1: Beast2.1.3 R1

Total Page:16

File Type:pdf, Size:1020Kb

1: Beast2.1.3 R1 1: Beast2.1.3_r1 0.93 Canis adustus 0.89 Canis mesomelas 0.37 Canis simensis Canis arnensis 1 Lycaon pictus 1 Cuon javanicus 0.57 Xenocyon texanus 0.91 Canis antonii 0.96 0.35 Canis falconeri 1 Canis dirus 1 Canis armbrusteri 0.060.27 Canis lupus Canis chihliensis Canis etruscus 0.98 0.99 0.26 Canis variabilis 0.11 Canis edwardii 0.93 Canis mosbachensis 0.68 0.58 Canis latrans Canis aureus 0.94 Canis palmidens 0.94 Canis lepophagus 1 0.41 Canis thooides Canis ferox 0.99 Eucyon davisi 0.8 Cerdocyon texanus Vulpes stenognathus Leptocyon matthewi 0.98 Urocyon cinereoargenteus 0.85 Urocyon minicephalus 0.96 1 Urocyon citronus 1 Urocyon galushi 0.96 Urocyon webbi 1 1 Metalopex merriami 0.23 Metalopex macconnelli 0.68 Leptocyon vafer 1 Leptocyon leidyi Leptocyon vulpinus 0.7 Leptocyon gregorii 1 Leptocyon douglassi Leptocyon mollis 0.32 Borophagus dudleyi 1 Borophagus hilli 0.98 Borophagus diversidens 0.97 Borophagus secundus 0.18 Borophagus parvus 1 Borophagus pugnator 1 Borophagus orc 1 Borophagus littoralis 0.96 Epicyon haydeni 1 0.92 Epicyon saevus Epicyon aelurodontoides Protepicyon raki 0.98 0.28 Carpocyon limosus 0.96 Carpocyon webbi 0.97 0.98 Carpocyon robustus Carpocyon compressus 0.17 0.87 Paratomarctus euthos Paratomarctus temerarius Tomarctus brevirostris 0.31 0.85 0.35 Tomarctus hippophaga 0.17 Tephrocyon rurestris Protomarctus opatus 0.24 0.58 Microtomarctus conferta Metatomarctus canavus Psalidocyon marianae 0.79 1 Aelurodon taxoides 0.32 0.27 Aelurodon ferox 1 Aelurodon stirtoni 0.14 Aelurodon mcgrewi 0.33 Aelurodon asthenostylus 0.711 Euoplocyon brachygnathus 0.92 Euoplocyon spissidens 1 Cynarctus crucidens 1 Cynarctus voorhiesi 0.38 Cynarctus saxatilis 0.52 Cynarctus galushai 0.99 1 Cynarctus marylandica 0.54 1 Paracynarctus sinclari 0.91 Paracynarctus kelloggi Desmocyon matthewi 0.98 Desmocyon thomsoni Cormocyon copei Cormocyon haydeni 0.96 Phlaocyon mariae 0.53 0.88 Phlaocyon yatkolai 1 Phlaocyon leucosteus 0.9 0.94 Phlaocyon marshlandensis 1 1 Phlaocyon multicuspus Phlaocyon achoros 0.93 Phlaocyon annectens 0.18 Phlaocyon latidens Phlaocyon minor 0.89 0.8 1 Cynarctoides emryi 1 Cynarctoides accridens 1 Cynarctoides gawanae 1 0.69 Cynarctoides luskensis 0.69 Cynarctoides harlowi Cynarctoides lemur Cynarctoides roii Rhizocyon oreganensis 1 Otarocyon cooki 0.55 Otarocyon macdonaldi Oxetocyon cuspidatus 0.21 Osbornodon brachypus 1 Osbornodon iamonensis 0.18 0.22 Osbornodon fricki 0.26 Mesocyon brachyops 0.25 Mesocyon coryphaeus Cynodesmus martini 0.42 1 Paraenhydrocyon wallovianus 1 Paraenhydrocyon robustus 0.57 0.41 Paraenhydrocyon josephi Mesocyon temnodon Cynodesmus thooides 0.75 Enhydrocyon basilatus 0.64 Enhydrocyon stenocephalus 0.66 0.66 Enhydrocyon crassidens 1 Enhydrocyon pahinsintewakpa 1 0.59 Ectopocynus intermedius 0.65 0.93 Ectopocynus antiquus 0.98 0.77 Ectopocynus simplicidens Philotrox condoni 0.76 Sunkahetanka geringensis 0.27 Caedocyon tedfordi 0.65 Osbornodon sesnoni 0.9 Osbornodon renjiei Hesperocyon coloradensis 0.46 Hesperocyon gregarius 0.36 Archaeocyon falkenbachi 0.93 Archaeocyon pavidus Archaeocyon leptodus Prohesperocyon wilsoni outgroup 40 30 20 10 0 millions of years ago 2: Beast2.1.3_r2 0.93 Canis adustus 0.93 Canis mesomelas Canis simensis 0.66 Canis latrans 0.27 Canis aureus 0.92 Canis variabilis 0.4 Canis mosbachensis 0.26 Canis edwardii 0.34 1 Canis dirus 0.331 Canis armbrusteri Canis lupus Canis palmidens 0.18 1 Lycaon pictus 1 Cuon javanicus 0.98 0.65 0.64 Xenocyon texanus 0.8 Canis antonii 0.98 Canis falconeri 0.92 Canis chihliensis Canis etruscus 1 Canis arnensis 0.93 Canis lepophagus 1 Canis thooides 1 Canis ferox Eucyon davisi 0.99 Cerdocyon texanus 0.48 Vulpes