Observation of the Crab Pulsar Wind Nebula and Microquasar Candidates with MAGIC Ph.D. Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

Observation of the Crab Pulsar Wind Nebula and Microquasar Candidates with MAGIC Ph.D. Dissertation INSTITUT DE F´ISICA UNIVERSITAT AUTONOMA` D’ALTES ENERGIES DE BARCELONA Observation of the Crab pulsar wind nebula and microquasar candidates with MAGIC Ph.D. Dissertation Universitat Autonoma de Barcelona speciality: Astrophysics Roberta Zanin IFAE Edifici Cn, UAB 08193 Bellaterra (Barcelona), Spain [email protected] supervised by: Juan Cortina Blanco IFAE Edifici Cn, UAB 08193 Bellaterra (Barcelona), Spain [email protected] Enrique Fern´andezS´anchez IFAE IFAE & UAB Edifici Cn, UAB 08193 Bellaterra (Barcelona), Spain [email protected] To Florian Goebel irreplaceable friend and dearest collegue Vorrei sapere a che cosa eservito vivere, amare e soffrire spendere tutti i tuoi giorni passati se presto hai dovuto partire, se presto hai dovuto partire voglio peroricordarti com'eri pensare che ancora vivi voglio pensare che ancora mi ascolti e che come allora sorridi, e che come allora sorridi Contents Acronyms V Unit definition XI Introduction 1 1 The non-thermal universe 3 1.1 Cosmic rays . 4 1.1.1 Galactic cosmic rays . 5 1.1.2 Extra-galactic cosmic rays . 7 1.2 -ray astrophysics . 7 1.3 Neutrino astrophysics . 12 1.4 Astrophysical sources . 12 PART I. THE MAGIC DETECTOR and DATA ANALYSIS 17 2 The MAGIC Telescopes 19 2.1 Introduction . 19 2.2 Telescope subsystems . 21 2.2.1 Frame and drive system . 23 2.2.2 Starguider system . 25 2.2.3 Reflector . 26 2.2.4 Camera . 31 2.2.5 Calibration system . 34 2.2.6 Readout and data acquisition systems . 34 2.2.7 Trigger . 38 2.2.8 Sumtrigger . 39 2.2.9 Pyrometer . 39 2.2.10 GRB monitoring alert system . 39 2.2.11 Clocks . 40 2.2.12 Weather station . 40 2.3 Operation of the telescopes . 40 2.3.1 Scheduling of sources . 40 2.3.2 Regular and ToO observations . 41 2.3.3 Source pointing modes . 41 2.3.4 Calibration and data runs . 42 2.4 Central control . 42 I II CONTENTS 2.4.1 Communication with telescope subsystems . 43 2.4.2 Program structure . 43 2.4.3 Status of the subsystems: graphical user interface . 45 2.4.4 Central control functions . 50 2.4.5 Error/event logging . 55 2.5 Online analysis . 56 3 The MAGIC standard analysis chain 59 3.1 Monte Carlo simulations . 61 3.2 Conversion into ROOT format and merging of control data stream . 62 3.3 Signal reconstruction and calibration . 62 3.4 Image cleaning . 63 3.4.1 Standard timing image cleaning . 63 3.4.2 Sum image cleaning . 66 3.5 Parameter reconstruction . 67 3.5.1 Stereo parameter reconstruction . 69 3.6 Data quality checks . 71 3.7 /hadron separation . 72 3.8 Determination of the arrival direction: the Disp method . 74 3.9 Signal detection . 77 3.9.1 Sensitivity . 79 3.9.2 Cut optimization . 79 3.10 Sky maps . 79 3.10.1 Angular resolution . 80 3.11 Energy estimation . 81 3.11.1 Energy resolution . 81 3.12 Spectrum calculation . 82 3.13 Spectral unfolding . 84 3.14 Light curves . 85 3.15 Upper limits . 86 3.16 Systematic uncertainties . 87 PART II. CRAB NEBULA 91 4 Introduction to Pulsar Wind Nebulae 93 4.1 Pulsars . 94 4.1.1 Neutron stars . 95 4.1.2 Neutron star magnetosphere . 96 4.1.3 -ray emission from pulsars . 