Study of the VHE Γ-Ray Emission from the Active Galactic Nucleus 1ES1959+650
Total Page:16
File Type:pdf, Size:1020Kb
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Study of the VHE γ-ray emission from the Active Galactic Nucleus 1ES1959+650 Dissertation an der Fakultät für Physik der Technischen Universität München vorgelegt von Nadia Tonello Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Study of the VHE γ-ray emission from the Active Galactic Nucleus 1ES1959+650 Nadia Tonello Vollständiger Abdruck der von der Fakultät für Physik der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr.rer.nat.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. A. Buras Prüfer der Dissertation: 1. Hon.-Prof. Dr. S. Bethke 2. Univ.-Prof. Dr. L. Oberauer Die Dissertation wurde am 21.12.2005 bei der Technischen Universität München eingereicht und durch die Fakultät für Physik am 16.02.2006 angenommen. Johannes Hevelius: Draco, from Uranographia (1690). The superimposed brown circle indicates the approximate position in the sky of the AGN 1ES1959+650. A Valentino e Edda, i miei genitori e in memoria di Gemma e Giulia. Summary Gamma(γ)-ray astronomy is one of the youngest branches of astro-particle physics. It started with V. Hess experiments and the discovery of cosmic rays, later with the scientific exploration of space and with the study of the phenomena that are the origin of the most energetic particles traveling in the Universe. During the last decades, γ-ray astronomy by ground-based instruments to de- tect very high energy photons (E>30 GeV) has evolved considerably. After the pioneering work of the Whipple collaboration which detected the first γ-ray source, the Crab Nebula, the HEGRA collaboration contributed to discoveries in γ-ray astronomy, with its stand alone prototype CT1 and its array of 5 Cherenkov tele- scopes, called CT-System. Scientific goals of the collaboration included the study of the known TeV sources and the search for possible candidates. The first gen- eration of telescopes was able to observe only γ-rays between a few hundreds of GeV and several TeV, while satellites gave us a view of the universe in γ-rays up to about 10 GeV. The lack of observations in the 10-300 GeV range was on one hand due to the small collection efficiency of satellite experiments and on the other hand to the high energy threshold (> 300 GeV) of the first generation ground-based telescopes. In order to close this energy gap left by observations, the MAGIC collab- oration designed and built a Cherenkov telescope adopting many novel technologies to reach the lowest energy threshold among the new generation IACTs (Imaging Atmospheric Cherenkov Telescopes). The physics program of Cherenkov telescopes covers several galactic and extragalactic types of sources, such as Supernova Rem- nants (SNR), pulsars, microquasars and Active Galactic Nuclei (AGNs). In my thesis I report about a study of the AGN 1ES1959+650 based on data taken with the HEGRA CT1 and the new MAGIC telescope. The physics interest in the AGN 1ES1959+650 concerns firstly the comparison of its spectral features to the ones of other known AGNs, the study of the most accepted γ-ray emission models and the correlations between activities of the source at different wavelengths. The stand alone Cherenkov telescope CT1 of the HEGRA collaboration ob- served this AGN during several hundreds hours, starting from the year 2000. The first known period of high activity of the AGN 1ES1959+650 occurred in spring 2002. The CT1 telescope recorded it and the analysis results are presented here. The most remarkable outcome from the CT1 data analysis is the detection of an episode of high γ-ray emission, without coinciding high activity in X-rays. This was i ii Summary classified as an orphan flare, occurring two nights before the orphan flare reported by the VERITAS collaboration. The CT1 spectrum obtained during the low state of the source is the first confirmation of the HEGRA System published low state spectrum. At the end of 2002 the CT1 telescope stopped taking data. At the same time, the MAGIC collaboration was completing the construction of its new telescope at the same site, the Roque de los Muchachos astronomical observatory on the Canary Island of La Palma (Spain). During the year 2003 I participated in the construction and installation of the huge tessellated reflector of the MAGIC telescope. Part of my thesis is dedicated to the description of MAGIC reflector, its technical features, and the studies that have been done before and during the installation on the main frame of the telescope. The reflector of the MAGIC tele- scope is unique among Cherenkov telescopes for its huge surface (236 m2) and its low weight (17 t). New technologies have been used in its project. The material ad- opted for the construction of the mirror elements is the Aluminum alloy AlMgSi1. The mirror elements surface was machined with a diamond tool, such to obtain high reflectivity. The mirror elements are mounted onto a stiff and lightweight car- bon fiber frame. The elements are equipped with a special control system of the so-called Active