PHYLOGENETIC SYSTEMATICS of the BOROPHAGINAE (CARNIVORA: CANIDAE) Xiaoming Wang

Total Page:16

File Type:pdf, Size:1020Kb

PHYLOGENETIC SYSTEMATICS of the BOROPHAGINAE (CARNIVORA: CANIDAE) Xiaoming Wang University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Mammalogy Papers: University of Nebraska State Museum, University of Nebraska State Museum 1999 PHYLOGENETIC SYSTEMATICS OF THE BOROPHAGINAE (CARNIVORA: CANIDAE) Xiaoming Wang Richard H. Tedford Beryl E. Taylor Follow this and additional works at: http://digitalcommons.unl.edu/museummammalogy This Article is brought to you for free and open access by the Museum, University of Nebraska State at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Mammalogy Papers: University of Nebraska State Museum by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. PHYLOGENETIC SYSTEMATICS OF THE BOROPHAGINAE (CARNIVORA: CANIDAE) XIAOMING WANG Research Associate, Division of Paleontology American Museum of Natural History and Department of Biology, Long Island University, C. W. Post Campus, 720 Northern Blvd., Brookville, New York 11548 -1300 RICHARD H. TEDFORD Curator, Division of Paleontology American Museum of Natural History BERYL E. TAYLOR Curator Emeritus, Division of Paleontology American Museum of Natural History BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 243, 391 pages, 147 figures, 2 tables, 3 appendices Issued November 17, 1999 Price: $32.00 a copy Copyright O American Museum of Natural History 1999 ISSN 0003-0090 AMNH BULLETIN Monday Oct 04 02:19 PM 1999 amnb 99111 Mp 2 Allen Press • DTPro System File # 01acc (large individual, composite figure, based Epicyon haydeni ´n. (small individual, based on AMNH 8305) and Epicyon saevus Reconstruction of on specimens from JackNorth Swayze America. Quarry). Illustration These by two Mauricio species Anto co-occur extensively during the late Clarendonian and early Hemphillian of western 2 1999 WANG ET AL.: SYSTEMATICS OF BOROPHAGINAE 3 CONTENTS Abstract ..................................................................... 9 Introduction .................................................................. 10 Institutional Abbreviations ................................................... 11 Acknowledgments .......................................................... 12 History of Study .............................................................. 13 Materials and Methods ........................................................ 18 Scope ...................................................................... 18 Species Determination ........................................................ 18 Taxonomic Nomenclature ..................................................... 19 Format ..................................................................... 19 Chronological Framework .................................................... 20 Definitions .................................................................. 21 Systematic Paleontology ....................................................... 21 Subfamily Borophaginae Simpson, 1945 ........................................ 23 Archaeocyon, new genus ................................................... 23 Archaeocyon pavidus (Stock, 1933) ....................................... 24 Archaeocyon leptodus (Schlaikjer, 1935) ................................... 28 Archaeocyon falkenbachi, new species ..................................... 37 Oxetocyon Green, 1954 .................................................... 38 Oxetocyon cuspidatus Green, 1954 ........................................ 39 Otarocyon, new genus ..................................................... 40 Otarocyon macdonaldi, new species ....................................... 42 Otarocyon cooki (Macdonald, 1963) ....................................... 43 Rhizocyon, new genus ...................................................... 47 Rhizocyon oregonensis (Merriam, 1906) .................................... 47 Phlaocyonini, new tribe .................................................... 49 Cynarctoides McGrew, 1938 .............................................. 49 Cynarctoides lemur (Cope, 1879) ....................................... 50 Cynarctoides roii (Macdonald, 1963) .................................... 54 Cynarctoides harlowi (Loomis, 1932) ................................... 56 Cynarctoides luskensis, new species ..................................... 56 Cynarctoides gawnae, new species ...................................... 57 Cynarctoides acridens (Barbour and Cook, 1914) ......................... 60 Cynarctoides emryi, new species ........................................ 64 Phlaocyon Matthew, 1899 ................................................ 