99 4.2 Supernova Remnants . 100 4.3 Pulsar wind nebulae . 101 4.3.1 Inner structure . 102 4.3.2 Evolution of pulsar wind nebulae . 102 4.3.3 Pulsar wind nebula spectra . 104 4.4 The Crab Nebula . 107 4.4.1 The Crab Pulsar . 107 4.4.2 The Crab Pulsar Wind Nebula . 108 CONTENTS III 4.4.3 The broad-band spectrum of the Crab Nebula . 111 4.4.4 The Crab Nebula at very high energies . 112 4.4.5 Theoretical models for the IC emission from Crab Nebula . 114 4.4.6 The Crab Nebula variability . 115 5 Spectrum and ux variability of the Crab Nebula 119 5.1 Data sample . 120 5.2 Description of the analysis . 123 5.2.1 Sum versus standard image cleaning . 124 5.2.2 Energy resolution and bias . 126 5.2.3 Signal clipping . 129 5.3 Differential energy spectrum . 131 5.3.1 Unfolded spectrum . 132 5.3.2 Systematic uncertainties . 137 5.4 Estimation of the Inverse Compton peak . 143 5.5 Theoretical picture . 145 5.6 Flux variability . 146 PART III. MICROQUASARS 151 6 Introduction to microquasars 153 6.1 Binary systems . 153 6.1.1 Microquasars . 154 6.2 The main components of microquasars . 157 6.2.1 The compact object . 157 6.2.2 Companion star . 158 6.2.3 Accretion disk . 159 6.2.4 The corona . 160 6.2.5 Jets . 160 6.3 Disk-jet connection . 161 6.4 Black hole X-ray binaries . 162 6.5 Neutron star X-ray binaries . 165 6.6 VHE emission from microquasars . 166 6.6.1 Leptonic models . 167 6.6.2 Hadronic models . 167 6.6.3 Microquasar in -rays: observations . 168 7 Cygnus X-3 169 7.1 MAGIC observations . 172 7.1.1 Data analysis . 175 7.2 Results . 176 7.2.1 Results during high-energy -ray emission . 179 7.2.2 Results during the soft state . ..
Recommended publications
  • Exploring Pulsars
    High-energy astrophysics Explore the PUL SAR menagerie Astronomers are discovering many strange properties of compact stellar objects called pulsars. Here’s how they fit together. by Victoria M. Kaspi f you browse through an astronomy book published 25 years ago, you’d likely assume that astronomers understood extremely dense objects called neutron stars fairly well. The spectacular Crab Nebula’s central body has been a “poster child” for these objects for years. This specific neutron star is a pulsar that I rotates roughly 30 times per second, emitting regular appar- ent pulsations in Earth’s direction through a sort of “light- house” effect as the star rotates. While these textbook descriptions aren’t incorrect, research over roughly the past decade has shown that the picture they portray is fundamentally incomplete. Astrono- mers know that the simple scenario where neutron stars are all born “Crab-like” is not true. Experts in the field could not have imagined the variety of neutron stars they’ve recently observed. We’ve found that bizarre objects repre- sent a significant fraction of the neutron star population. With names like magnetars, anomalous X-ray pulsars, soft gamma repeaters, rotating radio transients, and compact Long the pulsar poster child, central objects, these bodies bear properties radically differ- the Crab Nebula’s central object is a fast-spinning neutron star ent from those of the Crab pulsar. Just how large a fraction that emits jets of radiation at its they represent is still hotly debated, but it’s at least 10 per- magnetic axis. Astronomers cent and maybe even the majority.
