BULLETIN FLORIDA STATE MUSEUM Vol
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Paleontological Resources of the Upper and Middle San Pedro Valley
Paleontological Resources of the Upper and Middle San Pedro Valley Robert D. McCord Arizona Museum of Natural History Geological setting Regional extension causing block faulting – creation of the Basin and Range ~15Ma Poorly developed drainage results in lakes in valley bottom ?-3.4 Ma Drainage develops with flow to north, marshes, ponds and lakes significant from time to time Early Pleistocene Saint David Formation ? – 3.4 million lakes, few fossils Well developed paleomagnetic timeframe – a first for terrestrial sediments! Succession of faunas from ~3 to 1.5 Ma Blancan to ? Irvingtonian NALMA Plants diatoms charophytes Equisetum (scouring rush) Ostracoda (aquatic crustaceans) Cypridopsis cf. vidua Limnocythere cf. staplini Limnocythere sp. Candona cf. renoensis Candona sp. A Candona sp. B ?Candonlella sp. ?Heterocypris sp. ?Cycloypris sp. Potamocypris sp. Cyprideis sp. Darwinula sp. Snails and a Clam Pisidium casertanum (clam) Fossaria dalli (aquatic snail) Lymnaea caperata (aquatic snail) Lymnaea cf. elodes (aquatic snail) Bakerilymnaea bulimoides (aquatic snail) Gyraulus parvus (aquatic snail) Promenetus exacuous (aquatic snail) Promenetus umbilicatellus (aquatic snail) Physa virgata (aquatic snail) Gastrocopta cristata (terrestrial snail) Gastrocopta tappaniana (terrestrial snail) Pupoides albilabris (terrestrial snail) Vertigo milium (terrestrial snail) Vertigo ovata (terrestrial snail) cf. Succinea (terrestrial snail) Deroceras aenigma (slug) Hawaila minuscula (terrestrial snail) Fish and Amphibians indeterminate small fish Ambystoma tigrinum (tiger salamander) Scaphiopus hammondi (spadefoot toad) Bufo alvarius (toad) Hyla eximia (tree frog) Rana sp. (leopard frog) Turtles and Lizards Kinosternon arizonense (mud turtle) Terrapene cf. ornata (box turtle) Gopherus sp. (tortoise) Hesperotestudo sp. (giant tortoise) Eumeces sp. (skink) “Cnemidophorus” sp. (whiptail lizard) Crotaphytus sp. (collared lizard) Phrynosoma sp. (horned lizard) Sceloporus sp. -
University of Florida Thesis Or Dissertation Formatting
UNDERSTANDING CARNIVORAN ECOMORPHOLOGY THROUGH DEEP TIME, WITH A CASE STUDY DURING THE CAT-GAP OF FLORIDA By SHARON ELIZABETH HOLTE A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2018 © 2018 Sharon Elizabeth Holte To Dr. Larry, thank you ACKNOWLEDGMENTS I would like to thank my family for encouraging me to pursue my interests. They have always believed in me and never doubted that I would reach my goals. I am eternally grateful to my mentors, Dr. Jim Mead and the late Dr. Larry Agenbroad, who have shaped me as a paleontologist and have provided me to the strength and knowledge to continue to grow as a scientist. I would like to thank my colleagues from the Florida Museum of Natural History who provided insight and open discussion on my research. In particular, I would like to thank Dr. Aldo Rincon for his help in researching procyonids. I am so grateful to Dr. Anne-Claire Fabre; without her understanding of R and knowledge of 3D morphometrics this project would have been an immense struggle. I would also to thank Rachel Short for the late-night work sessions and discussions. I am extremely grateful to my advisor Dr. David Steadman for his comments, feedback, and guidance through my time here at the University of Florida. I also thank my committee, Dr. Bruce MacFadden, Dr. Jon Bloch, Dr. Elizabeth Screaton, for their feedback and encouragement. I am grateful to the geosciences department at East Tennessee State University, the American Museum of Natural History, and the Museum of Comparative Zoology at Harvard for the loans of specimens. -
La Brea and Beyond: the Paleontology of Asphalt-Preserved Biotas
