Tev Γ-Ray Observations of Nearby Active Galactic Nuclei with the MAGIC Telescope: Exploring the High Energy Region of the Multiwavelength Picture

Total Page:16

File Type:pdf, Size:1020Kb

Tev Γ-Ray Observations of Nearby Active Galactic Nuclei with the MAGIC Telescope: Exploring the High Energy Region of the Multiwavelength Picture TeV γ-ray observations of nearby Active Galactic Nuclei with the MAGIC telescope: exploring the high energy region of the multiwavelength picture Diego Tescaro | PhD Thesis | June 1, 2010 Supervised by Dr. Abelardo Moralejo Picture on the cover: The two MAGIC telescopes at the Observatory of Roque de los Muchachos in April 2009. Contents Introduction 1 1 Cosmic rays 3 1.1 Cosmic rays . 3 1.2 Cosmic ray composition . 3 1.3 Cosmic rays origin . 6 1.3.1 Cosmic rays acceleration . 7 1.3.2 Galactic CRs . 7 1.3.3 Extragalactic CRs . 8 1.4 The GZK-cutoff . 9 1.5 Cosmic rays anisotropy . 9 2 Gamma-ray astronomy 11 2.1 Gamma-ray astronomy . 11 2.2 Gamma-ray production . 12 2.2.1 The gamma-ray horizon . 14 2.3 Cosmic gamma-ray sources . 16 2.4 The case of RX J1713.7-3946 . 19 3 Active Galactic Nuclei 21 3.1 AGNs . 21 3.1.1 What exactly are we talking about? . 21 3.1.2 Classification . 24 3.1.3 Unified scheme . 24 3.2 Blazars . 26 3.2.1 The `blazar sequence' . 26 3.3 TeV emitters AGNs . 28 3.4 Emission models . 29 3.4.1 Spectral Energy Distribution (SED) . 30 3.4.2 Correlations . 30 3.4.3 Leptonic models . 31 3.4.4 Hadronic models . 32 3.5 AGNs as UHECR accelerators . 33 4 Detection of γ-rays 35 4.1 Detection of γ-rays . 35 4.1.1 Satellite-borne γ-ray detectors . 36 4.1.2 The Fermi γ-ray telescope . 38 i 4.2 Air showers . 39 4.2.1 The Cherenkov effect . 41 4.2.2 The light pool . 43 4.2.3 Fluorescence . 44 4.3 The Imaging Air Cherenkov Technique (IACT) . 44 4.3.1 Design and limits of a Cherenkov telescope . 46 4.3.2 Image formation . 47 4.3.3 Image parameters . 49 4.3.4 The time information . 51 4.3.5 Model analysis . 51 5 The MAGIC telescopes 53 5.1 MAGIC-I . 55 5.2 MAGIC-II . 56 5.3 MAGIC as a stereo system . 56 5.4 The telescopes components . 56 5.4.1 Frame . 57 5.4.2 Mirror . 58 5.4.3 Camera . 59 5.4.4 Readout electronics . 61 5.4.5 Trigger . 62 5.4.6 Digitization system . 62 5.4.7 Calibration . 63 5.4.8 Drive . 64 5.5 Performance of the stereo system . 65 5.5.1 Future plans . 65 6 Data analysis 67 6.1 Data analysis . 67 6.2 Analysis approaches . 67 6.3 Observation modes . 69 6.4 Montecarlo production . 70 6.5 Data quality . 72 6.6 The analysis pipeline . 73 6.6.1 Raw data reduction . 73 6.6.2 Calibration . 73 6.6.3 Image cleaning . 75 6.6.4 Image parameters calculation . 77 6.6.5 Background rejection . 81 6.6.6 The random forest . 83 6.6.7 Energy estimation . 85 6.6.8 Spectrum calculation . 86 6.6.9 Unfolding . 86 6.6.10 Lightcurve . 87 ii 7 Markarian 421 and Markarian 501 multiwavelength observations 89 7.1 Why multiwavelength campaigns? . 89 7.1.1 Motivations . 89 7.1.2 MWL coverage . 90 7.1.3 Mrk 421 . 92 7.1.4 Mrk 501 . 92 7.2 The MAGIC data and analysis . 