    [Show full text]
  • Very High Energy Emission from Blazars Interpreted Through Simultaneous Multiwavelength Observations
    UNIVERSITA` DEGLI STUDI DI SIENA FACOLTA` DI SCIENZE MATEMATICHE, FISICHE E NATURALI Dipartimento di Fisica Very High Energy emission from blazars interpreted through simultaneous multiwavelength observations Relatore/Supervisor: Candidato/Candidate: Dr. Antonio Stamerra Giacomo Bonnoli Tutore/Tutor: Prof. Riccardo Paoletti Ph.D. School in Physics Cycle XXI December 2010 Abstract In the framework of Astroparticle Physics the understanding of the particle acceleration process and related high energy electromagnetic emission within astrophysical sources is an issue of fundamental importance to unravel the structure and evolution of many classes of celestial objects, on different scales from micro{quasars to active galactic nuclei. This has an important role not only for astrophysics itself, but for many related topics of cosmic ray physics and High Energy physics, such as the search for dark matter. Also cosmology is interested, as deepening our knowledge on Active Galactic Nuclei and their interaction with the environment can help to clarify open issues on the formation of cosmic structures and evolution of universe on large scales. The present view on sources emitting high energy radiation is now gaining new insight thanks to multiwavelength observations. This approach allows to explore the spectral energy distribution of the sources all across the electromagnetic spectrum, therefore granting the best achievable understanding of the physical processes that originate the radiation that we see, and their mutual relationships. Our theories model the sources in terms of parameters that can be inferred from the observables quantities measured, and the multiwavelength observations are a key instrument in order to rule out or support some selected models out of the many that compete in the effort of describing the processes at work.
    [Show full text]
  • Filter Performance Comparisons for Some Common Nebulae
    Filter Performance Comparisons For Some Common Nebulae By Dave Knisely Light Pollution and various “nebula” filters have been around since the late 1970’s, and amateurs have been using them ever since to bring out detail (and even some objects) which were difficult to impossible to see before in modest apertures. When I started using them in the early 1980’s, specific information about which filter might work on a given object (or even whether certain filters were useful at all) was often hard to come by. Even those accounts that were available often had incomplete or inaccurate information. Getting some observational experience with the Lumicon line of filters helped, but there were still some unanswered questions. I wondered how the various filters would rank on- average against each other for a large number of objects, and whether there was a “best overall” filter. In particular, I also wondered if the much-maligned H-Beta filter was useful on more objects than the two or three targets most often mentioned in publications. In the summer of 1999, I decided to begin some more comprehensive observations to try and answer these questions and determine how to best use these filters overall. I formulated a basic survey covering a moderate number of emission and planetary nebulae to obtain some statistics on filter performance to try to address the following questions: 1. How do the various filter types compare as to what (on average) they show on a given nebula? 2. Is there one overall “best” nebula filter which will work on the largest number of objects? 3.
    [Show full text]
  • Planetary Nebulae Jacob Arnold AY230, Fall 2008
    Jacob Arnold Planetary Nebulae Jacob Arnold AY230, Fall 2008 1 PNe Formation Low mass stars (less than 8 M) will travel through the asymptotic giant branch (AGB) of the familiar HR-diagram. During this stage of evolution, energy generation is primarily relegated to a shell of helium just outside of the carbon-oxygen core. This thin shell of fusing He cannot expand against the outer layer of the star, and rapidly heats up while also quickly exhausting its reserves and transferring its head outwards. When the He is depleted, Hydrogen burning begins in a shell just a little farther out. Over time, helium builds up again, and very abruptly begins burning, leading to a shell-helium-flash (thermal pulse). During the thermal-pulse AGB phase, this process repeats itself, leading to mass loss at the extended outer envelope of the star. The pulsations extend the outer layers of the star, causing the temperature to drop below the condensation temperature for grain formation (Zijlstra 2006). Grains are driven off the star by radiation pressure, bringing gas with them through collisions. The mass loss from pulsating AGB stars is oftentimes referred to as a wind. For AGB stars, the surface gravity of the star is quite low, and wind speeds of ~10 km/s are more than sufficient to drive off mass. At some point, a super wind develops that removes the envelope entirely, a phenomenon not yet fully understood (Bernard-Salas 2003). The central, primarily carbon-oxygen core is thus exposed. These cores can have temperatures in the hundreds of thousands of Kelvin, leading to a very strong ionizing source.
