Evaluation of Occupant Volume Strength in Conventional
Total Page:16
File Type:pdf, Size:1020Kb
Evaluation of Occupant Volume Strength in Conventional Passenger Railroad Equipment A thesis submitted by Michael E. Carolan In partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering TUFTS UNIVERSITY May, 2008 Adviser: Professor A.B. Perlman THIS PAGE INTENTIONALLY LEFT BLANK ii Abstract To ensure a level of occupant volume protection, passenger railway equipment operating on mainline railroads in the United States must currently be designed to resist an 800,000 pound compressive load applied statically to the underframe. An alternative manner of evaluating the strength of the occupied volume is sought that will ensure the same level of protection for occupants of the equipment as the current test but will allow for a greater variety of equipment to be evaluated. A finite element (FE) model of the structural components of the railcar has been applied to examine the existing compressive strength test and evaluate selected alternate testing scenarios. Using simplified geometry and material properties in the model, the gross behaviors of the railcar are captured without excessive processing time. This simplified modeling technique was used to construct FE models of a generic single-level railcar and an exemplar multilevel railcar. Both models can be interpreted to have some single beam-like behaviors. In each model, the existing compressive load results in a significant bending moment as well as the prescribed compressive load. The alternative load cases examined demonstrate that a larger total compressive force may be distributed across the end structure of the railcar and result in similar stress levels throughout the structural frame as are observed from application of the conventional proof load. iii Acknowledgements This thesis certainly would not have been possible without the dedication, enthusiasm, and guidance of my adviser, Professor Perlman. From translating “ancient” finite element codes to providing pep talks when the going got tough, Benj was always happy to help. Thank you for your constant collaboration, which enabled me to finish my Master’s degree on time. I certainly would not have been able to finish this work without the assistance of my Volpe Center project leader, David Tyrell. Thank you for working with me on this thesis, as well as keeping my non-thesis work assignments light, so this could be my primary focus. I’m certainly grateful for the support of my coworkers at the Volpe Center in my pursuit of this degree. In particular, thank you to Brandon Talamini and Jeff Gordon for advice on working with Abaqus, and Michelle Priante and Kari Jacobsen for advice on writing this thesis. Special thanks to all of my friends and family who helped keep me sane and focused throughout this entire process. My parents were a steady source of reassurance during the entirety of this Master’s degree program. And extra special thanks to Sarah, who has made me realize how lucky I am. iv Abstract................................................................................................................. iii Acknowledgements .............................................................................................. iv List of Figures...................................................................................................... vii List of Tables ........................................................................................................ ix Nomenclature .........................................................................................................x Introduction............................................................................................................2 1 Background ....................................................................................................7 1.1 Conventional Passenger Car Design .................................................................................. 7 1.2 Introduction of Multilevel Passenger Car Designs............................................................. 9 1.3 Development of Specifications and Standards................................................................. 12 1.4 Determining Compliance with Strength Standards.......................................................... 18 1.4.1 Current Testing Procedures......................................................................................... 20 1.4.2 Potential Difficulties Associated with the Current Standards ..................................... 24 1.5 Crashworthiness Research Program................................................................................. 28 2 Modeling Approach .....................................................................................32 2.1 Shell Model of Single-level Conventional Car ................................................................ 35 2.1.1 Mesh............................................................................................................................37 2.1.2 Weights ....................................................................................................................... 40 2.1.3 Material Used.............................................................................................................. 41 3 Results for Conventional Car .....................................................................43 3.1 Loading Conditions.......................................................................................................... 43 3.2 Boundary Conditions ....................................................................................................... 44 3.3 Carbody Neutral Axis ...................................................................................................... 46 3.4 Standing Car Results........................................................................................................ 48 3.5 Buff Stop Loading Results............................................................................................... 56 3.6 Alternative Proof Load..................................................................................................... 65 3.6.1 Buffer Beam Loading Results ..................................................................................... 68 3.6.2 AT Plate Loading Results............................................................................................ 73 3.6.3 Combined Endframe Loading Results......................................................................... 80 4 Results for Multilevel Car...........................................................................88 4.1 Model Description............................................................................................................ 88 4.1.1 Mesh............................................................................................................................89 4.1.2 Weights ....................................................................................................................... 92 v 4.1.3 Material Used.............................................................................................................. 93 4.2 Boundary Conditions ....................................................................................................... 94 4.3 Standing Car Load ........................................................................................................... 96 4.4 Baseline 800 kip Load...................................................................................................... 98 4.5 Alternative Loads........................................................................................................... 102 5 Summary.....................................................................................................109 6 Conclusions.................................................................................................112 Appendix A – Tied Constraints versus Single Parts.......................................119 Appendix B – Calculation of Suspension Spring Stiffness.............................124 Appendix C – Symmetry of Results .................................................................126 Appendix D – Stress Contour Plots for Various Load Cases.........................131 Appendix E – Beam and Shell Model...............................................................142 Appendix F – Conventional Single-level Railcar Construction.....................153 References...........................................................................................................161 vi List of Figures Figure 1 - Plan View of Conventional Underframe Structure.......................................................... 7 Figure 2 - Schematic Showing Underframe and Superstructure, Single-level Car .......................... 8 Figure 3 - Schematic Application of Static End Load on Single-level Car ...................................... 9 Figure 4 - Exemplar Profile for Multilevel Passenger Railcar ....................................................... 10 Figure 5 - Cutaway View of Multilevel Car................................................................................... 11 Figure 6 - Schematic Application of Static End Load on Multilevel Car....................................... 12 Figure 7 - RPO Car, Circa 1940 ..................................................................................................... 16 Figure 8 - Schematic Representation of Buff Strength Test........................................................... 21 Figure 9 - Carbody