How to Make $1000 with Your Telescope! – 4 Stargazers' Diary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The HERACLES View of the H -To-HI Ratio in Galaxies
The HERACLES View of the H2-to-HI Ratio in Galaxies Adam Leroy (NRAO, Hubble Fellow) Fabian Walter, Frank Bigiel, the HERACLES and THINGS teams The Saturday Morning Summary • Star formation rate vs. gas relation on ~kpc scales breaks apart into: A relatively universal CO-SFR relation in nearby disks Systematic environmental scalings in the CO-to-HI ratio • The CO-to-HI ratio is a strong function of radius, total gas, and stellar surface density correlated with ISM properties: dust-to-gas ratio, pressure harder to link to dynamics: gravitational instability, arms • Interpretation: the CO-to-HI ratio traces the efficiency of GMC formation Density and dust can explain much of the observed behavior heracles Fabian Walter Erik Rosolowsky MPIA UBC Frank Bigiel Eva Schinnerer UC Berkeley THINGS plus… MPIA Elias Brinks Antonio Usero Gaelle Dumas U Hertfordshire OAN, Madrid MPIA Erwin de Blok Andreas Schruba Helmut Wiesemeyer U Cape Town IRAM … MPIA Rob Kennicutt Axel Weiss Karl Schuster Cambridge MPIfR IRAM Barry Madore Carsten Kramer Karin Sandstrom Carnegie IRAM MPIA Michele Thornley Daniela Calzetti Kelly Foyle Bucknell UMass MPIA Collaborators The HERA CO-Line Extragalactic Survey First maps Leroy et al. (2009) • IRAM 30m Large Program to map CO J = 2→1 line • Instrument: HERA receiver array operating at 230 GHz • 47 galaxies: dwarfs to starbursts and massive spirals -2 • Very wide-field (~ r25) and sensitive (σ ~ 1-2 Msun pc ) NGS The HI Nearby Galaxy Survey HI Walter et al. (2008), AJ Special Issue (2008) • VLA HI maps of 34 galaxies: -
Rosette Nebula and Monoceros Loop
Oshkosh Scholar Page 43 Studying Complex Star-Forming Fields: Rosette Nebula and Monoceros Loop Chris Hathaway and Anthony Kuchera, co-authors Dr. Nadia Kaltcheva, Physics and Astronomy, faculty adviser Christopher Hathaway obtained a B.S. in physics in 2007 and is currently pursuing his masters in physics education at UW Oshkosh. He collaborated with Dr. Nadia Kaltcheva on his senior research project and presented their findings at theAmerican Astronomical Society meeting (2008), the Celebration of Scholarship at UW Oshkosh (2009), and the National Conference on Undergraduate Research in La Crosse, Wisconsin (2009). Anthony Kuchera graduated from UW Oshkosh in May 2008 with a B.S. in physics. He collaborated with Dr. Kaltcheva from fall 2006 through graduation. He presented his astronomy-related research at Posters in the Rotunda (2007 and 2008), the Wisconsin Space Conference (2007), the UW System Symposium for Undergraduate Research and Creative Activity (2007 and 2008), and the American Astronomical Society’s 211th meeting (2008). In December 2009 he earned an M.S. in physics from Florida State University where he is currently working toward a Ph.D. in experimental nuclear physics. Dr. Nadia Kaltcheva is a professor of physics and astronomy. She received her Ph.D. from the University of Sofia in Bulgaria. She joined the UW Oshkosh Physics and Astronomy Department in 2001. Her research interests are in the field of stellar photometry and its application to the study of Galactic star-forming fields and the spiral structure of the Milky Way. Abstract An investigation that presents a new analysis of the structure of the Northern Monoceros field was recently completed at the Department of Physics andAstronomy at UW Oshkosh. -
Big Halpha Kinematical Sample of Barred Spiral Galaxies - I