    [Show full text]
  • Chandra Detection of a Pulsar Wind Nebula Associated with Supernova Remnant 3C 396
    Chandra Detection of a Pulsar Wind Nebula Associated With Supernova Remnant 3C 396 C.M. Olbert',2, J.W. Keohane'l2v3, K.A. Arnaud4, K.K. Dyer5, S.P. Reynolds', S. Safi-Harb7 ABSTRACT We present a 100 ks observation of the Galactic supernova remnant 3C396 (G39.2-0.3) with the Chandra X-Ray Observatory that we compare to a 20cm map of the remnant from the Verp Large Array'. In the Chandra images, a non- thermal nebula containing an embedded pointlike source is apparent near the center of the remnant which we interpret as a synchrotron pulsar wind nebula surrounding a yet undetected pulsar. From the 2-10 keV spectrum for the nebula (NH = 5.3 f 0.9 x cm-2, r=1.5&0.3) we derive an unabsorbed X-ray flux of SZ=1.62x lo-'* ergcmV2s-l, and from this we estimate the spin-down power of the neutron star to be fi = 7.2 x ergs-'. The central nebula is morphologi- cally complex, showing bent, extended structure. The radio and X-ray shells of the remnant correlate poorly on large scales, particularly on the eastern half of the remnant, which appears very faint in X-ray images. At both radio and X-ray wavelengths the western half of the remnant is substantially brighter than the east. Subject headings: ISM: individual (3C396 / G39.2-0.3) - stars: neutron - pulsars: general - supernova remnants lNorth Carolina School of Science and Mathematics, 1219 Broad St., Durham, NC 27705 2Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599 3Current Address: SIRTF Science Center, California Institute of Technology, MS 220-6, 1200 East Cali- fornia Boulevard, Pasedena, CA 91125 *Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 5National Radio Astronomy Observatory, P.O.
    [Show full text]
  • Supernova Shocks in Molecular Clouds: Velocity Distribution of Molecular Hydrogen William T
    Draft version September 6, 2019 Typeset using LATEX preprint2 style in AASTeX63 Supernova Shocks in Molecular Clouds: Velocity Distribution of Molecular Hydrogen William T. Reach,1 Le Ngoc Tram,1 Matthew Richter,2 Antoine Gusdorf,3 Curtis DeWitt,1 1Universities Space Research Association, MS 232-11, Moffett Field, CA 94035, USA 2University of California, Davis, CA USA 3Observatoire de Paris, Ecole´ normale sup´erieure, Sorbonne Universit´e,CNRS, LERMA, 75005 Paris, France ABSTRACT Supernovae from core-collapse of massive stars drive shocks into the molecular clouds from which the stars formed. Such shocks affect future star formation from the molecu- lar clouds, and the fast-moving, dense gas with compressed magnetic fields is associated with enhanced cosmic rays. This paper presents new theoretical modeling, using the Paris-Durham shock model, and new observations at high spectral resolution, using the Stratospheric Observatory for Infrared Astronomy (SOFIA), of the H2 S(5) pure rota- tional line from molecular shocks in the supernova remnant IC 443. We generate MHD models for non-steady-state shocks driven by the pressure of the IC 443 blast wave into gas of densities 103 to 105 cm−3. We present the first detailed derivation of the shape of the velocity profile for emission from H2 lines behind such shocks, taking into account the shock age, preshock density, and magnetic field. For preshock densities 103{105 −3 cm , the H2 emission arises from layers that extend 0.01{0.0003 pc behind the shock, respectively. The predicted shifts of line centers, and the line widths, of the H2 lines range from 20{2, and 30{4 km s−1, respectively.
    [Show full text]
  • CHEMISTRY International October-December 2019 Volume 41 No
    CHEMISTRY International The News Magazine of IUPAC October-December 2019 Volume 41 No. 4 Special IYPT2019 Elements of X INTERNATIONAL UNION OFBrought to you by | IUPAC The International Union of Pure and Applied Chemistry PURE AND APPLIED CHEMISTRY Authenticated Download Date | 11/6/19 3:09 PM Elements of IYPT2019 CHEMISTRY International he Periodic Table of Chemical Elements has without any The News Magazine of the doubt developed to one of the most significant achievements International Union of Pure and Tin natural sciences. The Table (or System, as called in some Applied Chemistry (IUPAC) languages) is capturing the essence, not only of chemistry, but also of other science areas, like physics, geology, astronomy and biology. All information regarding notes for contributors, The Periodic Table is to be seen as a very special and unique tool, subscriptions, Open Access, back volumes and which allows chemists and other scientists to predict the appear- orders is available online at www.degruyter.com/ci ance and properties of matter on earth and even in other parts of our the universe. Managing Editor: Fabienne Meyers March 1, 1869 is considered as the date of the discovery of the Periodic IUPAC, c/o Department of Chemistry Law. That day Dmitry Mendeleev completed his work on “The experi- Boston University ence of a system of elements based on their atomic weight and chemi- Metcalf Center for Science and Engineering cal similarity.” This event was preceded by a huge body of work by a 590 Commonwealth Ave. number of outstanding chemists across the world. We have elaborated Boston, MA 02215, USA on that in the January 2019 issue of Chemistry International (https:// E-mail: [email protected] bit.ly/2lHKzS5).