93 7.2.1 The Random Forest training . 93 7.2.2 Montecarlo gamma sample . 94 7.2.3 Hadrons sample . 94 7.2.4 Gini-index . 95 7.2.5 Analysis threshold . 96 7.3 MAGIC results: Crab Nebula . 96 7.4 MAGIC results: Mrk 421 . 99 7.5 MAGIC results: Mrk 501 . 104 7.6 MWL handling tools . 107 7.7 Multiwavelength results . 108 7.8 Discussion . 111 7.8.1 The IC peak region . 111 7.8.2 The EBL correction . 112 7.8.3 The complete SED . 112 7.8.4 Modeling of the Mrk 421 SED . 113 7.8.5 Modeling of the Mrk 501 SED . 115 7.8.6 Conclusions . 116 8 Observations of Messier 87 during an intense flare activity 117 8.1 Motivations . 117 8.1.1 Messier 87 . 118 8.2 The MAGIC data and analysis . 119 8.2.1 Check of the analysis . 120 8.2.2 Moon data . 120 8.3 Results . 122 8.3.1 Preliminary results . 122 8.3.2 Results: Lightcurve . 124 8.3.3 Results: Spectrum . 125 8.3.4 Efficiency loss correction . 127 8.4 Discussion . 129 Summary and Conclusions 135 A Timing analysis 139 A.1 Introduction . 139 A.2 Analysis method . 140 A.2.1 Image Cleaning . ..
Recommended publications
  • Very High Energy Emission from Blazars Interpreted Through Simultaneous Multiwavelength Observations
    UNIVERSITA` DEGLI STUDI DI SIENA FACOLTA` DI SCIENZE MATEMATICHE, FISICHE E NATURALI Dipartimento di Fisica Very High Energy emission from blazars interpreted through simultaneous multiwavelength observations Relatore/Supervisor: Candidato/Candidate: Dr. Antonio Stamerra Giacomo Bonnoli Tutore/Tutor: Prof. Riccardo Paoletti Ph.D. School in Physics Cycle XXI December 2010 Abstract In the framework of Astroparticle Physics the understanding of the particle acceleration process and related high energy electromagnetic emission within astrophysical sources is an issue of fundamental importance to unravel the structure and evolution of many classes of celestial objects, on different scales from micro{quasars to active galactic nuclei. This has an important role not only for astrophysics itself, but for many related topics of cosmic ray physics and High Energy physics, such as the search for dark matter. Also cosmology is interested, as deepening our knowledge on Active Galactic Nuclei and their interaction with the environment can help to clarify open issues on the formation of cosmic structures and evolution of universe on large scales. The present view on sources emitting high energy radiation is now gaining new insight thanks to multiwavelength observations. This approach allows to explore the spectral energy distribution of the sources all across the electromagnetic spectrum, therefore granting the best achievable understanding of the physical processes that originate the radiation that we see, and their mutual relationships. Our theories model the sources in terms of parameters that can be inferred from the observables quantities measured, and the multiwavelength observations are a key instrument in order to rule out or support some selected models out of the many that compete in the effort of describing the processes at work.
