The Timing of Cyclic Cytotoxic Chemotherapy Can Worsen Neutropenia and Neutrophilia

Total Page:16

File Type:pdf, Size:1020Kb

The Timing of Cyclic Cytotoxic Chemotherapy Can Worsen Neutropenia and Neutrophilia Received: 11 April 2020 Revised: 17 May 2020 Accepted: 28 May 2020 DOI: 10.1111/bcp.14424 SHORT REPORT The timing of cyclic cytotoxic chemotherapy can worsen neutropenia and neutrophilia Michael C. Mackey1 | Sanja Glisovic2 | Jean-Marie Leclerc2,3 | Yves Pastore2,3 | Maja Krajinovic2,4 | Morgan Craig1,2,5 1Department of Physiology, McGill University, Montreal, Canada Despite recent advances in immunotherapies, cytotoxic chemotherapy continues to 2CHU Sainte-Justine Research Centre, be a first-line treatment option for the majority of cancers. Unfortunately, a common Montreal, Canada side effect in patients undergoing chemotherapy treatment is neutropenia. To miti- 3Department of Pediatrics, University of Montreal, Montreal, Canada gate the risk of neutropenia and febrile neutropenia, prophylactic treatment with 4Department of Pharmacology and Physiology, granulocyte-colony stimulating factor (G-CSF) is administered. Extensive University of Montreal, Montreal, Canada pharmacokinetic/pharmacodynamic modelling of myelosuppression during chemo- 5Department of Mathematics and Statistics, University of Montreal, Montreal, Canada therapy has suggested avenues for therapy optimization to mitigate this neutropenia. However, the issue of resonance, whereby neutrophil oscillations are induced by the Correspondence Morgan Craig, CHU Sainte-Justine, 3175 periodic administration of cytotoxic chemotherapy and the coadministration of G- chemin de la Côte-Sainte-Catherine, H3T 1C5. CSF, potentially aggravating a patient's neutropenic/neutrophilic status, is not well- Montreal, Quebec, Canada. Email: [email protected] characterized in the clinical literature. Here, through analysis of neutrophil data from young acute lymphoblastic leukaemia patients, we find that resonance is occurring during cyclic chemotherapy treatment in 26% of these patients. Motivated by these data and our previous modelling studies on adult lymphoma patients, we examined resonance during treatment with or without G-CSF. Using our quantitative systems pharmacology model of granulopoiesis, we show that the timing of cyclic chemother- apy can worsen neutropenia or neutrophilia, and suggest clinically-actionable sched- ules to reduce the resonant effect. We emphasize that delaying supportive G-CSF therapy to 6–7 days after chemotherapy can mitigate myelosuppressive effects. This study therefore highlights the importance of quantitative systems pharmacology for the clinical practice for developing rational therapeutic strategies. KEYWORDS chemotherapy scheduling, chemotherapy-induced neutropenia, cytotoxic chemotherapy, quantitative systems pharmacology 1 | INTRODUCTION rapidly-renewing precursors of the terminally-differentiated circulat- ing neutrophils.1 Chemotherapy-induced neutropenia is of concern Cytotoxic chemotherapeutic agents specifically target cellular division for both patients and clinicians,2,3 since a reduction in circulating neu- pathways and mechanisms to interrupt cell division and slow or halt trophil counts leaves patients susceptible to infections and is there- cancer progression. Unfortunately, this can have significant deleteri- fore a frequent cause of dose reduction (or complete cessation) ous effects on other replicating cells in the body, including the during chemotherapy. As a result, rescue drugs are regularly adminis- tered concomitantly during anticancer treatments to boost neutrophil Michael C. Mackey and Morgan Craig contributed equally. counts, primarily exogenous forms of granulocyte colony-stimulating Br J Clin Pharmacol. 2020;1–7. wileyonlinelibrary.com/journal/bcp © 2020 The British Pharmacological Society 1 2 MACKEY ET AL. factor (G-CSF), the principal cytokine responsible for the control of neutrophil production. What is already known about this subject Chemotherapy protocols are designed to be delivered periodically throughout the treatment period. Cycle length is dictated by • Owing to their mechanisms of action, cytotoxic chemo- established treatment schedules4 but can be modified according to a therapeutic agents provoke serious haematological toxic patient's response to therapy and disease status. In childhood acute side effects, particularly chemotherapy-induced neutro- lymphoblastic leukaemia (ALL)/lymphoblastic lymphoma, patients are penia. In response, pharmaceutical modelling of stratified into low, standard, high and very high risk groups based myelosuppression during chemotherapy is an increasingly largely on their WBC counts, age, cytogenetics and the patient's initial crucial element of dose-determination for cytotoxic anti- response to therapy.5 Prognoses are also correlated to initial thera- cancer therapy with or without supportive granulocyte peutic response.5 colony-stimulating factor (G-CSF). Mathematical model- Given the incidence of chemotherapy-induced neutropenia