recent metal-poor Milky Way results .
    [Show full text]