    [Show full text]
  • 1. INTRODUCTION of the Beam (See, E.G., Mannheim 1993)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by MURAL - Maynooth University Research Archive Library THE ASTROPHYSICAL JOURNAL, 511:149È156, 1999 January 20 ( 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. MEASUREMENT OF THE MULTI-TeV GAMMA-RAY FLARE SPECTRA OF MARKARIAN 421 AND MARKARIAN 501 F. KRENNRICH,1 S. D. BILLER,2 I. H. BOND,3 P. J. BOYLE,4 S. M. BRADBURY,3 A. C. BRESLIN,4 J. H. BUCKLEY,5 A. M. BURDETT,3 J. BUSSONS GORDO,4 D. A. CARTER-LEWIS,1 M. CATANESE,1 M. F. CAWLEY,6 D. J. FEGAN,4 J. P. FINLEY,7 J. A. GAIDOS,7 T. HALL,7 A. M. HILLAS,3 R. C. LAMB,8 R. W. LESSARD,7 C. MASTERSON,4 J. E. MCENERY,9 G. MOHANTY,1,10 P. MORIARTY,11 J. QUINN,12 A. J. RODGERS,3 H. J. ROSE,3 F. W. SAMUELSON,1 G. H. SEMBROSKI,6 R. SRINIVASAN,6 V. V. VASSILIEV,12 AND T. C. WEEKES12 Received 1998 July 22; accepted 1998 August 27 ABSTRACT The energy spectrum of Markarian 421 in Ñaring states has been measured from 0.3 to 10 TeV using both small and large zenith angle observations with the Whipple Observatory 10 m imaging telescope. The large zenith angle technique is useful for extending spectra to high energies, and the extraction of spectra with this technique is discussed. The resulting spectrum of Markarian 421 is Ðtted reasonably well by a simple power law: J(E) \ E~2.54B0.03B0.10 photons m~1 s~1 TeV~1, where the Ðrst set of errors is statistical and the second set is systematic.
    [Show full text]
  • Active Galactic Nuclei: a Brief Introduction
    Active Galactic Nuclei: a brief introduction Manel Errando Washington University in St. Louis The discovery of quasars 3C 273: The first AGN z=0.158 2 <latexit sha1_base64="4D0JDPO4VKf1BWj0/SwyHGTHSAM=">AAACOXicbVDLSgMxFM34tr6qLt0Ei+BC64wK6kIoPtCNUMU+oNOWTJq2wWRmSO4IZZjfcuNfuBPcuFDErT9g+hC09UC4h3PvJeceLxRcg20/W2PjE5NT0zOzqbn5hcWl9PJKUQeRoqxAAxGoskc0E9xnBeAgWDlUjEhPsJJ3d9rtl+6Z0jzwb6ETsqokLZ83OSVgpHo6754xAQSf111JoK1kTChN8DG+uJI7N6buYRe4ZBo7di129hJ362ew5NJGAFjjfm3V4m0nSerpjJ21e8CjxBmQDBogX08/uY2ARpL5QAXRuuLYIVRjooBTwZKUG2kWEnpHWqxiqE+MmWrcuzzBG0Zp4GagzPMB99TfGzGRWnekZya7rvVwryv+16tE0DysxtwPI2A+7X/UjASGAHdjxA2uGAXRMYRQxY1XTNtEEQom7JQJwRk+eZQUd7POfvboej+TOxnEMYPW0DraRA46QDl0ifKogCh6QC/oDb1bj9ar9WF99kfHrMHOKvoD6+sbuhSrIw==</latexit> <latexit sha1_base64="H7Rv+ZHksM7/70841dw/vasasCQ=">AAACQHicbVDLSgMxFM34tr6qLt0Ei+BCy0TEx0IoPsBlBWuFTlsyaVqDSWZI7ghlmE9z4ye4c+3GhSJuXZmxFXxdCDk599zk5ISxFBZ8/8EbGR0bn5icmi7MzM7NLxQXly5slBjGayySkbkMqeVSaF4DAZJfxoZTFUpeD6+P8n79hhsrIn0O/Zg3Fe1p0RWMgqPaxXpwzCVQfNIOFIUro1KdMJnhA+yXfX832FCsteVOOzgAobjFxG+lhGTBxpe+HrBOBNjiwd5rpZsky9rFUn5BXvgvIENQQsOqtov3QSdiieIamKTWNogfQzOlBgSTPCsEieUxZde0xxsOaurMNNPPADK85pgO7kbGLQ34k/0+kVJlbV+FTpm7tr97Oflfr5FAd6+ZCh0nwDUbPNRNJIYI52nijjCcgew7QJkRzitmV9RQBi7zgguB/P7yX3CxVSbb5f2z7VLlcBjHFFpBq2gdEbSLKugUVVENMXSLHtEzevHuvCfv1XsbSEe84cwy+lHe+wdR361Q</latexit> The power source of quasars • The luminosity (L) of quasars, i.e. how bright they are, can be as high as Lquasar ~ 1012 Lsun ~ 1040 W. • The energy source of quasars is accretion power: - Nuclear fusion: 2 11 1 ∆E =0.007 mc =6 10 W s g−
    [Show full text]
  • The Cherenkov Telescope Array Observatory Comes of Age