La Brea and Beyond: The Paleontology of Asphalt-Preserved Biotas Edited by John M. Harris Natural History Museum of Los Angeles County Science Series 42 September 15, 2015 Cover Illustration: Pit 91 in 1915 An asphaltic bone mass in Pit 91 was discovered and exposed by the Los Angeles County Museum of History, Science and Art in the summer of 1915. The Los Angeles County Museum of Natural History resumed excavation at this site in 1969. Retrieval of the “microfossils” from the asphaltic matrix has yielded a wealth of insect, mollusk, and plant remains, more than doubling the number of species recovered by earlier excavations. Today, the current excavation site is 900 square feet in extent, yielding fossils that range in age from about 15,000 to about 42,000 radiocarbon years. Natural History Museum of Los Angeles County Archives, RLB 347. LA BREA AND BEYOND: THE PALEONTOLOGY OF ASPHALT-PRESERVED BIOTAS Edited By John M. Harris NO. 42 SCIENCE SERIES NATURAL HISTORY MUSEUM OF LOS ANGELES COUNTY SCIENTIFIC PUBLICATIONS COMMITTEE Luis M. Chiappe, Vice President for Research and Collections John M. Harris, Committee Chairman Joel W. Martin Gregory Pauly Christine Thacker Xiaoming Wang K. Victoria Brown, Managing Editor Go Online to www.nhm.org/scholarlypublications for open access to volumes of Science Series and Contributions in Science. Natural History Museum of Los Angeles County Los Angeles, California 90007 ISSN 1-891276-27-1 Published on September 15, 2015 Printed at Allen Press, Inc., Lawrence, Kansas PREFACE Rancho La Brea was a Mexican land grant Basin during the Late Pleistocene—sagebrush located to the west of El Pueblo de Nuestra scrub dotted with groves of oak and juniper with Sen˜ora la Reina de los A´ ngeles del Rı´ode riparian woodland along the major stream courses Porciu´ncula, now better known as downtown and with chaparral vegetation on the surrounding Los Angeles. -
How Many Named Species Are Valid?
How many named species are valid? John Alroy* National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, CA 93101 Edited by Peter Robert Crane, Royal Botanic Gardens, Kew, Surrey, United Kingdom, and approved January 7, 2002 (received for review December 19, 2001) Estimates of biodiversity in both living and fossil groups depend on declared a nomen dubium in 1910, synonymized with the canid raw counts of currently recognized named species, but many of Borophagus diversidens in 1930, revalidated but transferred to these names eventually will prove to be synonyms or otherwise Osteoborus in 1937, and finally synonymized again with B. invalid. This difficult bias can be resolved with a simple ‘‘flux ratio’’ diversidens in 1969, an opinion that was confirmed in 1980 and equation that compares historical rates of invalidation and reval- 1999. idation. Flux ratio analysis of a taxonomic data set of unrivalled The data set illustrates a best-case scenario: mammals in completeness for 4,861 North American fossil mammal species general (6), and North American fossil mammals in particular, shows that 24–31% of currently accepted names eventually will have been studied very disproportionately. Most fossil species prove invalid, so diversity estimates are inflated by 32–44%. The are invertebrates (17) and, like most living species, are defined estimate is conservative compared with one obtained by using an strictly on the basis of external morphology. About 192,000 older, more basic method. Although the degree of inflation varies invertebrate fossil species were known in 1970, and at least 3,000 through both historical and evolutionary time, it has a minor more are named every year (17). -
Download PDF File
1.08 1.19 1.46 Nimravus brachyops Nandinia binotata Neofelis nebulosa 115 Panthera onca 111 114 Panthera atrox 113 Uncia uncia 116 Panthera leo 112 Panthera pardus Panthera tigris Lynx issiodorensis 220 Lynx rufus 221 Lynx pardinus 222 223 Lynx canadensis Lynx lynx 119 Acinonyx jubatus 110 225 226 Puma concolor Puma yagouaroundi 224 Felis nigripes 228 Felis chaus 229 Felis margarita 118 330 227 331Felis catus Felis silvestris 332 Otocolobus manul Prionailurus bengalensis Felis rexroadensis 99 117 334 335 Leopardus pardalis 44 333 Leopardus wiedii 336 Leopardus geoffroyi Leopardus tigrinus 337 Pardofelis marmorata Pardofelis temminckii 440 Pseudaelurus intrepidus Pseudaelurus stouti 88 339 Nimravides pedionomus 442 443 Nimravides galiani 22 338 441 Nimravides thinobates Pseudaelurus marshi Pseudaelurus validus 446 Machairodus alberdiae 77 Machairodus coloradensis 445 Homotherium serum 447 444 448 Smilodon fatalis Smilodon gracilis 66 Pseudaelurus quadridentatus Barbourofelis morrisi 449 Barbourofelis whitfordi 550 551 Barbourofelis fricki Barbourofelis loveorum Stenogale Hemigalus derbyanus 554 555 Arctictis binturong 55 Paradoxurus hermaphroditus Genetta victoriae 553 558 Genetta maculata 559 557 660 Genetta genetta Genetta servalina Poiana richardsonii 556 Civettictis civetta 662 Viverra tangalunga 661 663 552 Viverra zibetha Viverricula indica Crocuta crocuta 666 667 Hyaena brunnea 665 Hyaena hyaena Proteles cristata Fossa fossana 664 669 770 Cryptoprocta ferox Salanoia concolor 668 772 Crossarchus alexandri 33 Suricata suricatta 775 -