66 Phlaocyon minor (Matthew, 1907) ...................................... 66 Phlaocyon latidens (Cope, 1881) ........................................ 68 Phlaocyon annectens (Peterson, 1907) ................................... 72 Phlaocyon achoros (Frailey, 1979) ...................................... 74 Phlaocyon multicuspus (Romer and Sutton, 1927) ......................... 76 Phlaocyon marslandensis McGrew, 1941 ................................ 77 Phlaocyon leucosteus Matthew, 1899 .................................... 79 Phlaocyon yatkolai, new species ........................................ 83 Phlaocyon mariae, new species ......................................... 84 Borophagini, new tribe ..................................................... 85 Cormocyon Wang and Tedford, 1992 ...................................... 85 Cormocyon haydeni, new species ....................................... 86 Cormocyon copei Wang and Tedford, 1992 ............................... 88 Desmocyon, new genus .................................................. 93 Desmocyon thomsoni (Matthew, 1907) ................................... 94 Desmocyon matthewi, new species ..................................... 101 4 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 243 Subtribe Cynarctina McGrew, 1937 ....................................... 106 Paracynarctus, new genus ............................................. 106 Paracynarctus kelloggi (Merriam, 1911) .............................. 106 Paracynarctus sinclairi, new species ................................. 113 Cynarctus Matthew, 1902 ............................................. 114 Cynarctus galushai, new species ..................................... 116 Cynarctus marylandica (Berry, 1938) ................................ 118 Cynarctus saxatilis Matthew, 1902 ................................... 118 Cynarctus voorhiesi, new species .................................... 121 Cynarctus crucidens Barbour and Cook, 1914 ......................... 124 Metatomarctus, new genus .............................................. 126 Metatomarctus canavus (Simpson, 1932) ................................ 127 Metatomarctus sp.A ................................................. 131 Metatomarctus sp.B ................................................. 131 Euoplocyon Matthew, 1924 .............................................. 132 Euoplocyon spissidens (White, 1947) ................................... 133 Euoplocyon brachygnathus (Douglass, 1903) ............................ 135 Psalidocyon, new genus ................................................. 137 Psalidocyon marianae, new species .................................... 137 Microtomarctus, new genus ............................................. 140 Microtomarctus conferta (Matthew, 1918) ............................... 140 Protomarctus, new genus ................................................ 149 Protomarctus optatus (Matthew, 1924) ................................. 149 Tephrocyon Merriam, 1906 .............................................. 154 Tephrocyon rurestris (Condon, 1896) ................................... 154 Aelurodontina, new subtribe ............................................. 156 Tomarctus Cope, 1873 ................................................ 157 Tomarctus hippophaga (Matthew and Cook, 1909) ..................... 157 Tomarctus brevirostris Cope, 1873 ................................... 165 Aelurodon Leidy, 1858 ............................................... 170 Aelurodon asthenostylus (Henshaw, 1942) ............................ 170 Aelurodon mcgrewi, new species ..................................... 176 Aelurodon stirtoni (Webb, 1969) ..................................... 179 Aelurodon ferox Leidy, 1858 ........................................ 182 Aelurodon taxoides (Hatcher, 1893) .................................. 193 Borophagina, new subtribe .............................................. 202 Paratomarctus, new genus ............................................ 202 Paratomarctus temerarius (Leidy, 1858) .............................. 202 Paratomarctus euthos (McGrew, 1935) ............................... 212 Carpocyon Webb, 1969 ............................................... 218 Carpocyon compressus (Cope, 1890) ................................. 219 Carpocyon webbi, new species ...................................... 223 Carpocyon robustus (Green, 1948) ................................... 227 Carpocyon limosus Webb, 1969 ..................................... 228 Protepicyon, new genus ............................................... 229 Protepicyon raki, new species ....................................... 229 Epicyon Leidy, 1858 ................................................. 233 Epicyon aelurodontoides, new species ................................ 234 Epicyon saevus (Leidy, 1858) ....................................... 236 Epicyon haydeni Leidy, 1858 ........................................ 252 Borophagus