    The Organisation DOI: 10.18727/0722-6691/5194 The Cherenkov Telescope Array Observatory Comes of Age Federico Ferrini 1 Conceived around a decade ago by a the detection of a clear signal from Wolfgang Wild 1, 2 group of scientists, we are now on the the Crab nebula above 1 TeV with the cusp of constructing the largest observa- Whipple 10-m imaging atmospheric tory to study the gamma-ray Universe. Cherenkov telescope (IACT). Since then, 1 CTAO, Heidelberg (DE) and Bologna (IT) Here we present a short look back at the the instrumentation for, and techniques 2 ESO evolution and recent matu ration of the of, astronomy with IACTs have evolved CTA project, as well as an outline of our to the extent that a flourishing new scien- expectations for the near future. A com- tific discipline has been established, with The Cherenkov Telescope Array (CTA) is prehensive introduction to CTA, including the detection of more than 150 sources the next-generation ground-based the detection technique, its history, the and a major impact in astrophysics — observatory for gamma-ray astronomy extraordinary improvements with respect and, more widely, in physics. The current at very high energies. With up to 120 to previous experimental facilities, and the major arrays of IACTs (the High Energy telescopes on two sites, CTA will be the scientific objectives has been provided by Stereoscopic System [H.E.S.S.], the world’s largest and most sensitive Werner Hofmann, Spokesperson of the Major Atmospheric Gamma Imaging high-energy gamma-ray observatory CTA Consortium (Hofmann, 2017). Cherenkov Telescope [MAGIC], and the covering the entire sky.
    [Show full text]
  • MAGIC Observations of the Diffuse Γ-Ray Emission in the Vicinity of the Galactic Center? MAGIC Collaboration: V
    A&A 642, A190 (2020) Astronomy https://doi.org/10.1051/0004-6361/201936896 & c MAGIC Collaboration 2020 Astrophysics MAGIC observations of the diffuse γ-ray emission in the vicinity of the Galactic center? MAGIC Collaboration: V. A. Acciari1,2, S. Ansoldi3,24, L. A. Antonelli4, A. Arbet Engels5, D. Baack6, A. Babic´7, B. Banerjee8, U. Barres de Almeida9, J. A. Barrio10, J. Becerra González1,2, W. Bednarek11, L. Bellizzi12, E. Bernardini13,17, A. Berti14, J. Besenrieder15, W. Bhattacharyya13, C. Bigongiari4, A. Biland5, O. Blanch16, G. Bonnoli12, Ž. Bošnjak7, G. Busetto17, R. Carosi18, G. Ceribella15, Y. Chai15, A. Chilingaryan19, S. Cikota7, S. M. Colak16, U. Colin15, E. Colombo1,2, J. L. Contreras10, J. Cortina20, S. Covino4, V. D’Elia4, P. Da Vela18, F. Dazzi4, A. De Angelis17, B. De Lotto3, M. Delfino16,27, J. Delgado16,27, D. Depaoli14, F. Di Pierro14, L. Di Venere14, E. Do Souto Espiñeira16, D. Dominis Prester7, A. Donini3, D. Dorner21, M. Doro17, D. Elsaesser6, V. Fallah Ramazani22, A. Fattorini6, A. Fernández-Barral17, G. Ferrara4, D. Fidalgo10, L. Foffano17, M. V. Fonseca10, L. Font23, C. Fruck15;??, S. Fukami24, R. J. García López1,2, M. Garczarczyk13, S. Gasparyan19, M. Gaug23, N. Giglietto14, F. Giordano14, N. Godinovic´7, D. Green15, D. Guberman16, D. Hadasch24, A. Hahn15, J. Herrera1,2, J. Hoang10, D. Hrupec7, M. Hütten15, T. Inada24, S. Inoue24, K. Ishio15, Y. Iwamura24;??, L. Jouvin16, D. Kerszberg16, H. Kubo24, J. Kushida24, A. Lamastra4, D. Lelas7, F. Leone4, E. Lindfors22, S. Lombardi4, F. Longo3,28, M. López10, R. López-Coto17, A. López-Oramas1,2, S. Loporchio14, B. Machado de Oliveira Fraga9, C.