PHYLOGENETIC SYSTEMATICS of the BOROPHAGINAE (CARNIVORA: CANIDAE) Xiaoming Wang
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Mammalogy Papers: University of Nebraska State Museum, University of Nebraska State Museum 1999 PHYLOGENETIC SYSTEMATICS OF THE BOROPHAGINAE (CARNIVORA: CANIDAE) Xiaoming Wang Richard H. Tedford Beryl E. Taylor Follow this and additional works at: http://digitalcommons.unl.edu/museummammalogy This Article is brought to you for free and open access by the Museum, University of Nebraska State at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Mammalogy Papers: University of Nebraska State Museum by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. PHYLOGENETIC SYSTEMATICS OF THE BOROPHAGINAE (CARNIVORA: CANIDAE) XIAOMING WANG Research Associate, Division of Paleontology American Museum of Natural History and Department of Biology, Long Island University, C. W. Post Campus, 720 Northern Blvd., Brookville, New York 11548 -1300 RICHARD H. TEDFORD Curator, Division of Paleontology American Museum of Natural History BERYL E. TAYLOR Curator Emeritus, Division of Paleontology American Museum of Natural History BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 243, 391 pages, 147 figures, 2 tables, 3 appendices Issued November 17, 1999 Price: $32.00 a copy Copyright O American Museum of Natural History 1999 ISSN 0003-0090 AMNH BULLETIN Monday Oct 04 02:19 PM 1999 amnb 99111 Mp 2 Allen Press • DTPro System File # 01acc (large individual, composite figure, based Epicyon haydeni ´n. (small individual, based on AMNH 8305) and Epicyon saevus Reconstruction of on specimens from JackNorth Swayze America. Quarry). Illustration These by two Mauricio species Anto co-occur extensively during the late Clarendonian and early Hemphillian of western 2 1999 WANG ET AL.: SYSTEMATICS OF BOROPHAGINAE 3 CONTENTS Abstract .................................................................... -
First Bone-Cracking Dog Coprolites Provide New Insight
RESEARCH ARTICLE First bone-cracking dog coprolites provide new insight into bone consumption in Borophagus and their unique ecological niche Xiaoming Wang1,2,3*, Stuart C White4, Mairin Balisi1,3, Jacob Biewer5,6, Julia Sankey6, Dennis Garber1, Z Jack Tseng1,2,7 1Department of Vertebrate Paleontology, Natural History Museum of Los Angeles County, Los Angeles, United States; 2Department of Vertebrate Paleontology, American Museum of Natural History, New York, United States; 3Department of Ecology and Evolutionary Biology, University of California, Los Angeles, United States; 4School of Dentistry, University of California, Los Angeles, United States; 5Department of Geological Sciences, California State University, Fullerton, United States; 6Department of Geology, California State University Stanislaus, Turlock, United States; 7Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, United States Abstract Borophagine canids have long been hypothesized to be North American ecological ‘avatars’ of living hyenas in Africa and Asia, but direct fossil evidence of hyena-like bone consumption is hitherto unknown. We report rare coprolites (fossilized feces) of Borophagus parvus from the late Miocene of California and, for the first time, describe unambiguous evidence that these predatory canids ingested large amounts of bone. Surface morphology, micro-CT analyses, and contextual information reveal (1) droppings in concentrations signifying scent-marking behavior, similar to latrines used by living social carnivorans; (2) routine consumption of skeletons; *For correspondence: (3) undissolved bones inside coprolites indicating gastrointestinal similarity to modern striped and [email protected] brown hyenas; (4) B. parvus body weight of ~24 kg, reaching sizes of obligatory large-prey hunters; ~ Competing interests: The and (5) prey size ranging 35–100 kg. -