BhaBAR: Big Halpha kinematical sample of BARred spiral galaxies - I. Fabry-Perot Observations of 21 galaxies O. Hernandez, C. Carignan, P. Amram, L. Chemin, O. Daigle To cite this version: O. Hernandez, C. Carignan, P. Amram, L. Chemin, O. Daigle. BhaBAR: Big Halpha kinematical sample of BARred spiral galaxies - I. Fabry-Perot Observations of 21 galaxies. Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP): Policy P - Oxford Open Option A, 2005, 360 Issue 4, pp.1201. 10.1111/j.1365-2966.2005.09125.x. hal-00014446 HAL Id: hal-00014446 https://hal.archives-ouvertes.fr/hal-00014446 Submitted on 26 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mon. Not. R. Astron. Soc. 360, 1201–1230 (2005) doi:10.1111/j.1365-2966.2005.09125.x BHαBAR: big Hα kinematical sample of barred spiral galaxies – I. Fabry–Perot observations of 21 galaxies O. Hernandez,1,2 † C. Carignan,1 P. Amram,2 L. Chemin1 and O. Daigle1 1Observatoire du mont Megantic,´ LAE, Universitede´ Montreal,´ CP 6128 succ. centre ville, Montreal,´ Quebec,´ Canada H3C 3J7 2Observatoire Astronomique de Marseille Provence et LAM, 2 pl. -
Filter Performance Comparisons for Some Common Nebulae
Filter Performance Comparisons For Some Common Nebulae By Dave Knisely Light Pollution and various “nebula” filters have been around since the late 1970’s, and amateurs have been using them ever since to bring out detail (and even some objects) which were difficult to impossible to see before in modest apertures. When I started using them in the early 1980’s, specific information about which filter might work on a given object (or even whether certain filters were useful at all) was often hard to come by. Even those accounts that were available often had incomplete or inaccurate information. Getting some observational experience with the Lumicon line of filters helped, but there were still some unanswered questions. I wondered how the various filters would rank on- average against each other for a large number of objects, and whether there was a “best overall” filter. In particular, I also wondered if the much-maligned H-Beta filter was useful on more objects than the two or three targets most often mentioned in publications. In the summer of 1999, I decided to begin some more comprehensive observations to try and answer these questions and determine how to best use these filters overall. I formulated a basic survey covering a moderate number of emission and planetary nebulae to obtain some statistics on filter performance to try to address the following questions: 1. How do the various filter types compare as to what (on average) they show on a given nebula? 2. Is there one overall “best” nebula filter which will work on the largest number of objects? 3. -
Spatial and Kinematic Structure of Monoceros Star-Forming Region
MNRAS 476, 3160–3168 (2018) doi:10.1093/mnras/sty447 Advance Access publication 2018 February 22 Spatial and kinematic structure of Monoceros star-forming region M. T. Costado1‹ and E. J. Alfaro2 1Departamento de Didactica,´ Universidad de Cadiz,´ E-11519 Puerto Real, Cadiz,´ Spain. Downloaded from https://academic.oup.com/mnras/article-abstract/476/3/3160/4898067 by Universidad de Granada - Biblioteca user on 13 April 2020 2Instituto de Astrof´ısica de Andaluc´ıa, CSIC, Apdo 3004, E-18080 Granada, Spain Accepted 2018 February 9. Received 2018 February 8; in original form 2017 December 14 ABSTRACT The principal aim of this work is to study the velocity field in the Monoceros star-forming region using the radial velocity data available in the literature, as well as astrometric data from the Gaia first release. This region is a large star-forming complex formed by two associations named Monoceros OB1 and OB2. We have collected radial velocity data for more than 400 stars in the area of 8 × 12 deg2 and distance for more than 200 objects. We apply a clustering analysis in the subspace of the phase space formed by angular coordinates and radial velocity or distance data using the Spectrum of Kinematic Grouping methodology. We found four and three spatial groupings in radial velocity and distance variables, respectively, corresponding to the Local arm, the central clusters forming the associations and the Perseus arm, respectively. Key words: techniques: radial velocities – astronomical data bases: miscellaneous – parallaxes – stars: formation – stars: kinematics and dynamics – open clusters and associations: general. Hoogerwerf & De Bruijne 1999;Lee&Chen2005; Lombardi, 1 INTRODUCTION Alves & Lada 2011). -