    [Show full text]
  • Antimatter Gravity and the Universe Dragan Hajdukovic
    Antimatter gravity and the Universe Dragan Hajdukovic To cite this version: Dragan Hajdukovic. Antimatter gravity and the Universe. Modern Physics Letters A, World Scientific Publishing, 2019, 10.1142/S0217732320300013. hal-02106808v3 HAL Id: hal-02106808 https://hal.archives-ouvertes.fr/hal-02106808v3 Submitted on 21 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Brief Review Antimatter gravity and the Universe Dragan Slavkov Hajdukovic Institute of Physics, Astrophysics and Cosmology Crnogorskih junaka 172, Cetinje, Montenegro [email protected] Abstract: The aim of this brief review is twofold. First, we give an overview of the unprecedented experimental efforts to measure the gravitational acceleration of antimatter; with antihydrogen, in three competing experiments at CERN (AEGIS, ALPHA and GBAR), and with muonium and positronium in other laboratories in the world. Second, we present the 21st Century’s attempts to develop a new model of the Universe with the assumed gravitational repulsion between matter and antimatter; so far, three radically different and incompatible theoretical paradigms have been proposed. Two of these 3 models, Dirac-Milne Cosmology (that incorporates CPT violation) and the Lattice Universe (based on CPT symmetry), assume a symmetric Universe composed of equal amounts of matter and antimatter, with antimatter somehow “hidden” in cosmic voids; this hypothesis produced encouraging preliminary results.
    [Show full text]
  • INTEGRAL View Of
    INTEGRAL view of AGN Angela Maliziaa,∗, Sergey Sazonovb, Loredana Bassania, Elena Piana, Volker Beckmannc, Manuela Molinaa, Ilya Mereminskiyb, Guillaume Belangerd aOAS-INAF, Via P. Gobetti 101, 40129 Bologna, Italy bSpace Research Institute, Russian Academy of Sciences, Profsoyuznaya 84/32, 117997 Moscow, Russia cInstitut National de Physique Nuclaire et de Physique des Particules (IN2P3) CNRS, Paris, France dESA/ESAC, Camino Bajo del Castillo, 28692 Villanueva de la Canada, Madrid, Spain Abstract AGN are among the most energetic phenomena in the Universe and in the last two decades INTEGRAL’s contribution in their study has had a significant impact. Thanks to the INTEGRAL extragalactic sky surveys, all classes of soft X-ray detected (in the 2-10 keV band) AGN have been observed at higher energies as well. Up to now, around 450 AGN have been catalogued and a conspicuous part of them are either objects observed at high-energies for the first time or newly discovered AGN. The high-energy domain (20-200 keV) represents an important window for spectral studies of AGN and it is also the most appropriate for AGN population studies, since it is almost unbiased against obscuration and therefore free of the limitations which affect surveys at other frequencies. Over the years, INTEGRAL data have allowed to characterise AGN spectra at high energies, to investigate their absorption properties, to test the AGN unification scheme and to perform population studies. In this review the main results are reported and INTEGRAL’s contribution to AGN science is highlighted for each class of AGN. Finally, new perspectives are provided, connecting INTEGRAL’s science with that at other wavelengths and in particular to the GeV/TeV regime which is still poorly explored.