Recommended publications
  • Carnivora from the Late Miocene Love Bone Bed of Florida
    Bull. Fla. Mus. Nat. Hist. (2005) 45(4): 413-434 413 CARNIVORA FROM THE LATE MIOCENE LOVE BONE BED OF FLORIDA Jon A. Baskin1 Eleven genera and twelve species of Carnivora are known from the late Miocene Love Bone Bed Local Fauna, Alachua County, Florida. Taxa from there described in detail for the first time include the canid cf. Urocyon sp., the hemicyonine ursid cf. Plithocyon sp., and the mustelids Leptarctus webbi n. sp., Hoplictis sp., and ?Sthenictis near ?S. lacota. Postcrania of the nimravid Barbourofelis indicate that it had a subdigitigrade posture and most likely stalked and ambushed its prey in dense cover. The postcranial morphology of Nimravides (Felidae) is most similar to the jaguar, Panthera onca. The carnivorans strongly support a latest Clarendonian age assignment for the Love Bone Bed. Although the Love Bone Bed local fauna does show some evidence of endemism at the species level, it demonstrates that by the late Clarendonian, Florida had become part of the Clarendonian chronofauna of the midcontinent, in contrast to the higher endemism present in the early Miocene and in the later Miocene and Pliocene of Florida. Key Words: Carnivora; Miocene; Clarendonian; Florida; Love Bone Bed; Leptarctus webbi n. sp. INTRODUCTION can Museum of Natural History, New York; F:AM, Frick The Love Bone Bed Local Fauna, Alachua County, fossil mammal collection, part of the AMNH; UF, Florida Florida, has produced the largest and most diverse late Museum of Natural History, University of Florida. Miocene vertebrate fauna known from eastern North All measurements are in millimeters. The follow- America, including 43 species of mammals (Webb et al.
    [Show full text]
  • From the Early Miocene of Southeastern Wyoming Robert M
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in the Earth and Atmospheric Sciences Earth and Atmospheric Sciences, Department of 2002 New Amphicyonid Carnivorans (Mammalia, Daphoeninae) from the Early Miocene of Southeastern Wyoming Robert M. Hunt Jr. University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/geosciencefacpub Part of the Earth Sciences Commons Hunt, Robert M. Jr., "New Amphicyonid Carnivorans (Mammalia, Daphoeninae) from the Early Miocene of Southeastern Wyoming" (2002). Papers in the Earth and Atmospheric Sciences. 546. https://digitalcommons.unl.edu/geosciencefacpub/546 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, NY 10024 Number 3385, 41 pp., 28 ®gures, 4 tables December 27, 2002 New Amphicyonid Carnivorans (Mammalia, Daphoeninae) from the Early Miocene of Southeastern Wyoming ROBERT M. HUNT, JR.1 CONTENTS Abstract ....................................................................... 2 Introduction .................................................................... 2 Abbreviations ...............................................................
    [Show full text]
  • Shape Evolution and Sexual Dimorphism in the Mandible of the Dire Wolf, Canis Dirus, at Rancho La Brea Alexandria L
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 2014 Shape evolution and sexual dimorphism in the mandible of the dire wolf, Canis Dirus, at Rancho la Brea Alexandria L. Brannick [email protected] Follow this and additional works at: http://mds.marshall.edu/etd Part of the Animal Sciences Commons, and the Paleontology Commons Recommended Citation Brannick, Alexandria L., "Shape evolution and sexual dimorphism in the mandible of the dire wolf, Canis Dirus, at Rancho la Brea" (2014). Theses, Dissertations and Capstones. Paper 804. This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected]. SHAPE EVOLUTION AND SEXUAL DIMORPHISM IN THE MANDIBLE OF THE DIRE WOLF, CANIS DIRUS, AT RANCHO LA BREA A thesis submitted to the Graduate College of Marshall University In partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences by Alexandria L. Brannick Approved by Dr. F. Robin O’Keefe, Committee Chairperson Dr. Julie Meachen Dr. Paul Constantino Marshall University May 2014 ©2014 Alexandria L. Brannick ALL RIGHTS RESERVED ii ACKNOWLEDGEMENTS I thank my advisor, Dr. F. Robin O’Keefe, for all of his help with this project, the many scientific opportunities he has given me, and his guidance throughout my graduate education. I thank Dr. Julie Meachen for her help with collecting data from the Page Museum, her insight and advice, as well as her support. I learned so much from Dr.