stenognathus Leptocyon matthewi 0.99 Urocyon cinereoargenteus 0.72 0.75 Urocyon minicephalus 1 Urocyon citronus 1 Urocyon galushi 1 0.97 Urocyon webbi 1 Metalopex merriami 1 Metalopex macconnelli 0.92 Leptocyon vafer Leptocyon leidyi 1 Leptocyon vulpinus 0.98 Leptocyon gregorii 1 Leptocyon douglassi Leptocyon mollis 0.77 Borophagus diversidens 0.96 Borophagus hilli 0.95 Borophagus dudleyi 0.93 Borophagus secundus 1 Borophagus parvus 1 0.49 Borophagus orc Borophagus pugnator 1 Borophagus littoralis 0.98 Epicyon haydeni 1 0.95 Epicyon saevus Epicyon aelurodontoides 1 Protepicyon raki 0.32 Carpocyon limosus 1 Carpocyon robustus 0.97 1 Carpocyon webbi Carpocyon compressus 0.03 0.96 Paratomarctus euthos 0.04 Paratomarctus temerarius Psalidocyon marianae 0.07 Tephrocyon rurestris 0.07 0.86 Tomarctus brevirostris Tomarctus hippophaga 0.28 Protomarctus opatus 0.24 Microtomarctus conferta Metatomarctus canavus 1 Aelurodon taxoides 0.671 0.35 Aelurodon ferox 0.42 0.69 Aelurodon stirtoni 1 Aelurodon mcgrewi 0.45 Aelurodon asthenostylus 0.46 Euoplocyon brachygnathus 0.35 Euoplocyon spissidens 1 Cynarctus crucidens 1 Cynarctus voorhiesi 0.39 Cynarctus saxatilis 0.91 0.5 Cynarctus marylandica 1 Cynarctus galushai 1 1 Paracynarctus sinclari Paracynarctus kelloggi 0.98 Desmocyon matthewi 0.99 Desmocyon thomsoni Cormocyon copei Cormocyon haydeni 0.97 Phlaocyon mariae 0.55 0.06 0.95 Phlaocyon yatkolai 1 Phlaocyon leucosteus 0.81 Phlaocyon marshlandensis 1 0.99 Phlaocyon multicuspus Phlaocyon achoros 0.94 Phlaocyon annectens 0.98 Phlaocyon latidens 1 Cynarctoides emryi 1 Cynarctoides accridens 1 Cynarctoides gawanae 0.96 0.68 Cynarctoides luskensis 0.81 0.79 Cynarctoides harlowi 1 Cynarctoides lemur Phlaocyon minor Cynarctoides roii Rhizocyon oreganensis 1 Otarocyon cooki 0.62 Otarocyon macdonaldi Oxetocyon cuspidatus 0.63 Osbornodon fricki 1 Osbornodon brachypus 0.27 0.3 Osbornodon iamonensis 0.33 Mesocyon brachyops 0.27 Mesocyon coryphaeus Cynodesmus martini 0.92 1 Paraenhydrocyon wallovianus 1 Paraenhydrocyon robustus 0.93 0.38 Paraenhydrocyon josephi Mesocyon temnodon Cynodesmus thooides 0.72 Enhydrocyon basilatus 0.57 Enhydrocyon stenocephalus 0.91 0.6 Enhydrocyon crassidens 1 Enhydrocyon pahinsintewakpa 1 0.38 Ectopocynus intermedius 0.51 0.91 Ectopocynus antiquus 0.98 0.87 Ectopocynus simplicidens Philotrox condoni 0.76 Sunkahetanka geringensis 0.54 Caedocyon tedfordi 0.78 Osbornodon sesnoni 0.88 Osbornodon renjiei Hesperocyon gregarius 0.41 Hesperocyon coloradensis 0.65 Archaeocyon falkenbachi 0.94 Archaeocyon leptodus Archaeocyon pavidus Prohesperocyon wilsoni outgroup 40 30 20 10 0 millions of years ago 3: mb3.2.5_mb1_orig Borophagus diversidens 1 0.35 Borophagus dudleyi 0.96 Borophagus hilli 0.96 Borophagus secundus 0.91 Borophagus parvus 1 0.75 Borophagus orc Borophagus pugnator 1 Borophagus littoralis 0.99 Epicyon haydeni 1 0.63 Epicyon saevus Epicyon aelurodontoides 1 Protepicyon raki 0.32 Carpocyon limosus 0.92 Carpocyon webbi 0.98 1 Carpocyon robustus Carpocyon compressus 0.95 Paratomarctus euthos 0.46 Paratomarctus temerarius 0.99 Tomarctus brevirostris 0.24 Tomarctus hippophaga 0.38 0.47 Protomarctus opatus Tephrocyon rurestris 0.3 0.78 Microtomarctus conferta Metatomarctus canavus Psalidocyon marianae 0.93 0.27 Aelurodon mcgrewi 0.26 Aelurodon asthenostylus 1 Aelurodon stirtoni 1 Aelurodon taxoides 0.53 Aelurodon ferox 1 Euoplocyon brachygnathus 0.76 Euoplocyon spissidens 1 Cynarctus crucidens 1 Cynarctus voorhiesi 0.41 Cynarctus saxatilis Cynarctus galushai 0.18 1 0.99 Paracynarctus sinclari 0.38 0.2 Paracynarctus kelloggi Cynarctus marylandica 0.67 Desmocyon matthewi 0.31 Desmocyon thomsoni Cormocyon copei Cormocyon haydeni 0.87 Phlaocyon mariae 0.16 Phlaocyon yatkolai 0.99 Phlaocyon multicuspus 