Mirror Control (AMC) to counteract the small deformations of the support frame and an internal heating to guarantee the best performances. The low weight of the used materials allowed building such a large mirror area. The adopted technological choices have opened new horizons in γ-ray astronomy, as the possibility to detect lower energy γ-rays with respect to the past and to study some of the fastest, most enigmatic phenomena happening in the γ-ray universe, the Gamma-Ray Bursts (GRBs). The acquired experience is now source of new ideas for the development of the mirrors for the MAGIC project phase II: an improved clone of the MAGIC telescope is being built near the original one, such to form a stereoscopic system. The first period of operation of MAGIC took place in 2004 during the com- missioning phase. During the first cycle of observations the operation conditions of the telescope were not yet finalized. Both the hardware and the software were frequently corrected in order to reach the optimal integration of the subsystems. During that period the main targets of observation were the Crab Nebula, the TeV standard candle, and some of the well known TeV γ-ray sources, such as the AGN Mkn421, that had a period of strong emissions in TeV energies. Several hours of observation have been spent for the study of 1ES1959+650. I analyzed these data and compared them with the Crab Nebula observations during the same period and under similar observational conditions. By cross calibrating against a well-known source, I could avoid many telescope performance studies, which were difficult (even sometimes impossible) to obtain in the early operation of MAGIC. From the MA- GIC measurements of 1ES1959+650 in September-October 2004, some of the first physics results were obtained with this new generation instrument. The high sens- itivity around 100-200 GeV energy allowed us for the first time the monitoring of 1ES1959+650, which is a faint TeV source outside flaring periods, with only few hours of observation. The high sensitivity and the low threshold of MAGIC open Summary iii new perspectives for the study of AGNs in quiescent state. This possibility is ex- tremely valuable because of the hypothesis that 1ES1959+650 might be a hadronic accelerator. In such a case a weak but steady γ-ray flux is expected. MAGIC and CT1 measurements presented in this work considerably increase the knowledge of the AGN 1ES1959+650 during the periods of high TeV γ-ray activity, as well as during the low state, in an energy range between 150 GeV and 20 TeV. Zusammenfassung Die Hochenergie-Gammastrahlenastronomie ist eine der j¨ungsten Bereiche der As- troteilchenphysik. Sie begann mit den Experimenten von V. Hess und der Entdeck- ung der kosmischen Strahlung, gefolgt von der wissenschaftlichen Erforschung des Weltraums und der Erforschung des Ursprungs der h¨ochstenergetischen Teilchen im Universum. In den letzten Jahrzehnten hat sich die Technik der Gammastrahlenastronomie mit erdgebundenen Experimenten f¨ur die Beobachtung von hochenergetischen Pho- tonen (E>30 GeV) wesentlich verbessert. Nach den Pionierarbeiten der Whipple Kollaboration, die die erste Gammastrahlenquelle, den Krebsnebel, entdeckte, hat die HEGRA Kollaboration mit dem unabh¨angigen Prototypen CT1 und mit einem System von f¨unf Cherenkovteleskopen, dem CT-System, zur weiteren Entdeckungen in der Gamma-Astronomie beigetragen. Die wissenschaftlichen Ziele der HEGRA Kollaboration beinhalteten sowohl die Untersuchung von bereits bekannten TeV Quellen als auch die Suche nach neuen Kandidaten. Die erste Teleskopgeneration erlaubte lediglich die Beobachtung von Gammastrahlen im Energiebereich zwischen einigen hundert GeV bis einigen TeV, w¨ahrend Satellitenexperimente ein Bild des Universums im Energiebereich bis zu 10 GeV lieferten. Die Beobachtungsl¨ucke zwischen 10-300 GeV beruhte einerseits auf der geringen Sammelfl¨ache der Satel- litenexperimente und andererseits auf der hohen Energieschwelle der ersten Gen- eration der erdgebundenen Teleskope. Um diese Beobachtungsl¨ucke zu schließen, entwickelte und baute die MAGIC Kollaboration ein Cherenkovteleskop, das mit Hilfe vieler neuartiger Technologien die niedrigste Energieschwelle unter den heute existierenden IACTs (Imaging Air Cherenkov Telescopes) erreichte. Das Physikprogramm der erdgebundenen Gamma-Astronomie beinhaltet die Untersuchung einer Reihe von galaktischen - und extragalaktischen - Quellentypen wie Supernova-Uberreste¨ (SNR), Pulsare, Mikroquasare und Aktive Galaktische Kerne (AGN). Meine Doktorarbeit beschftigt sich mit einer Studie des Aktiven Galaktischen Kerns 1ES1959+650 und basiert auf den mit den Teleskopen HEGRA CT1 und MAGIC-I gewonnenen Daten. Das physikalische Interesse an AGN 1ES1959+650 gilt haupts¨achlich dem Ver- gleich der spektralen Eigenschaften mit denen bereits bekannter AGNs, sowie Tests von Modellen zur Gammastrahlenerzeugung und der Korrelation der Quellenakt- ivit¨at bei verschiedenen Wellenl¨angen. Das von der HEGRA Kollaboration be- triebene CT1 Teleskop beobachtete diesen AGN f¨ur mehrere hundert Stunden, be- v vi Zusammenfassung ginnend im Jahr 2000.