    [Show full text]
  • Mammalia, Felidae, Canidae, and Mustelidae) from the Earliest Hemphillian Screw Bean Local Fauna, Big Bend National Park, Brewster County, Texas
    Chapter 9 Carnivora (Mammalia, Felidae, Canidae, and Mustelidae) From the Earliest Hemphillian Screw Bean Local Fauna, Big Bend National Park, Brewster County, Texas MARGARET SKEELS STEVENS1 AND JAMES BOWIE STEVENS2 ABSTRACT The Screw Bean Local Fauna is the earliest Hemphillian fauna of the southwestern United States. The fossil remains occur in all parts of the informal Banta Shut-in formation, nowhere very fossiliferous. The formation is informally subdivided on the basis of stepwise ®ning and slowing deposition into Lower (least fossiliferous), Middle, and Red clay members, succeeded by the valley-®lling, Bench member (most fossiliferous). Identi®ed Carnivora include: cf. Pseudaelurus sp. and cf. Nimravides catocopis, medium and large extinct cats; Epicyon haydeni, large borophagine dog; Vulpes sp., small fox; cf. Eucyon sp., extinct primitive canine; Buisnictis chisoensis, n. sp., extinct skunk; and Martes sp., marten. B. chisoensis may be allied with Spilogale on the basis of mastoid specialization. Some of the Screw Bean taxa are late survivors of the Clarendonian Chronofauna, which extended through most or all of the early Hemphillian. The early early Hemphillian, late Miocene age attributed to the fauna is based on the Screw Bean assemblage postdating or- eodont and predating North American edentate occurrences, on lack of de®ning Hemphillian taxa, and on stage of evolution. INTRODUCTION southwestern North America, and ®ll a pa- leobiogeographic gap. In Trans-Pecos Texas NAMING AND IMPORTANCE OF THE SCREW and adjacent Chihuahua and Coahuila, Mex- BEAN LOCAL FAUNA: The name ``Screw Bean ico, they provide an age determination for Local Fauna,'' Banta Shut-in formation, postvolcanic (,18±20 Ma; Henry et al., Trans-Pecos Texas (®g.
    [Show full text]
  • New Eucyon Remains from the Pliocene Aramis Member (Sagantole Formation), Middle Awash Valley (Ethiopia)
    New Eucyon remains from the Pliocene Aramis Member (Sagantole Formation), Middle Awash Valley (Ethiopia) Nuria Garcia Department Paleontologfa and Centra de Evoluci6n y Comportamiento Humanos, lnstituto de Salud Carlo,l' Ill, Universidad Complutense de Madrid, ClSinesio Delgado4, Pabell6n 14,28029 Madrid, Spain Abstract The Aramis Member (Sagantole formation) includes the Gaala Tuff Complex-Daam Aatu Basaltic Tuff interval which has produced a taxonomically diverse vertebrate assemblage including the primitive hominid Ardipithecus ramidus. New Eucyon remains recovered from this interval come from localities in the Aramis, Sagantole, and Kuseralee catchments. The chronology established for the GATC-DAB T interval is 4.4 Ma. These recoveries represent the most abundant available Eucyon assemblage of the eastern African Pliocene. Here, Eucyon fossils from the Kapsomin and Lemudong'o Late Miocene Kenyan sites are compared with the Aramis representatives, showing comparable morphology although with smaller dimensions. E. intrepidus-E. wokari novo sp., might constitute a single lineage, with increasing size and robusticity, and the derivation of some morphological traits mainly on the lower carnassial. E. wokari represents a new eastern species of the African Pliocene Eucyon lineage. Resume Nouveaux restes d'Eucyon dans le Membre Aramis pliocene (Formation Sagantole) de la moyenne vallee de l'Awash (Ethiopie). Le membre Aramis de la formation Sagantole inclut le «Galaa Tuff Complex-Daam Aatu Basaltic Tuff interval» qui a livre un ensemble varie de vertebres, y compris l'hominide primitif Ardipithecus ramidus. De nouveaux restes d' Eucyon recoltes dans cet intervalle proviennent de localites des stations d' Aramis, Sagantole et Kuseralee. L'age de I'intervalle est de 4,4 Ma.