0.26 0.65 Phlaocyon achoros 0.97 1 Phlaocyon leucosteus Phlaocyon marshlandensis 0.21 Phlaocyon annectens 0.3 Phlaocyon latidens Phlaocyon minor Cynarctoides emryi 0.23 1 0.25 1 Cynarctoides accridens 0.99 Cynarctoides gawanae 0.22 Cynarctoides luskensis 0.2 0.68 Cynarctoides harlowi 0.97 Cynarctoides lemur Cynarctoides roii 1 Otarocyon cooki 1 Otarocyon macdonaldi Oxetocyon cuspidatus Rhizocyon oreganensis 1 Lycaon pictus 1 Cuon javanicus 0.51 Xenocyon texanus 0.98 Canis antonii 0.55 Canis falconeri 1 Canis dirus 1 Canis armbrusteri 0.140.29 Canis lupus Canis chihliensis 0.98 Canis etruscus 0.02 Canis palmidens 0.12 Canis edwardii 0.75 Canis variabilis 0.45 Canis latrans 0.71 0.15 Canis aureus Canis mosbachensis 0.94 Canis adustus 1 0.71 Canis mesomelas 0.44 Canis simensis Canis arnensis 0.64 0.81 Canis lepophagus 0.93 Canis thooides 1 Canis ferox 1 0.95 Eucyon davisi Cerdocyon texanus 0.78 Vulpes stenognathus Leptocyon matthewi 0.93 Urocyon cinereoargenteus 0.79 Urocyon minicephalus 0.99 1 Urocyon citronus 1 Urocyon galushi 0.89 Urocyon webbi 1 0.49 Metalopex merriami 0.22 Metalopex macconnelli Leptocyon vafer 0.94 0.41 Leptocyon leidyi 1 Leptocyon gregorii Leptocyon vulpinus 0.82 0.33 Leptocyon douglassi Leptocyon mollis 0.23 Prohesperocyon wilsoni 0.35 Archaeocyon leptodus 0.9 Archaeocyon pavidus Archaeocyon falkenbachi 0.66 Ectopocynus intermedius 0.87 Ectopocynus antiquus 0.19 Ectopocynus simplicidens Caedocyon tedfordi 0.45 0.78 Enhydrocyon basilatus 0.92 Enhydrocyon stenocephalus 0.72 0.17 Enhydrocyon crassidens 0.3 Enhydrocyon pahinsintewakpa 0.5 Philotrox condoni 0.38 Sunkahetanka geringensis 0.5 Mesocyon coryphaeus 0.14 Mesocyon brachyops 0.57 Mesocyon temnodon 0.42 Cynodesmus martini 0.98 Cynodesmus thooides 0.69 Osbornodon fricki 1 Osbornodon brachypus 0.92 Osbornodon iamonensis 0.95 Osbornodon sesnoni 0.75 0.11 Osbornodon renjiei 0.87 Paraenhydrocyon wallovianus 0.83 Paraenhydrocyon robustus Paraenhydrocyon josephi 0.75 Hesperocyon coloradensis Hesperocyon gregarius outgroup 40 30 20 10 0 millions of years ago 4: mb3.2.5_mb2_orig 0.931 Canis adustus 0.881 Canis mesomelas Canis simensis 1 Lycaon pictus 1
Recommended publications
  • The Impact of Large Terrestrial Carnivores on Pleistocene Ecosystems Blaire Van Valkenburgh, Matthew W
    The impact of large terrestrial carnivores on SPECIAL FEATURE Pleistocene ecosystems Blaire Van Valkenburgha,1, Matthew W. Haywardb,c,d, William J. Ripplee, Carlo Melorof, and V. Louise Rothg aDepartment of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095; bCollege of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, United Kingdom; cCentre for African Conservation Ecology, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa; dCentre for Wildlife Management, University of Pretoria, Pretoria, South Africa; eTrophic Cascades Program, Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331; fResearch Centre in Evolutionary Anthropology and Palaeoecology, School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom; and gDepartment of Biology, Duke University, Durham, NC 27708-0338 Edited by Yadvinder Malhi, Oxford University, Oxford, United Kingdom, and accepted by the Editorial Board August 6, 2015 (received for review February 28, 2015) Large mammalian terrestrial herbivores, such as elephants, have analogs, making their prey preferences a matter of inference, dramatic effects on the ecosystems they inhabit and at high rather than observation. population densities their environmental impacts can be devas- In this article, we estimate the predatory impact of large (>21 tating. Pleistocene terrestrial ecosystems included a much greater kg, ref. 11) Pleistocene carnivores using a variety of data from diversity of megaherbivores (e.g., mammoths, mastodons, giant the fossil record, including species richness within guilds, pop- ground sloths) and thus a greater potential for widespread habitat ulation density inferences based on tooth wear, and dietary in- degradation if population sizes were not limited.