    [Show full text]
  • Very High Energy Gamma Ray Observations with the MAGIC Telescope (A Biased Selection)
    Very High Energy Gamma Ray Observations with the MAGIC Telescope (a biased selection) Nepomuk Otte for the MAGIC collaboration • Imaging air shower Cherenkov technique – The MAGIC telescope • Observation of the AGN 3c279 • Observation of Neutron Stars with MAGIC • The Crab nebula and Pulsar (young pulsar) [astro-ph/0705.3244] • PSR B1951+32 (middle aged pulsar) [astro-ph/0702077] • PSR B1957+20 (millisecond pulsar) • LS I 61+303 [Science 2006] • Where to go next? A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 2 The non-thermal universe in VHE gamma-rays SNRs Pulsars Micro quasars AGNs and PWN X-ray binaries GRBs Origin of Space-time cosmic rays Dark matter & relativity Cosmology A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 3 VHE gamma-ray sources status ICRC 2007 71 known sources detections from ground Rowell A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 4 Imaging Air Cherenkov Technique Cherenkov light image of particle shower Gamma in telescope camera ray Particle ~ 10 km • fast light flash (nanoseconds) shower • 100 photons per m² (1 TeV Gamma Ray) t h g o li ~ 1 v o k n e r e h C reconstruct: ~ 120 m arrival direction, energy reject hadron background A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 5 CurrentCurrent generationgeneration CherenkovCherenkov telescopestelescopes MAGIC Veritas MAGIC (Germany, Spain, Italy) VERITAS 1 telescope 17 meters Ø (USA & England) 4 (7) telescopes Montosa 10 meters Ø Canyon, Roque de Arizona los Muchachos, Canary Islands CANGAROO III Cangaroo(Australia III & Japan) 4 telescopes 10 meters Ø H.E.S.S.
    [Show full text]
  • Pos(ICRC2021)788
    ICRC 2021 THE ASTROPARTICLE PHYSICS CONFERENCE ONLINE ICRC 2021Berlin | Germany THE ASTROPARTICLE PHYSICS CONFERENCE th Berlin37 International| Germany Cosmic Ray Conference 12–23 July 2021 Very-high-energy gamma-ray emission from GRB 201216C detected by MAGIC Satoshi Fukami,0,∗ Alessio Berti,1 Serena Loporchio,2 Yusuke Suda,3 Lara Nava,4 PoS(ICRC2021)788 Koji Noda,0 Željka Bošnjak, 5 Katsuaki Asano0 and Francesco Longo6,ℎ on behalf of the MAGIC Collaboration† 0Institute for Cosmic Ray Research, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Japan 1Max Planck Institut for Physics,Föhringer Ring 6, Munich, Germany 2INFN MAGIC Group: INFN Sezione di Bari and Dipartimento Interateneo di Fisica dell’Università e del Politecnico di Bari, I-70125, Bari, Italy 3Physics Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 739-8526 Hiroshima, Japan 4National Institute for Astrophysics (INAF), Street number, Merate, Italy 5 Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia 6University of Trieste, Department of Physics, via Valerio 2, Trieste, Italy ℎINFN, Sezione di Trieste, via Valerio 2, Trieste, Italy E-mail: [email protected] Gamma-ray bursts (GRBs) are the most energetic phenomena in the Universe. Many aspects of GRB physics are still under debate, such as the origin of their gamma-ray emission above the GeV energy range. In 2019, MAGIC detected TeV gamma rays from the long GRB 190114C, whose emission can be well explained by synchrotron-self Compton emission by relativistic electrons. However, it is still unclear whether such a process is common in GRBs, given the reduced number of GRBs detected until now at the very high energies (VHE).