    [Show full text]
  • Paleontological Resources of the Upper and Middle San Pedro Valley
    Paleontological Resources of the Upper and Middle San Pedro Valley Robert D. McCord Arizona Museum of Natural History Geological setting Regional extension causing block faulting – creation of the Basin and Range ~15Ma Poorly developed drainage results in lakes in valley bottom ?-3.4 Ma Drainage develops with flow to north, marshes, ponds and lakes significant from time to time Early Pleistocene Saint David Formation ? – 3.4 million lakes, few fossils Well developed paleomagnetic timeframe – a first for terrestrial sediments! Succession of faunas from ~3 to 1.5 Ma Blancan to ? Irvingtonian NALMA Plants diatoms charophytes Equisetum (scouring rush) Ostracoda (aquatic crustaceans) Cypridopsis cf. vidua Limnocythere cf. staplini Limnocythere sp. Candona cf. renoensis Candona sp. A Candona sp. B ?Candonlella sp. ?Heterocypris sp. ?Cycloypris sp. Potamocypris sp. Cyprideis sp. Darwinula sp. Snails and a Clam Pisidium casertanum (clam) Fossaria dalli (aquatic snail) Lymnaea caperata (aquatic snail) Lymnaea cf. elodes (aquatic snail) Bakerilymnaea bulimoides (aquatic snail) Gyraulus parvus (aquatic snail) Promenetus exacuous (aquatic snail) Promenetus umbilicatellus (aquatic snail) Physa virgata (aquatic snail) Gastrocopta cristata (terrestrial snail) Gastrocopta tappaniana (terrestrial snail) Pupoides albilabris (terrestrial snail) Vertigo milium (terrestrial snail) Vertigo ovata (terrestrial snail) cf. Succinea (terrestrial snail) Deroceras aenigma (slug) Hawaila minuscula (terrestrial snail) Fish and Amphibians indeterminate small fish Ambystoma tigrinum (tiger salamander) Scaphiopus hammondi (spadefoot toad) Bufo alvarius (toad) Hyla eximia (tree frog) Rana sp. (leopard frog) Turtles and Lizards Kinosternon arizonense (mud turtle) Terrapene cf. ornata (box turtle) Gopherus sp. (tortoise) Hesperotestudo sp. (giant tortoise) Eumeces sp. (skink) “Cnemidophorus” sp. (whiptail lizard) Crotaphytus sp. (collared lizard) Phrynosoma sp. (horned lizard) Sceloporus sp.
    [Show full text]
  • University of Florida Thesis Or Dissertation Formatting
    UNDERSTANDING CARNIVORAN ECOMORPHOLOGY THROUGH DEEP TIME, WITH A CASE STUDY DURING THE CAT-GAP OF FLORIDA By SHARON ELIZABETH HOLTE A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2018 © 2018 Sharon Elizabeth Holte To Dr. Larry, thank you ACKNOWLEDGMENTS I would like to thank my family for encouraging me to pursue my interests. They have always believed in me and never doubted that I would reach my goals. I am eternally grateful to my mentors, Dr. Jim Mead and the late Dr. Larry Agenbroad, who have shaped me as a paleontologist and have provided me to the strength and knowledge to continue to grow as a scientist. I would like to thank my colleagues from the Florida Museum of Natural History who provided insight and open discussion on my research. In particular, I would like to thank Dr. Aldo Rincon for his help in researching procyonids. I am so grateful to Dr. Anne-Claire Fabre; without her understanding of R and knowledge of 3D morphometrics this project would have been an immense struggle. I would also to thank Rachel Short for the late-night work sessions and discussions. I am extremely grateful to my advisor Dr. David Steadman for his comments, feedback, and guidance through my time here at the University of Florida. I also thank my committee, Dr. Bruce MacFadden, Dr. Jon Bloch, Dr. Elizabeth Screaton, for their feedback and encouragement. I am grateful to the geosciences department at East Tennessee State University, the American Museum of Natural History, and the Museum of Comparative Zoology at Harvard for the loans of specimens.