    [Show full text]
  • Shape Evolution and Sexual Dimorphism in the Mandible of the Dire Wolf, Canis Dirus, at Rancho La Brea Alexandria L
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 2014 Shape evolution and sexual dimorphism in the mandible of the dire wolf, Canis Dirus, at Rancho la Brea Alexandria L. Brannick [email protected] Follow this and additional works at: http://mds.marshall.edu/etd Part of the Animal Sciences Commons, and the Paleontology Commons Recommended Citation Brannick, Alexandria L., "Shape evolution and sexual dimorphism in the mandible of the dire wolf, Canis Dirus, at Rancho la Brea" (2014). Theses, Dissertations and Capstones. Paper 804. This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected]. SHAPE EVOLUTION AND SEXUAL DIMORPHISM IN THE MANDIBLE OF THE DIRE WOLF, CANIS DIRUS, AT RANCHO LA BREA A thesis submitted to the Graduate College of Marshall University In partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences by Alexandria L. Brannick Approved by Dr. F. Robin O’Keefe, Committee Chairperson Dr. Julie Meachen Dr. Paul Constantino Marshall University May 2014 ©2014 Alexandria L. Brannick ALL RIGHTS RESERVED ii ACKNOWLEDGEMENTS I thank my advisor, Dr. F. Robin O’Keefe, for all of his help with this project, the many scientific opportunities he has given me, and his guidance throughout my graduate education. I thank Dr. Julie Meachen for her help with collecting data from the Page Museum, her insight and advice, as well as her support. I learned so much from Dr.
    [Show full text]
  • Mammalia, Felidae, Canidae, and Mustelidae) from the Earliest Hemphillian Screw Bean Local Fauna, Big Bend National Park, Brewster County, Texas
    Chapter 9 Carnivora (Mammalia, Felidae, Canidae, and Mustelidae) From the Earliest Hemphillian Screw Bean Local Fauna, Big Bend National Park, Brewster County, Texas MARGARET SKEELS STEVENS1 AND JAMES BOWIE STEVENS2 ABSTRACT The Screw Bean Local Fauna is the earliest Hemphillian fauna of the southwestern United States. The fossil remains occur in all parts of the informal Banta Shut-in formation, nowhere very fossiliferous. The formation is informally subdivided on the basis of stepwise ®ning and slowing deposition into Lower (least fossiliferous), Middle, and Red clay members, succeeded by the valley-®lling, Bench member (most fossiliferous). Identi®ed Carnivora include: cf. Pseudaelurus sp. and cf. Nimravides catocopis, medium and large extinct cats; Epicyon haydeni, large borophagine dog; Vulpes sp., small fox; cf. Eucyon sp., extinct primitive canine; Buisnictis chisoensis, n. sp., extinct skunk; and Martes sp., marten. B. chisoensis may be allied with Spilogale on the basis of mastoid specialization. Some of the Screw Bean taxa are late survivors of the Clarendonian Chronofauna, which extended through most or all of the early Hemphillian. The early early Hemphillian, late Miocene age attributed to the fauna is based on the Screw Bean assemblage postdating or- eodont and predating North American edentate occurrences, on lack of de®ning Hemphillian taxa, and on stage of evolution. INTRODUCTION southwestern North America, and ®ll a pa- leobiogeographic gap. In Trans-Pecos Texas NAMING AND IMPORTANCE OF THE SCREW and adjacent Chihuahua and Coahuila, Mex- BEAN LOCAL FAUNA: The name ``Screw Bean ico, they provide an age determination for Local Fauna,'' Banta Shut-in formation, postvolcanic (,18±20 Ma; Henry et al., Trans-Pecos Texas (®g.