Winter Constellations
Winter Constellations *Orion *Canis Major *Monoceros *Canis Minor *Gemini *Auriga *Taurus *Eradinus *Lepus *Monoceros *Cancer *Lynx *Ursa Major *Ursa Minor *Draco *Camelopardalis *Cassiopeia *Cepheus *Andromeda *Perseus *Lacerta *Pegasus *Triangulum *Aries *Pisces *Cetus *Leo (rising) *Hydra (rising) *Canes Venatici (rising) Orion--Myth: Orion, the great hunter. In one myth, Orion boasted he would kill all the wild animals on the earth. But, the earth goddess Gaia, who was the protector of all animals, produced a gigantic scorpion, whose body was so heavily encased that Orion was unable to pierce through the armour, and was himself stung to death. His companion Artemis was greatly saddened and arranged for Orion to be immortalised among the stars. Scorpius, the scorpion, was placed on the opposite side of the sky so that Orion would never be hurt by it again. To this day, Orion is never seen in the sky at the same time as Scorpius. DSO’s ● ***M42 “Orion Nebula” (Neb) with Trapezium A stellar nursery where new stars are being born, perhaps a thousand stars. These are immense clouds of interstellar gas and dust collapse inward to form stars, mainly of ionized hydrogen which gives off the red glow so dominant, and also ionized greenish oxygen gas. The youngest stars may be less than 300,000 years old, even as young as 10,000 years old (compared to the Sun, 4.6 billion years old). 1300 ly. 1 ● *M43--(Neb) “De Marin’s Nebula” The star-forming “comma-shaped” region connected to the Orion Nebula. ● *M78--(Neb) Hard to see. A star-forming region connected to the Orion Nebula. -
Luminous Blue Variables
Review Luminous Blue Variables Kerstin Weis 1* and Dominik J. Bomans 1,2,3 1 Astronomical Institute, Faculty for Physics and Astronomy, Ruhr University Bochum, 44801 Bochum, Germany 2 Department Plasmas with Complex Interactions, Ruhr University Bochum, 44801 Bochum, Germany 3 Ruhr Astroparticle and Plasma Physics (RAPP) Center, 44801 Bochum, Germany Received: 29 October 2019; Accepted: 18 February 2020; Published: 29 February 2020 Abstract: Luminous Blue Variables are massive evolved stars, here we introduce this outstanding class of objects. Described are the specific characteristics, the evolutionary state and what they are connected to other phases and types of massive stars. Our current knowledge of LBVs is limited by the fact that in comparison to other stellar classes and phases only a few “true” LBVs are known. This results from the lack of a unique, fast and always reliable identification scheme for LBVs. It literally takes time to get a true classification of a LBV. In addition the short duration of the LBV phase makes it even harder to catch and identify a star as LBV. We summarize here what is known so far, give an overview of the LBV population and the list of LBV host galaxies. LBV are clearly an important and still not fully understood phase in the live of (very) massive stars, especially due to the large and time variable mass loss during the LBV phase. We like to emphasize again the problem how to clearly identify LBV and that there are more than just one type of LBVs: The giant eruption LBVs or h Car analogs and the S Dor cycle LBVs. -
Of Galaxies, Stars, Planets and People
The Cosmic Journeys of Galaxies,A Research Programme forStars, the Armagh Observatory and Planetarium Planets and People This document was produced by the staff of the Armagh Observatory and Planetarium, in particular through discussions and contributions from the tenured astronomers, together with input from the Governors and the Management Committee. The document was edited by the Director, Michael Burton and designed by Aileen McKee. Produced in March 2017 Front Cover Images The Four Pillars of the Armagh Observatory and Planetarium Research Outreach The Armagh Observatory was founded in 1790 as