ling has also predicted that the timing of cyclic chemo- (e.g. around 11% in breast cancer patients and 40% of lymphoma therapy can aggravate the neutropenic nadir, in a patients were reported with grade 3–4 neutropenia6; over 50% of phenomenon called resonance. We have previously patients with gynaecological cancers7), tailoring chemotherapy regi- developed a quantitative systems pharmacology model of mens and stratifying patients based on neutropenic-risk are current neutrophil production that accurately predicts neutrophil clinical practices.8 Childhood ALL is usually treated in several phases and G-CSF dynamics during chemotherapy with and (including induction, consolidation and maintenance) that aim to bring without exogenous G-CSF. about leukaemic remission. Treatment strategies and schedules vary as a function of risk stratification and integrate a variety of chemo- What this study adds therapeutic and steroidal agents.3,9 Neutropenia is a frequent side effect in childhood ALL; a recent retrospective analysis of 266 patients • Clinical confirmation of neutrophil resonance has yet to identified 74.7% of neutropenic episodes occurring during the induc- be reported. Here, for the first time, we identified reso- tion phase of treatment.10–12 On an individual basis, the optimal nance in neutrophil counts from lymphoma patients timing of periodic chemotherapy administration with or without adju- undergoing cyclic cytotoxic chemotherapy. Leveraging vant G-CSF support is difficult to assess and is variable from person- our quantitative systems pharmacology model, we then to-person. The optimization of cytotoxic chemotherapy treatment predicted that the length of chemotherapy cycles (with with or without prophylactic or supportive G-CSF is therefore a ques- and without G-CSF) has an important influence on the tion of intense research in both mathematical biology and the pharma- severity of the neutrophil nadir. This study therefore ceutical sciences.2,13–16 highlights that the continued assessment of chemother- Cytotoxic agents disrupt cellular division and thus have important apy schedules using quantitative approaches is required implications for neutrophil progenitors, which rapidly divide within to minimize unwanted side effects and improve patient the bone marrow to maintain circulating neutrophils at basal concen- outcomes. trations. Despite their short residence time in the blood,17,18 produc- ing a single neutrophil from a haematopoietic stem cell takes on the order of weeks. Thus, disturbances to proliferating, immature neutro- phils during cytotoxic chemotherapy cause decreases in neutrophil counts within 6–7 days after chemotherapy (the time necessary for neutrophil maturation within the bone marrow19). G-CSF concentra- mathematical model predictive of realistic clinical considerations. The tions then rise and stimulate neutrophil concentrations in circulation. model's predictions were further verified in vitro using murine lym- This strong stimulation provokes an overshoot in neutrophil counts phoma cells and normal dose regimens of cytarabine. Agur et al. beyond basal concentrations as G-CSF and neutrophil concentrations extended their analyses to the toxic effects of cell-cycle-phase- equilibrate because G-CSF and neutrophils are in an inverse relation- specific dosing, and predicted that administering periodic chemother- ship with one another. apy at a time equal to some integer multiple of the mean cell cycle Resonance occurs when the amplitude of neutrophil oscillations length of cancerous cells also reduced haematopoietic toxicity on is amplified by the periodic administration of cytotoxic chemotherapy, bone marrow granulocytes.21 potentially aggravating a patient's neutrophilic status. The presence of The semimechanistic Friberg model of myelosuppression22 has resonance was discussed by Agur et al.20 who used mathematical contributed significantly to predicting the time-course of circulating modelling to predict that short drug pulses administered at integer neutrophil counts after cytotoxic chemotherapy.2 Building upon this multiples of the mean cell cycle length (but not exactly equal to the model, a number of such semi-mechanistic models, including Quartino mean cell cycle time) were preferable to arbitrary chemotherapy cycle et al.23 and Meille et al. 2008 and 2016,24,25 have further integrated length and continuous drug administration. While this may now seem the effects of G-CSF. A phenomenological model of neutrophil pro- intuitive, it is an early demonstration of the ability to develop a duction and the PD effects of both chemotherapy and G-CSF support MACKEY ET AL. 3 was also recently used to optimize the use
Recommended publications
  • My Beloved Neutrophil Dr Boxer 2014 Neutropenia Family Conference