    [Show full text]
  • Cygnus OB2 – a Young Globular Cluster in the Milky Way Jürgen Knödlseder
    Cygnus OB2 – a young globular cluster in the Milky Way Jürgen Knödlseder To cite this version: Jürgen Knödlseder. Cygnus OB2 – a young globular cluster in the Milky Way. Astronomy and Astrophysics - A&A, EDP Sciences, 2000, 360, pp.539 - 548. hal-01381935 HAL Id: hal-01381935 https://hal.archives-ouvertes.fr/hal-01381935 Submitted on 14 Oct 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Astron. Astrophys. 360, 539–548 (2000) ASTRONOMY AND ASTROPHYSICS Cygnus OB2–ayoung globular cluster in the Milky Way J. Knodlseder¨ INTEGRAL Science Data Centre, Chemin d’Ecogia 16, 1290 Versoix, Switzerland Centre d’Etude Spatiale des Rayonnements, CNRS/UPS, B.P. 4346, 31028 Toulouse Cedex 4, France ([email protected]) Received 31 May 2000 / Accepted 23 June 2000 Abstract. The morphology and stellar content of the Cygnus particularly good region to address such questions, since it is OB2 association has been determined using 2MASS infrared extremely rich (e.g. Reddish et al. 1966, hereafter RLP), and observations in the J, H, and K bands. The analysis reveals contains some of the most luminous stars known in our Galaxy a spherically symmetric association of ∼ 2◦ in diameter with (e.g.
    [Show full text]
  • AMNH Digital Library
    ^^<e?& THERE ARE THOSE WHO DO. AND THOSE WHO WOULDACOULDASHOULDA. Which one are you? If you're the kind of person who's willing to put it all on the line to pursue your goal, there's AIG. The organization with more ways to manage risk and more financial solutions than anyone else. Everything from business insurance for growing companies to travel-accident coverage to retirement savings plans. All to help you act boldly in business and in life. So the next time you're facing an uphill challenge, contact AIG. THE GREATEST RISK IS NOT TAKING ONE: AIG INSURANCE, FINANCIAL SERVICES AND THE FREEDOM TO DARE. Insurance and services provided by members of American International Group, Inc.. 70 Pine Street, Dept. A, New York, NY 10270. vww.aig.com TODAY TOMORROW TOYOTA Each year Toyota builds more than one million vehicles in North America. This means that we use a lot of resources — steel, aluminum, and plastics, for instance. But at Toyota, large scale manufacturing doesn't mean large scale waste. In 1992 we introduced our Global Earth Charter to promote environmental responsibility throughout our operations. And in North America it is already reaping significant benefits. We recycle 376 million pounds of steel annually, and aggressive recycling programs keep 18 million pounds of other scrap materials from landfills. Of course, no one ever said that looking after the Earth's resources is easy. But as we continue to strive for greener ways to do business, there's one thing we're definitely not wasting. And that's time. www.toyota.com/tomorrow ©2001 JUNE 2002 VOLUME 111 NUMBER 5 FEATURES AVIAN QUICK-CHANGE ARTISTS How do house finches thrive in so many environments? By reshaping themselves.