    [Show full text]
  • New Eucyon Remains from the Pliocene Aramis Member (Sagantole Formation), Middle Awash Valley (Ethiopia)
    New Eucyon remains from the Pliocene Aramis Member (Sagantole Formation), Middle Awash Valley (Ethiopia) Nuria Garcia Department Paleontologfa and Centra de Evoluci6n y Comportamiento Humanos, lnstituto de Salud Carlo,l' Ill, Universidad Complutense de Madrid, ClSinesio Delgado4, Pabell6n 14,28029 Madrid, Spain Abstract The Aramis Member (Sagantole formation) includes the Gaala Tuff Complex-Daam Aatu Basaltic Tuff interval which has produced a taxonomically diverse vertebrate assemblage including the primitive hominid Ardipithecus ramidus. New Eucyon remains recovered from this interval come from localities in the Aramis, Sagantole, and Kuseralee catchments. The chronology established for the GATC-DAB T interval is 4.4 Ma. These recoveries represent the most abundant available Eucyon assemblage of the eastern African Pliocene. Here, Eucyon fossils from the Kapsomin and Lemudong'o Late Miocene Kenyan sites are compared with the Aramis representatives, showing comparable morphology although with smaller dimensions. E. intrepidus-E. wokari novo sp., might constitute a single lineage, with increasing size and robusticity, and the derivation of some morphological traits mainly on the lower carnassial. E. wokari represents a new eastern species of the African Pliocene Eucyon lineage. Resume Nouveaux restes d'Eucyon dans le Membre Aramis pliocene (Formation Sagantole) de la moyenne vallee de l'Awash (Ethiopie). Le membre Aramis de la formation Sagantole inclut le «Galaa Tuff Complex-Daam Aatu Basaltic Tuff interval» qui a livre un ensemble varie de vertebres, y compris l'hominide primitif Ardipithecus ramidus. De nouveaux restes d' Eucyon recoltes dans cet intervalle proviennent de localites des stations d' Aramis, Sagantole et Kuseralee. L'age de I'intervalle est de 4,4 Ma.
    [Show full text]
  • Entre Chien Et Loup
    ANNEE 2003 THESE : 2003 – TOU 3 – 4102 ENTRE CHIEN ET LOUP : ETUDE BIOLOGIQUE ET COMPORTEMENTALE _________________ THESE pour obtenir le grade de DOCTEUR VETERINAIRE DIPLOME D’ETAT présentée et soutenue publiquement en 2003 devant l’Université Paul-Sabatier de Toulouse par Laurent, Sylvain, Patrice NEAULT Né, le 7 janvier 1976 à BELFORT (Territoire de Belfort) ___________ Directeur de thèse : M. le Professeur Roland DARRE ___________ JURY PRESIDENT : M. Henri DABERNAT Professeur à l’Université Paul-Sabatier de TOULOUSE ASSESSEUR : M. Roland DARRE Professeur à l’Ecole Nationale Vétérinaire de TOULOUSE M. Guy BODIN Professeur à l’Ecole Nationale Vétérinaire de TOULOUSE MINISTERE DE L'AGRICULTURE ET DE LA PECHE ECOLE NATIONALE VETERINAIRE DE TOULOUSE Directeur : M. P. DESNOYERS Directeurs honoraires……. : M. R. FLORIO M. J. FERNEY M. G. VAN HAVERBEKE Professeurs honoraires….. : M. A. BRIZARD M. L. FALIU M. C. LABIE M. C. PAVAUX M. F. LESCURE M. A. RICO M. A. CAZIEUX Mme V. BURGAT M. D. GRIESS PROFESSEURS CLASSE EXCEPTIONNELLE M. CABANIE Paul, Histologie, Anatomie pathologique M. CHANTAL Jean, Pathologie infectieuse M. DARRE Roland, Productions animales M. DORCHIES Philippe, Parasitologie et Maladies Parasitaires M. GUELFI Jean-François, Pathologie médicale des Equidés et Carnivores M. TOUTAIN Pierre-Louis, Physiologie et Thérapeutique PROFESSEURS 1ère CLASSE M. AUTEFAGE André, Pathologie chirurgicale M. BODIN ROZAT DE MANDRES NEGRE Guy, Pathologie générale, Microbiologie, Immunologie M. BRAUN Jean-Pierre, Physique et Chimie biologiques et médicales M. DELVERDIER Maxence, Histologie, Anatomie pathologique M. EECKHOUTTE Michel, Hygiène et Industrie des Denrées Alimentaires d'Origine Animale M. EUZEBY Jean, Pathologie générale, Microbiologie, Immunologie M. FRANC Michel, Parasitologie et Maladies Parasitaires M.