Bayesian Phylogenetic Estimation of Fossil Ages Rstb.Royalsocietypublishing.Org Alexei J
Downloaded from http://rstb.royalsocietypublishing.org/ on June 20, 2016 Bayesian phylogenetic estimation of fossil ages rstb.royalsocietypublishing.org Alexei J. Drummond1,2 and Tanja Stadler2,3 1Department of Computer Science, University of Auckland, Auckland 1010, New Zealand 2Department of Biosystems Science and Engineering, Eidgeno¨ssische Technische Hochschule Zu¨rich, 4058 Basel, Switzerland Research 3Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland Cite this article: Drummond AJ, Stadler T. Recent advances have allowed for both morphological fossil evidence 2016 Bayesian phylogenetic estimation of and molecular sequences to be integrated into a single combined inference fossil ages. Phil. Trans. R. Soc. B 371: of divergence dates under the rule of Bayesian probability. In particular, 20150129. the fossilized birth–death tree prior and the Lewis-Mk model of discrete morphological evolution allow for the estimation of both divergence times http://dx.doi.org/10.1098/rstb.2015.0129 and phylogenetic relationships between fossil and extant taxa. We exploit this statistical framework to investigate the internal consistency of these Accepted: 3 May 2016 models by producing phylogenetic estimates of the age of each fossil in turn, within two rich and well-characterized datasets of fossil and extant species (penguins and canids). We find that the estimation accuracy of One contribution of 15 to a discussion meeting fossil ages is generally high with credible intervals seldom excluding the issue ‘Dating species divergences using rocks true age and median relative error in the two datasets of 5.7% and 13.2%, and clocks’. respectively. The median relative standard error (RSD) was 9.2% and 7.2%, respectively, suggesting good precision, although with some outliers. -
Genus/Species Skull Ht Lt Wt Stage Range Abacinonyx See Acinonyx Abathomodon See Speothos A
Genus/Species Skull Ht Lt Wt Stage Range Abacinonyx see Acinonyx Abathomodon see Speothos A. fossilis see Icticyon pacivorus? Pleistocene Brazil Abelia U.Miocene Europe Absonodaphoenus see Pseudarctos L.Miocene USA A. bathygenus see Cynelos caroniavorus Acarictis L.Eocene W USA cf. A. ryani Wasatchian Colorado(US) A. ryani Wasatchian Wyoming, Colorado(US) Acinomyx see Acinonyx Acinonyx M.Pliocene-Recent Europe,Asia,Africa,N America A. aicha 2.3 m U.Pliocene Morocco A. brachygnathus Pliocene India A. expectata see Miracinonyx expectatus? Or Felis expectata? A. intermedius M.Pleistocene A. jubatus living Cheetah M.Pliocene-Recent Algeria,Europe,India,China A. pardinensis 91 cm 3 m 60 kg Astian-Biharian Italy,India,China,Germany,France A. sp. L.Pleistocene Tanzania,Ethiopia A. sp. Cf. Inexpectatus Blancan-Irvingtonian California(US) A. studeri see Miracinonyx studeri Blancan Texas(US) A. trumani see Miracinonyx trumani Rancholabrean Wyoming,Nevada(US) Acionyx possibly Acinonyx? A. cf. Crassidens Hadar(Ethiopia) Acrophoca 1.5 m U.Miocene-L.Pliocene Peru,Chile A. longirostris U.Miocene-L.Pliocene Peru A. sp. U.Miocene-L.Pliocene Chile Actiocyon M-U.Miocene W USA A. leardi Clarendonian California(US) A. sp. M.Miocene Oregon(US) Adcrocuta 82 cm 1.5 m U.Miocene Europe,Asia A. advena A. eximia 80 cm 1.5 m Vallesian-Turolian Europe(widespread),Asia(widespread) Adelphailurus U.Miocene-L.Pliocene W USA, Mexico,Europe A. kansensis Hemphillian Arizona,Kansas(US),Chihuahua(Mexico) Adelpharctos M.Oligocene Europe Adilophontes L.Miocene W USA A. brachykolos Arikareean Wyoming(US) Adracodon probably Adracon Eocene France A. quercyi probably Adracon quercyi Eocene France Adracon U.Eocene-L.Oligocene France A. -
Leeds Thesis Template