    [Show full text]
  • POSTERS SESSION I: Atmospheres of Massive Stars
    Abstracts of Posters 25 POSTERS (Grouped by sessions in alphabetical order by first author) SESSION I: Atmospheres of Massive Stars I-1. Pulsational Seeding of Structure in a Line-Driven Stellar Wind Nurdan Anilmis & Stan Owocki, University of Delaware Massive stars often exhibit signatures of radial or non-radial pulsation, and in principal these can play a key role in seeding structure in their radiatively driven stellar wind. We have been carrying out time-dependent hydrodynamical simulations of such winds with time-variable surface brightness and lower boundary condi- tions that are intended to mimic the forms expected from stellar pulsation. We present sample results for a strong radial pulsation, using also an SEI (Sobolev with Exact Integration) line-transfer code to derive characteristic line-profile signatures of the resulting wind structure. Future work will compare these with observed signatures in a variety of specific stars known to be radial and non-radial pulsators. I-2. Wind and Photospheric Variability in Late-B Supergiants Matt Austin, University College London (UCL); Nevyana Markova, National Astronomical Observatory, Bulgaria; Raman Prinja, UCL There is currently a growing realisation that the time-variable properties of massive stars can have a funda- mental influence in the determination of key parameters. Specifically, the fact that the winds may be highly clumped and structured can lead to significant downward revision in the mass-loss rates of OB stars. While wind clumping is generally well studied in O-type stars, it is by contrast poorly understood in B stars. In this study we present the analysis of optical data of the B8 Iae star HD 199478.
    [Show full text]
  • Exploring CTA Science with Ted and Friends - Activities
    Exploring CTA Science with Ted and Friends - Activities This handbook proposes questions and exercises for educators related to the animated series “Exploring CTA Science with Ted and Friends.” The goal is to reinforce the concepts the students learn in each episode about high-energy astrophysics and the future gamma-ray observatory, the Cherenkov Telescope Array (CTA), as well as to develop their scientific thinking and logic. The questions are divided according to each episode - we recommend educators to perform these activities following each episode in order to consolidate new ideas before staring the next episode. Age range: 5-11 years Supplementary material: https://www.cta-observatory.org/outreach-education/ Questions? Contact CTAO Outreach and Education Coordinator, Alba Fernández-Barral ([email protected]) Exploring CTA Science with Ted and Friends EPISODE 1: “CTA: Searching the Skies” How many CTA telescopes will be located around the world? More than 100 (Note for educators: specifically, 118 – 19 in La Palma, Spain, and 99 near Paranal, Chile). Where are they going to be located? One group will be in Chile (South America) while the other will be in La Palma (a Spanish island in the Canary Islands, off the coast of west Africa). What do CTA telescopes search for? They search the sky for gamma rays. What are gamma rays? Gamma rays are like X-rays, which are used to see human bones in the hospitals, but much more energetic (Note for educators: gamma rays are the most energetic light -electromagnetic radiation- that exists in the Universe. Light can be classified according to its energy, which is known as the electromagnetic spectrum.
    [Show full text]
  • The X-Ray Universe 2011 @ Berlin, 27-30 June 2011
    The X-ray Universe 2011 @ Berlin, 27-30 June 2011 List of poster presentations: Topic A: Stars, star-forming regions, planetary and cometary studies Poster Title Author A01 Young stars around the Horsehead nebula Albacete Colombo A02 A very deep X-ray look into the young stellar cluster IC348 Alexander A03 X-ray emission from protostellar jet HH 154: first evidence of a diamond shock? Bonito A04 The nature and importance of the large spread in T Tauri X-ray luminosities Drake A05 The young open cluster around 25 Ori Franciosini A06 Chandra/ACIS-I study of the young stellar population of the Eagle Nebula Guarcello A07 Cluster members and disk fraction of CygnusOB2 Guarcello A08 Constraining the ages of X-ray sources in NGC 922 Jackson A09 An XMM-Newton vision of the NGC 2023 cluster and its surroundings Lopez-Garcia A10 Optical follow-up of the stellar content of the XBSS Lopez-Santiago A11 Quantifying the relation between UV and X-ray flux in nearby M stars Marino A12 X-ray emission from brown dwarf candidates in Cha I Martinez-Arnaiz A13 Star-planet interactions in X-rays - mimicked by selection effects? Poppenhaeger A14 The LETG spectrum of delta Ori Raassen A15 A look at the high Galactic latitude O-type star HD93521 with XMM-Newton Rauw A16 X-ray emission from protostellar jets Schneider A17 Giant HII regions in M 101: Hα-line spectra and X-ray property Sun A18 The decay of stellar dynamo activity and the rotation-activity relation Wright Topic B: Interacting binary systems, (Galactic) black holes & micro-quasars Poster Title Author
    [Show full text]