    [Show full text]
  • Paleontological Resources of the Upper and Middle San Pedro Valley
    Paleontological Resources of the Upper and Middle San Pedro Valley Robert D. McCord Arizona Museum of Natural History Geological setting Regional extension causing block faulting – creation of the Basin and Range ~15Ma Poorly developed drainage results in lakes in valley bottom ?-3.4 Ma Drainage develops with flow to north, marshes, ponds and lakes significant from time to time Early Pleistocene Saint David Formation ? – 3.4 million lakes, few fossils Well developed paleomagnetic timeframe – a first for terrestrial sediments! Succession of faunas from ~3 to 1.5 Ma Blancan to ? Irvingtonian NALMA Plants diatoms charophytes Equisetum (scouring rush) Ostracoda (aquatic crustaceans) Cypridopsis cf. vidua Limnocythere cf. staplini Limnocythere sp. Candona cf. renoensis Candona sp. A Candona sp. B ?Candonlella sp. ?Heterocypris sp. ?Cycloypris sp. Potamocypris sp. Cyprideis sp. Darwinula sp. Snails and a Clam Pisidium casertanum (clam) Fossaria dalli (aquatic snail) Lymnaea caperata (aquatic snail) Lymnaea cf. elodes (aquatic snail) Bakerilymnaea bulimoides (aquatic snail) Gyraulus parvus (aquatic snail) Promenetus exacuous (aquatic snail) Promenetus umbilicatellus (aquatic snail) Physa virgata (aquatic snail) Gastrocopta cristata (terrestrial snail) Gastrocopta tappaniana (terrestrial snail) Pupoides albilabris (terrestrial snail) Vertigo milium (terrestrial snail) Vertigo ovata (terrestrial snail) cf. Succinea (terrestrial snail) Deroceras aenigma (slug) Hawaila minuscula (terrestrial snail) Fish and Amphibians indeterminate small fish Ambystoma tigrinum (tiger salamander) Scaphiopus hammondi (spadefoot toad) Bufo alvarius (toad) Hyla eximia (tree frog) Rana sp. (leopard frog) Turtles and Lizards Kinosternon arizonense (mud turtle) Terrapene cf. ornata (box turtle) Gopherus sp. (tortoise) Hesperotestudo sp. (giant tortoise) Eumeces sp. (skink) “Cnemidophorus” sp. (whiptail lizard) Crotaphytus sp. (collared lizard) Phrynosoma sp. (horned lizard) Sceloporus sp.
    [Show full text]
  • Guidebook Contains Preliminary Findings of a Number of Concurrent Projects Being Worked on by the Trip Leaders
    TH FRIENDS OF THE PLEISTOCENE, ROCKY MOUNTAIN-CELL, 45 FIELD CONFERENCE PLIO-PLEISTOCENE STRATIGRAPHY AND GEOMORPHOLOGY OF THE CENTRAL PART OF THE ALBUQUERQUE BASIN OCTOBER 12-14, 2001 SEAN D. CONNELL New Mexico Bureau of Geology and Mineral Resources-Albuquerque Office, New Mexico Institute of Mining and Technology, 2808 Central Ave. SE, Albuquerque, New Mexico 87106 DAVID W. LOVE New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801 JOHN D. SORRELL Tribal Hydrologist, Pueblo of Isleta, P.O. Box 1270, Isleta, NM 87022 J. BRUCE J. HARRISON Dept. of Earth and Environmental Sciences, New Mexico Institute of Mining and Technology 801 Leroy Place, Socorro, NM 87801 Open-File Report 454C and D Initial Release: October 11, 2001 New Mexico Bureau of Geology and Mineral Resources New Mexico Institute of Mining and Technology 801 Leroy Place, Socorro, NM 87801 NMBGMR OFR454 C & D INTRODUCTION This field-guide accompanies the 45th annual Rocky Mountain Cell of the Friends of the Pleistocene (FOP), held at Isleta Lakes, New Mexico. The Friends of the Pleistocene is an informal gathering of Quaternary geologists, geomorphologists, and pedologists who meet annually in the field. The field guide has been separated into two parts. Part C (open-file report 454C) contains the three-days of road logs and stop descriptions. Part D (open-file report 454D) contains a collection of mini-papers relevant to field-trip stops. This field guide is a companion to open-file report 454A and 454B, which accompanied a field trip for the annual meeting of the Rocky Mountain/South Central Section of the Geological Society of America, held in Albuquerque in late April.