    [Show full text]
  • La Brea and Beyond: the Paleontology of Asphalt-Preserved Biotas
    La Brea and Beyond: The Paleontology of Asphalt-Preserved Biotas Edited by John M. Harris Natural History Museum of Los Angeles County Science Series 42 September 15, 2015 Cover Illustration: Pit 91 in 1915 An asphaltic bone mass in Pit 91 was discovered and exposed by the Los Angeles County Museum of History, Science and Art in the summer of 1915. The Los Angeles County Museum of Natural History resumed excavation at this site in 1969. Retrieval of the “microfossils” from the asphaltic matrix has yielded a wealth of insect, mollusk, and plant remains, more than doubling the number of species recovered by earlier excavations. Today, the current excavation site is 900 square feet in extent, yielding fossils that range in age from about 15,000 to about 42,000 radiocarbon years. Natural History Museum of Los Angeles County Archives, RLB 347. LA BREA AND BEYOND: THE PALEONTOLOGY OF ASPHALT-PRESERVED BIOTAS Edited By John M. Harris NO. 42 SCIENCE SERIES NATURAL HISTORY MUSEUM OF LOS ANGELES COUNTY SCIENTIFIC PUBLICATIONS COMMITTEE Luis M. Chiappe, Vice President for Research and Collections John M. Harris, Committee Chairman Joel W. Martin Gregory Pauly Christine Thacker Xiaoming Wang K. Victoria Brown, Managing Editor Go Online to www.nhm.org/scholarlypublications for open access to volumes of Science Series and Contributions in Science. Natural History Museum of Los Angeles County Los Angeles, California 90007 ISSN 1-891276-27-1 Published on September 15, 2015 Printed at Allen Press, Inc., Lawrence, Kansas PREFACE Rancho La Brea was a Mexican land grant Basin during the Late Pleistocene—sagebrush located to the west of El Pueblo de Nuestra scrub dotted with groves of oak and juniper with Sen˜ora la Reina de los A´ ngeles del Rı´ode riparian woodland along the major stream courses Porciu´ncula, now better known as downtown and with chaparral vegetation on the surrounding Los Angeles.
    [Show full text]
  • An Early Miocene Dome-Skulled Chalicothere
    PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, NY 10024 Number 3486, 45 pp., 26 ®gures, 8 tables October 27, 2005 An Early Miocene Dome-Skulled Chalicothere from the ``Arikaree'' Conglomerates of Darton: Calibrating the Ages of High Plains Paleovalleys Against Rocky Mountain Tectonism ROBERT M. HUNT, JR.1 CONTENTS Abstract ....................................................................... 2 Introduction .................................................................... 2 Geologic Setting ................................................................ 3 Systematic Paleontology ........................................................ 12 Age of the Dome-Skulled Chalicothere ........................................... 28 The ``Arikaree'' Conglomerates of N.H. Darton ................................... 32 Post-Laramide Evolution of the Rocky Mountains ................................. 39 Acknowledgments ............................................................. 42 References .................................................................... 42 1 Department of Geosciences, W436 Nebraska Hall, University of Nebraska, Lincoln, NE 68588-0549 ([email protected]). Copyright q American Museum of Natural History 2005 ISSN 0003-0082 2 AMERICAN MUSEUM NOVITATES NO. 3486 ABSTRACT Fragmentary skeletal remains discovered in 1979 in southeastern Wyoming, associated with a mammalian fauna of early Hemingfordian age (;18.2 to 18.8 Ma), represent the oldest known occurrence of dome-skulled chalicotheres
    [Show full text]
  • How Many Named Species Are Valid?
    How many named species are valid? John Alroy* National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, CA 93101 Edited by Peter Robert Crane, Royal Botanic Gardens, Kew, Surrey, United Kingdom, and approved January 7, 2002 (received for review December 19, 2001) Estimates of biodiversity in both living and fossil groups depend on declared a nomen dubium in 1910, synonymized with the canid raw counts of currently recognized named species, but many of Borophagus diversidens in 1930, revalidated but transferred to these names eventually will prove to be synonyms or otherwise Osteoborus in 1937, and finally synonymized again with B. invalid. This difficult bias can be resolved with a simple ‘‘flux ratio’’ diversidens in 1969, an opinion that was confirmed in 1980 and equation that compares historical rates of invalidation and reval- 1999. idation. Flux ratio analysis of a taxonomic data set of unrivalled The data set illustrates a best-case scenario: mammals in completeness for 4,861 North American fossil mammal species general (6), and North American fossil mammals in particular, shows that 24–31% of currently accepted names eventually will have been studied very disproportionately. Most fossil species prove invalid, so diversity estimates are inflated by 32–44%. The are invertebrates (17) and, like most living species, are defined estimate is conservative compared with one obtained by using an strictly on the basis of external morphology. About 192,000 older, more basic method. Although the degree of inflation varies invertebrate fossil species were known in 1970, and at least 3,000 through both historical and evolutionary time, it has a minor more are named every year (17).