The Armagh Planetarium was founded by Dr Eric part of Archbishop Richard Robinson’s vision to see Lindsay, the seventh director of the Observatory, as the creation of a University in the City of Armagh. part of his vision to communicate the excitement of It is the oldest scientific institution in Northern astronomy and science to the public. It opened on Ireland and the longest continuously operating the 1st of May, 1968 and is the oldest operating astronomical research institution in the UK and planetarium in the UK and Ireland. Ireland. History Heritage Dreyer's NGC – the New General Catalogue – was The Observatory has been measuring the weather published in 1888 by JLE Dreyer, fourth Director of conditions at 9am every day since 1794, a the Observatory. It has been used extensively by meteorological record covering more than 200 astronomers ever since. This is his annotated copy, years, believed to be longest standing in the British complete with all known corrections at the time. Isles. This image shows the sunshine recorder and Galaxies and nebulae are still often cited by their anemometer. -
Supernova Shocks in Molecular Clouds: Velocity Distribution of Molecular Hydrogen William T
Draft version September 6, 2019 Typeset using LATEX preprint2 style in AASTeX63 Supernova Shocks in Molecular Clouds: Velocity Distribution of Molecular Hydrogen William T. Reach,1 Le Ngoc Tram,1 Matthew Richter,2 Antoine Gusdorf,3 Curtis DeWitt,1 1Universities Space Research Association, MS 232-11, Moffett Field, CA 94035, USA 2University of California, Davis, CA USA 3Observatoire de Paris, Ecole´ normale sup´erieure, Sorbonne Universit´e,CNRS, LERMA, 75005 Paris, France ABSTRACT Supernovae from core-collapse of massive stars drive shocks into the molecular clouds from which the stars formed. Such shocks affect future star formation from the molecu- lar clouds, and the fast-moving, dense gas with compressed magnetic fields is associated with enhanced cosmic rays. This paper presents new theoretical modeling, using the Paris-Durham shock model, and new observations at high spectral resolution, using the Stratospheric Observatory for Infrared Astronomy (SOFIA), of the H2 S(5) pure rota- tional line from molecular shocks in the supernova remnant IC 443. We generate MHD models for non-steady-state shocks driven by the pressure of the IC 443 blast wave into gas of densities 103 to 105 cm−3. We present the first detailed derivation of the shape of the velocity profile for emission from H2 lines behind such shocks, taking into account the shock age, preshock density, and magnetic field. For preshock densities 103{105 −3 cm , the H2 emission arises from layers that extend 0.01{0.0003 pc behind the shock, respectively. The predicted shifts of line centers, and the line widths, of the H2 lines range from 20{2, and 30{4 km s−1, respectively. -
Feb BACK BAY 2019
Feb BACK BAY 2019 The official newsletter of the Back Bay Amateur Astronomers CONTENTS COMING UP Gamma Burst 2 Feb 7 BBAA Meeting Eclipse Collage 3 7:30-9PM TCC, Virginia Beach NSN Article 6 Heart Nebula 7 Feb 8 Silent Sky Club meeting 10 10-11PM Little Theatre of VB Winter DSOs 11 Contact info 16 Feb 8 Cornwatch Photo by Chuck Jagow Canon 60Da, various exposures, iOptron mount with an Orion 80ED Calendar 17 dusk-dawn The best 9 out of 3465 images taken from about 10:00 PM on the 20th Cornland Park through 2:20 AM on the 21st. Unprocessed images (only cropped). Feb 14 Garden Stars 7-8:30PM LOOKING UP! a message from the president Norfolk Botanical Gardens This month’s most talked about astronomy event has to be the total lunar Feb 16 Saturday Sun-day eclipse. The BBAA participated by supporting the Watch Party at the 10AM-1PM Chesapeake Planetarium. Anyone in attendance will tell you it was COLD, but Elizabeth River Park manageable if you wore layers, utilized the planetarium where Dr. Robert Hitt seemed to have the thermostat set to 100 degrees, and drank copious amounts Feb 23 Skywatch of the hot coffee that Kent Blackwell brewed in the back office. 6PM-10PM The event had a huge following on Facebook but with the cold Northwest River Park temperatures, we weren’t sure how many would come out. By Kent’s estimate there were between 100–200 people in attendance. Many club members set up telescopes, as well as a few members of the public too. -