    [Show full text]
  • University of Florida Thesis Or Dissertation Formatting
    UNDERSTANDING CARNIVORAN ECOMORPHOLOGY THROUGH DEEP TIME, WITH A CASE STUDY DURING THE CAT-GAP OF FLORIDA By SHARON ELIZABETH HOLTE A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2018 © 2018 Sharon Elizabeth Holte To Dr. Larry, thank you ACKNOWLEDGMENTS I would like to thank my family for encouraging me to pursue my interests. They have always believed in me and never doubted that I would reach my goals. I am eternally grateful to my mentors, Dr. Jim Mead and the late Dr. Larry Agenbroad, who have shaped me as a paleontologist and have provided me to the strength and knowledge to continue to grow as a scientist. I would like to thank my colleagues from the Florida Museum of Natural History who provided insight and open discussion on my research. In particular, I would like to thank Dr. Aldo Rincon for his help in researching procyonids. I am so grateful to Dr. Anne-Claire Fabre; without her understanding of R and knowledge of 3D morphometrics this project would have been an immense struggle. I would also to thank Rachel Short for the late-night work sessions and discussions. I am extremely grateful to my advisor Dr. David Steadman for his comments, feedback, and guidance through my time here at the University of Florida. I also thank my committee, Dr. Bruce MacFadden, Dr. Jon Bloch, Dr. Elizabeth Screaton, for their feedback and encouragement. I am grateful to the geosciences department at East Tennessee State University, the American Museum of Natural History, and the Museum of Comparative Zoology at Harvard for the loans of specimens.
    [Show full text]
  • La Brea and Beyond: the Paleontology of Asphalt-Preserved Biotas
    La Brea and Beyond: The Paleontology of Asphalt-Preserved Biotas Edited by John M. Harris Natural History Museum of Los Angeles County Science Series 42 September 15, 2015 Cover Illustration: Pit 91 in 1915 An asphaltic bone mass in Pit 91 was discovered and exposed by the Los Angeles County Museum of History, Science and Art in the summer of 1915. The Los Angeles County Museum of Natural History resumed excavation at this site in 1969. Retrieval of the “microfossils” from the asphaltic matrix has yielded a wealth of insect, mollusk, and plant remains, more than doubling the number of species recovered by earlier excavations. Today, the current excavation site is 900 square feet in extent, yielding fossils that range in age from about 15,000 to about 42,000 radiocarbon years. Natural History Museum of Los Angeles County Archives, RLB 347. LA BREA AND BEYOND: THE PALEONTOLOGY OF ASPHALT-PRESERVED BIOTAS Edited By John M. Harris NO. 42 SCIENCE SERIES NATURAL HISTORY MUSEUM OF LOS ANGELES COUNTY SCIENTIFIC PUBLICATIONS COMMITTEE Luis M. Chiappe, Vice President for Research and Collections John M. Harris, Committee Chairman Joel W. Martin Gregory Pauly Christine Thacker Xiaoming Wang K. Victoria Brown, Managing Editor Go Online to www.nhm.org/scholarlypublications for open access to volumes of Science Series and Contributions in Science. Natural History Museum of Los Angeles County Los Angeles, California 90007 ISSN 1-891276-27-1 Published on September 15, 2015 Printed at Allen Press, Inc., Lawrence, Kansas PREFACE Rancho La Brea was a Mexican land grant Basin during the Late Pleistocene—sagebrush located to the west of El Pueblo de Nuestra scrub dotted with groves of oak and juniper with Sen˜ora la Reina de los A´ ngeles del Rı´ode riparian woodland along the major stream courses Porciu´ncula, now better known as downtown and with chaparral vegetation on the surrounding Los Angeles.
    [Show full text]
  • How Many Named Species Are Valid?