    [Show full text]
  • Download PDF File
    1.08 1.19 1.46 Nimravus brachyops Nandinia binotata Neofelis nebulosa 115 Panthera onca 111 114 Panthera atrox 113 Uncia uncia 116 Panthera leo 112 Panthera pardus Panthera tigris Lynx issiodorensis 220 Lynx rufus 221 Lynx pardinus 222 223 Lynx canadensis Lynx lynx 119 Acinonyx jubatus 110 225 226 Puma concolor Puma yagouaroundi 224 Felis nigripes 228 Felis chaus 229 Felis margarita 118 330 227 331Felis catus Felis silvestris 332 Otocolobus manul Prionailurus bengalensis Felis rexroadensis 99 117 334 335 Leopardus pardalis 44 333 Leopardus wiedii 336 Leopardus geoffroyi Leopardus tigrinus 337 Pardofelis marmorata Pardofelis temminckii 440 Pseudaelurus intrepidus Pseudaelurus stouti 88 339 Nimravides pedionomus 442 443 Nimravides galiani 22 338 441 Nimravides thinobates Pseudaelurus marshi Pseudaelurus validus 446 Machairodus alberdiae 77 Machairodus coloradensis 445 Homotherium serum 447 444 448 Smilodon fatalis Smilodon gracilis 66 Pseudaelurus quadridentatus Barbourofelis morrisi 449 Barbourofelis whitfordi 550 551 Barbourofelis fricki Barbourofelis loveorum Stenogale Hemigalus derbyanus 554 555 Arctictis binturong 55 Paradoxurus hermaphroditus Genetta victoriae 553 558 Genetta maculata 559 557 660 Genetta genetta Genetta servalina Poiana richardsonii 556 Civettictis civetta 662 Viverra tangalunga 661 663 552 Viverra zibetha Viverricula indica Crocuta crocuta 666 667 Hyaena brunnea 665 Hyaena hyaena Proteles cristata Fossa fossana 664 669 770 Cryptoprocta ferox Salanoia concolor 668 772 Crossarchus alexandri 33 Suricata suricatta 775
    [Show full text]
  • First Bone-Cracking Dog Coprolites Provide New Insight
    RESEARCH ARTICLE First bone-cracking dog coprolites provide new insight into bone consumption in Borophagus and their unique ecological niche Xiaoming Wang1,2,3*, Stuart C White4, Mairin Balisi1,3, Jacob Biewer5,6, Julia Sankey6, Dennis Garber1, Z Jack Tseng1,2,7 1Department of Vertebrate Paleontology, Natural History Museum of Los Angeles County, Los Angeles, United States; 2Department of Vertebrate Paleontology, American Museum of Natural History, New York, United States; 3Department of Ecology and Evolutionary Biology, University of California, Los Angeles, United States; 4School of Dentistry, University of California, Los Angeles, United States; 5Department of Geological Sciences, California State University, Fullerton, United States; 6Department of Geology, California State University Stanislaus, Turlock, United States; 7Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, United States Abstract Borophagine canids have long been hypothesized to be North American ecological ‘avatars’ of living hyenas in Africa and Asia, but direct fossil evidence of hyena-like bone consumption is hitherto unknown. We report rare coprolites (fossilized feces) of Borophagus parvus from the late Miocene of California and, for the first time, describe unambiguous evidence that these predatory canids ingested large amounts of bone. Surface morphology, micro-CT analyses, and contextual information reveal (1) droppings in concentrations signifying scent-marking behavior, similar to latrines used by living social carnivorans; (2) routine consumption of skeletons; *For correspondence: (3) undissolved bones inside coprolites indicating gastrointestinal similarity to modern striped and [email protected] brown hyenas; (4) B. parvus body weight of ~24 kg, reaching sizes of obligatory large-prey hunters; ~ Competing interests: The and (5) prey size ranging 35–100 kg.
    [Show full text]