Ghost Hunt Challenge 2020
Virtual Ghost Hunt Challenge 10/21 /2020 (Sorry we can meet in person this year or give out awards but try doing this challenge on your own.) Participant’s Name _________________________ Categories for the competition: Manual Telescope Electronically Aided Telescope Binocular Astrophotography (best photo) (if you expect to compete in more than one category please fill-out a sheet for each) ** There are four objects on this list that may be beyond the reach of beginning astronomers or basic telescopes. Therefore, we have marked these objects with an * and provided alternate replacements for you just below the designated entry. We will use the primary objects to break a tie if that’s needed. Page 1 TAS Ghost Hunt Challenge - Page 2 Time # Designation Type Con. RA Dec. Mag. Size Common Name Observed Facing West – 7:30 8:30 p.m. 1 M17 EN Sgr 18h21’ -16˚11’ 6.0 40’x30’ Omega Nebula 2 M16 EN Ser 18h19’ -13˚47 6.0 17’ by 14’ Ghost Puppet Nebula 3 M10 GC Oph 16h58’ -04˚08’ 6.6 20’ 4 M12 GC Oph 16h48’ -01˚59’ 6.7 16’ 5 M51 Gal CVn 13h30’ 47h05’’ 8.0 13.8’x11.8’ Whirlpool Facing West - 8:30 – 9:00 p.m. 6 M101 GAL UMa 14h03’ 54˚15’ 7.9 24x22.9’ 7 NGC 6572 PN Oph 18h12’ 06˚51’ 7.3 16”x13” Emerald Eye 8 NGC 6426 GC Oph 17h46’ 03˚10’ 11.0 4.2’ 9 NGC 6633 OC Oph 18h28’ 06˚31’ 4.6 20’ Tweedledum 10 IC 4756 OC Ser 18h40’ 05˚28” 4.6 39’ Tweedledee 11 M26 OC Sct 18h46’ -09˚22’ 8.0 7.0’ 12 NGC 6712 GC Sct 18h54’ -08˚41’ 8.1 9.8’ 13 M13 GC Her 16h42’ 36˚25’ 5.8 20’ Great Hercules Cluster 14 NGC 6709 OC Aql 18h52’ 10˚21’ 6.7 14’ Flying Unicorn 15 M71 GC Sge 19h55’ 18˚50’ 8.2 7’ 16 M27 PN Vul 20h00’ 22˚43’ 7.3 8’x6’ Dumbbell Nebula 17 M56 GC Lyr 19h17’ 30˚13 8.3 9’ 18 M57 PN Lyr 18h54’ 33˚03’ 8.8 1.4’x1.1’ Ring Nebula 19 M92 GC Her 17h18’ 43˚07’ 6.44 14’ 20 M72 GC Aqr 20h54’ -12˚32’ 9.2 6’ Facing West - 9 – 10 p.m. -
A Multispectral Analysis of the Northeastern Shell of IC 443
MNRAS 000,1–13 (2019) Preprint 13 August 2019 Compiled using MNRAS LATEX style file v3.0 A multispectral analysis of the northeastern shell of IC 443 Alexandre Alarie,1;2;3 Laurent Drissen,2;3 1 Instituto de Astronomía, Universidad National Autónoma de México, Apdo. Postal 70264, 04510 Mexico D.F., Mexico 2 Département de physique, de génie physique et d’optique, Université Laval, Québec, QC, G1V 0A6, Canada 3 Centre de Recherche en Astrophysique du Québec 13 August 2019 ABSTRACT We have carried out optical observations of the north-eastern part of the supernova remnant IC 443 using the CFHT imaging spectrograph SITELLE. The observations consist of three multispectral cubes covering an 110 ×110 area allowing the investigation of both the spatial and spectral variation of 9 emission lines : [O II] ll3726+3729, [O III] ll4959,5007, Hb, Ha, [N II] ll6548,6583 and [S II] ll6716,6731. Extinction measurement from the Ha/Hb shows significant variation across the observed region with E(B-V) = 0.8-1.1. Electron density measurements using [S II] lines indicate densities ranging from 100 up to 2500 cm−3. Models computed with the shock modelling code MAPPINGS are presented and compared with the observations. A combination of complete shock model and truncated ones are required in order to explain the observed spectrum. The shock velocities found in IC 443 are between 20 and 150 km s−1 with 75 km s−1 being the most prominent velocity. The pre-shock number density varies from 20 to 60 cm−3. A single set of abundances close to solar values combined with varying shock parameters (shock velocity, pre-shock density and shock age) are sufficient to explain the great variation of lines intensities observed in IC 443.