    How many named species are valid? John Alroy* National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, CA 93101 Edited by Peter Robert Crane, Royal Botanic Gardens, Kew, Surrey, United Kingdom, and approved January 7, 2002 (received for review December 19, 2001) Estimates of biodiversity in both living and fossil groups depend on declared a nomen dubium in 1910, synonymized with the canid raw counts of currently recognized named species, but many of Borophagus diversidens in 1930, revalidated but transferred to these names eventually will prove to be synonyms or otherwise Osteoborus in 1937, and finally synonymized again with B. invalid. This difficult bias can be resolved with a simple ‘‘flux ratio’’ diversidens in 1969, an opinion that was confirmed in 1980 and equation that compares historical rates of invalidation and reval- 1999. idation. Flux ratio analysis of a taxonomic data set of unrivalled The data set illustrates a best-case scenario: mammals in completeness for 4,861 North American fossil mammal species general (6), and North American fossil mammals in particular, shows that 24–31% of currently accepted names eventually will have been studied very disproportionately. Most fossil species prove invalid, so diversity estimates are inflated by 32–44%. The are invertebrates (17) and, like most living species, are defined estimate is conservative compared with one obtained by using an strictly on the basis of external morphology. About 192,000 older, more basic method. Although the degree of inflation varies invertebrate fossil species were known in 1970, and at least 3,000 through both historical and evolutionary time, it has a minor more are named every year (17).
    [Show full text]
  • Download PDF File
    1.08 1.19 1.46 Nimravus brachyops Nandinia binotata Neofelis nebulosa 115 Panthera onca 111 114 Panthera atrox 113 Uncia uncia 116 Panthera leo 112 Panthera pardus Panthera tigris Lynx issiodorensis 220 Lynx rufus 221 Lynx pardinus 222 223 Lynx canadensis Lynx lynx 119 Acinonyx jubatus 110 225 226 Puma concolor Puma yagouaroundi 224 Felis nigripes 228 Felis chaus 229 Felis margarita 118 330 227 331Felis catus Felis silvestris 332 Otocolobus manul Prionailurus bengalensis Felis rexroadensis 99 117 334 335 Leopardus pardalis 44 333 Leopardus wiedii 336 Leopardus geoffroyi Leopardus tigrinus 337 Pardofelis marmorata Pardofelis temminckii 440 Pseudaelurus intrepidus Pseudaelurus stouti 88 339 Nimravides pedionomus 442 443 Nimravides galiani 22 338 441 Nimravides thinobates Pseudaelurus marshi Pseudaelurus validus 446 Machairodus alberdiae 77 Machairodus coloradensis 445 Homotherium serum 447 444 448 Smilodon fatalis Smilodon gracilis 66 Pseudaelurus quadridentatus Barbourofelis morrisi 449 Barbourofelis whitfordi 550 551 Barbourofelis fricki Barbourofelis loveorum Stenogale Hemigalus derbyanus 554 555 Arctictis binturong 55 Paradoxurus hermaphroditus Genetta victoriae 553 558 Genetta maculata 559 557 660 Genetta genetta Genetta servalina Poiana richardsonii 556 Civettictis civetta 662 Viverra tangalunga 661 663 552 Viverra zibetha Viverricula indica Crocuta crocuta 666 667 Hyaena brunnea 665 Hyaena hyaena Proteles cristata Fossa fossana 664 669 770 Cryptoprocta ferox Salanoia concolor 668 772 Crossarchus alexandri 33 Suricata suricatta 775
    [Show full text]
  • PHYLOGENETIC SYSTEMATICS of the BOROPHAGINAE (CARNIVORA: CANIDAE) Xiaoming Wang
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Mammalogy Papers: University of Nebraska State Museum, University of Nebraska State Museum 1999 PHYLOGENETIC SYSTEMATICS OF THE BOROPHAGINAE (CARNIVORA: CANIDAE) Xiaoming Wang Richard H. Tedford Beryl E. Taylor Follow this and additional works at: http://digitalcommons.unl.edu/museummammalogy This Article is brought to you for free and open access by the Museum, University of Nebraska State at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Mammalogy Papers: University of Nebraska State Museum by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. PHYLOGENETIC SYSTEMATICS OF THE BOROPHAGINAE (CARNIVORA: CANIDAE) XIAOMING WANG Research Associate, Division of Paleontology American Museum of Natural History and Department of Biology, Long Island University, C. W. Post Campus, 720 Northern Blvd., Brookville, New York 11548 -1300 RICHARD H. TEDFORD Curator, Division of Paleontology American Museum of Natural History BERYL E. TAYLOR Curator Emeritus, Division of Paleontology American Museum of Natural History BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 243, 391 pages, 147 figures, 2 tables, 3 appendices Issued November 17, 1999 Price: $32.00 a copy Copyright O American Museum of Natural History 1999 ISSN 0003-0090 AMNH BULLETIN Monday Oct 04 02:19 PM 1999 amnb 99111 Mp 2 Allen Press • DTPro System File # 01acc (large individual, composite figure, based Epicyon haydeni ´n. (small individual, based on AMNH 8305) and Epicyon saevus Reconstruction of on specimens from JackNorth Swayze America. Quarry). Illustration These by two Mauricio species Anto co-occur extensively during the late Clarendonian and early Hemphillian of western 2 1999 WANG ET AL.: SYSTEMATICS OF BOROPHAGINAE 3 CONTENTS Abstract ....................................................................
    [Show full text]