Middle to Late Miocene terrestrial biota and climate by Matthew James Pound M.Sci., Geology (University of Bristol) Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Earth and Environment September 2012 - 2 - Declaration of Authorship The candidate confirms that the work submitted is his/her own, except where work which has formed part of jointly-authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. Chapter 2 has been published as: Pound, M.J., Riding, J.B., Donders, T.H., Daskova, J. 2012 The palynostratigraphy of the Brassington Formation (Upper Miocene) of the southern Pennines, central England. Palynology 36, 26-37. Chapter 3 has been published as: Pound, M.J., Haywood, A.M., Salzmann, U., Riding, J.B. 2012. Global vegetation dynamics and latitudinal temperature gradients during the mid to Late Miocene (15.97 - 5.33 Ma). Earth Science Reviews 112, 1-22. Chapter 4 has been published as: Pound, M.J., Haywood, A.M., Salzmann, U., Riding, J.B., Lunt, D.J. and Hunter, S.J. 2011. A Tortonian (Late Miocene 11.61-7.25Ma) global vegetation reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology 300, 29-45. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. © 2012, The University of Leeds, British Geological Survey and Matthew J. -
1: Beast2.1.3 R1
1: Beast2.1.3_r1 0.93 Canis adustus 0.89 Canis mesomelas 0.37 Canis simensis Canis arnensis 1 Lycaon pictus 1 Cuon javanicus 0.57 Xenocyon texanus 0.91 Canis antonii 0.96 0.35 Canis falconeri 1 Canis dirus 1 Canis armbrusteri 0.060.27 Canis lupus Canis chihliensis Canis etruscus 0.98 0.99 0.26 Canis variabilis 0.11 Canis edwardii 0.93 Canis mosbachensis 0.68 0.58 Canis latrans Canis aureus 0.94 Canis palmidens 0.94 Canis lepophagus 1 0.41 Canis thooides Canis ferox 0.99 Eucyon davisi 0.8 Cerdocyon texanus Vulpes stenognathus Leptocyon matthewi 0.98 Urocyon cinereoargenteus 0.85 Urocyon minicephalus 0.96 1 Urocyon citronus 1 Urocyon galushi 0.96 Urocyon webbi 1 1 Metalopex merriami 0.23 Metalopex macconnelli 0.68 Leptocyon vafer 1 Leptocyon leidyi Leptocyon vulpinus 0.7 Leptocyon gregorii 1 Leptocyon douglassi Leptocyon mollis 0.32 Borophagus dudleyi 1 Borophagus hilli 0.98 Borophagus diversidens 0.97 Borophagus secundus 0.18 Borophagus parvus 1 Borophagus pugnator 1 Borophagus orc 1 Borophagus littoralis 0.96 Epicyon haydeni 1 0.92 Epicyon saevus Epicyon aelurodontoides Protepicyon raki 0.98 0.28 Carpocyon limosus 0.96 Carpocyon webbi 0.97 0.98 Carpocyon robustus Carpocyon compressus 0.17 0.87 Paratomarctus euthos Paratomarctus temerarius Tomarctus brevirostris 0.31 0.85 0.35 Tomarctus hippophaga 0.17 Tephrocyon rurestris Protomarctus opatus 0.24 0.58 Microtomarctus conferta Metatomarctus canavus Psalidocyon marianae 0.79 1 Aelurodon taxoides 0.32 0.27 Aelurodon ferox 1 Aelurodon stirtoni 0.14 Aelurodon mcgrewi 0.33 Aelurodon asthenostylus -
First Bone-Cracking Dog Coprolites Provide New Insight Into
RESEARCH ARTICLE First bone-cracking dog coprolites provide new insight into bone consumption in Borophagus and their unique ecological niche Xiaoming Wang1,2,3*, Stuart C White4, Mairin Balisi1,3, Jacob Biewer5,6, Julia Sankey6, Dennis Garber1, Z Jack Tseng1,2,7 1Department of Vertebrate Paleontology, Natural History Museum of Los Angeles County, Los Angeles, United States; 2Department of Vertebrate Paleontology, American Museum of Natural History, New York, United States; 3Department of Ecology and Evolutionary Biology, University of California, Los Angeles, United States; 4School of Dentistry, University of California, Los Angeles, United States; 5Department of Geological Sciences, California State University, Fullerton, United States; 6Department of Geology, California State University Stanislaus, Turlock, United States; 7Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, United States Abstract Borophagine canids have long been hypothesized to be North American ecological ‘avatars’ of living hyenas in Africa and Asia, but direct fossil evidence of hyena-like bone consumption is hitherto unknown. We report rare coprolites (fossilized feces) of Borophagus parvus from the late Miocene of California and, for the first time, describe unambiguous evidence that these predatory canids ingested large amounts of bone. Surface morphology, micro-CT analyses, and contextual information reveal (1) droppings in concentrations signifying scent-marking behavior, similar to latrines used by living social carnivorans; (2) routine consumption of skeletons; *For correspondence: (3) undissolved bones inside coprolites indicating gastrointestinal similarity to modern striped and [email protected] brown hyenas; (4) B. parvus body weight of ~24 kg, reaching sizes of obligatory large-prey hunters; ~ Competing interests: The and (5) prey size ranging 35–100 kg.