    [Show full text]
  • The Gamma-Ray Energy Spectrum of the Active Galaxy Markarian
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1997 The ag mma-ray energy spectrum of the active galaxy Markarian 421 Jeffrey Alan Zweerink Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Astrophysics and Astronomy Commons Recommended Citation Zweerink, Jeffrey Alan, "The ag mma-ray energy spectrum of the active galaxy Markarian 421 " (1997). Retrospective Theses and Dissertations. 11761. https://lib.dr.iastate.edu/rtd/11761 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in ^ewriter &ce, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missmg pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • DANIEL MAZIN Föhringer Ring 6, 80805 Munich, Germany Tel: +49 89 32354 255 Email: [email protected]
    DANIEL MAZIN Föhringer Ring 6, 80805 Munich, Germany Tel: +49 89 32354 255 Email: [email protected] PUBLICATION LIST I have published more than 80 publications in high-energy astroparticle physics under peer review process; 30+ in small collaborations (typically 2-5 persons), 15 as first or only author. According to INSPIRES-HEP database my works are cited more than 4000 times with an h-index of 38. TOP 10 SELECTED PUBLICATIONS WHERE I AM THE CORRESPONDING AUTHOR: [1] Mazin, D., Raue, M., Behera, B. et al., Potential of EBL and cosmology studies with the Cherenkov Telescope Array, APh 43 (2013) 241, doi: 10.1016/ j.astropartphys.2012.09.002 [2] Aleksic et al (The MAGIC Collaboration), MAGIC Discovery of Very High Energy Emission from the FSRQ PKS 1222+21, ApJ 730 (2011) L8 [3] Raue, M. and Mazin D., Potential of the next generation VHE instruments to probe the EBL (I): The low- and mid-VHE, Astroparticle Physics 34 (2010) 245 [4] Acciari, et al. (The MAGIC, H.E.S.S and VERITAS Collaborations and VLBA 43 GHz M87 Monitoring Team), Radio Imaging of the Very-High-Energy Gamma- Ray Emission Region in the Central Engine of a Radio Galaxy , Science Express, 2nd July 2009 [5] Tavecchio, F. & Mazin, D. Intrinsic absorption in 3C 279 at GeV-TeV energies and consequences for estimates of the EBL, MNRAS Astronomy 392 (2009) L40- L44 [6] Raue, M., Kneiske T.M., & Mazin, D. First stars and the extragalactic background light: How recent gamma-ray observations constrain the early universe, Astronomy & Astrophysics, 498 (2009) 25-35 [7] Albert, J.
    [Show full text]
  • Gamma Ray Astronomy Markarian
    Gamma-Ray Emission by the BL Lac Markarian 501 Faculty Photo Student Photo Joshua Binks and Dr. David B. Kieda (credit: Salt Lake Tribune) Joshua Binks Department of Physics & Astronomy Dr. David B. Kieda Gamma Ray Astronomy Optical astronomy is the study of the heavens as they emit light, or the visible portion of the electromagnetic spectrum. Gamma-ray astronomy is the study of astrophysical sources that emit the most energetic form of electromagnetic radiation (ie: gamma-rays). High Energy gamma-rays are much too faint to be directly see with the human eye. Thus they are detected using arrays of large diameter (39 ft) mirrors and fast digitizing Image upper middle cameras which image the light emitted from the gamma-ray as it is absorbed in the Earth’s atmosphere. The VERITAS telescope array, located in Amado, Arizona, (see picture below) is the world’s most sensitive high- energy gamma-ray observatory. Since May 2009, I have worked with the VERITAS gamma-ray group at the University of Utah to observe sources of 2 high energy gamma rays as well as participate in the maintenance and upgrade of the telescopes (See picture below). The field of very high energy (VHE) gamma-ray astronomy is extremely young. The first source, the Crab Nebula, was detected in 1989. Since that time, nearly one hundred sources have been discovered. These different sources constitute a variety of astrophysical objects and phenomena. A particularly impressive source of high energy gamma-rays are Active Galactic Nuclei, or AGN. These sources emit large amounts of radiation due to a super massive black hole (greater than 100 million solar masses) at the center (“nuclei”) of the active galaxy.
    [Show full text]