    The Beloved Neutrophil: Its Function in Health and Disease Stem Cell Multipotent Progenitor Myeloid Lymphoid CMP IL-3, SCF, GM-CSF CLP Committed Progenitor MEP GMP GM-CSF, IL-3, SCF EPO TPO G-CSF M-CSF IL-5 IL-3 SCF RBC Platelet Neutrophil Monocyte/ Basophil B-cells Macrophage Eosinophil T-Cells Mast cell NK cells Mature Cell Dendritic cells PRODUCTION AND KINETICS OF NEUTROPHILS CELLS % CELLS TIME Bone Marrow: Myeloblast 1 7 - 9 Mitotic Promyelocyte 4 Days Myelocyte 16 Maturation/ Metamyelocyte 22 3 – 7 Storage Band 30 Days Seg 21 Vascular: Peripheral Blood Seg 2 6 – 12 hours 3 Marginating Pool Apoptosis and ? Tissue clearance by 0 – 3 macrophages days PHAGOCYTOSIS 1. Mobilization 2. Chemotaxis 3. Recognition (Opsonization) 4. Ingestion 5. Degranulation 6. Peroxidation 7. Killing and Digestion 8. Net formation Adhesion: β 2 Integrins ▪ Heterodimer of a and b chain ▪ Tight adhesion, migration, ingestion, co- stimulation of other PMN responses LFA-1 Mac-1 (CR3) p150,95 a2b2 a CD11a CD11b CD11c CD11d b CD18 CD18 CD18 CD18 Cells All PMN, Dendritic Mac, mono, leukocytes mono/mac, PMN, T cell LGL Ligands ICAMs ICAM-1 C3bi, ICAM-3, C3bi other other Fibrinogen other GRANULOCYTE CHEMOATTRACTANTS Chemoattractants Source Activators Lipids PAF Neutrophils C5a, LPS, FMLP Endothelium LTB4 Neutrophils FMLP, C5a, LPS Chemokines (a) IL-8 Monocytes, endothelium LPS, IL-1, TNF, IL-3 other cells Gro a, b, g Monocytes, endothelium IL-1, TNF other cells NAP-2 Activated platelets Platelet activation Others FMLP Bacteria C5a Activation of complement Other Important Receptors on PMNs ñ Pattern recognition receptors – Detect microbes - Toll receptor family - Mannose receptor - bGlucan receptor – fungal cell walls ñ Cytokine receptors – enhance PMN function - G-CSF, GM-CSF - TNF Receptor ñ Opsonin receptors – trigger phagocytosis - FcgRI, II, III - Complement receptors – ñ Mac1/CR3 (CD11b/CD18) – C3bi ñ CR-1 – C3b, C4b, C3bi, C1q, Mannose binding protein From JG Hirsch, J Exp Med 116:827, 1962, with permission.
    [Show full text]
  • Hyperleukocytosis (Re)Visited- Is It Case Series Always Leukaemia: a Report of Two Pathology Section Cases and Review of Literature Short Communication
    Review Article Clinician’s corner Original Article Images in Medicine Experimental Research Miscellaneous Letter to Editor DOI: 10.7860/JCDR/2020/40556.13409 Case Report Postgraduate Education Hyperleukocytosis (Re)Visited- Is it Case Series always Leukaemia: A Report of Two Pathology Section Cases and Review of Literature Short Communication ASHUTOSH RATH1, RICHA GUPTA2 ABSTRACT Hyperleukocytosis is defined as total leukocyte count of more than 100×109/L. Commonly seen in leukaemic conditions, non- leukaemic causes are usually not encountered and thought of. We report two such non-malignant cases of hyperleukocytosis. A six-year old girl presented with fever, cough and respiratory distress with a leukocyte count of 125.97×109/L. Another case is of a two-month old female infant, who presented with fever and respiratory distress and a leukocyte count of 112.27×109/L. The present case thrives to highlight various possible causes of hyperleukocytosis with an emphasis on non-malignant causes. Also, important complications and management of hyperleukocytosis are discussed. Keywords: Benign, Leukocytosis, Leukostasis CASE REPORT 1 for methicillin-resistant Staphylococcus aureus and was started A six-year-old girl was admitted with complaints of fever, non- on intravenous Vancomycin along with supportive care. Serial productive cough for one week and severe respiratory distress for monitoring of TLC revealed a gradual reduction and it returned to the the past one day. There was no other significant history. On physical baseline of 15×109/L after eight days. The patient was discharged examination, the patient had mild pallor. Respiratory examination after 10 days of hospital stay.
    [Show full text]
  • Practice Parameter for the Diagnosis and Management of Primary Immunodeficiency
    Practice parameter Practice parameter for the diagnosis and management of primary immunodeficiency Francisco A. Bonilla, MD, PhD, David A. Khan, MD, Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD, David I. Bernstein, MD, Joann Blessing-Moore, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Chief Editor: Francisco A. Bonilla, MD, PhD Co-Editor: David A. Khan, MD Members of the Joint Task Force on Practice Parameters: David I. Bernstein, MD, Joann Blessing-Moore, MD, David Khan, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Primary Immunodeficiency Workgroup: Chairman: Francisco A. Bonilla, MD, PhD Members: Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD GlaxoSmithKline, Merck, and Aerocrine; has received payment for lectures from Genentech/ These parameters were developed by the Joint Task Force on Practice Parameters, representing Novartis, GlaxoSmithKline, and Merck; and has received research support from Genentech/ the American Academy of Allergy, Asthma & Immunology; the American College of Novartis and Merck.
    [Show full text]
  • Primary Immunodeficiency Disorders
    ALLERGY AND IMMUNOLOGY 00954543 /98 $8.00 + .OO PRIMARY IMMUNODEFICIENCY DISORDERS Robert J. Mamlok, MD Immunodeficiency is a common thought among both patients and physicians when confronted with what is perceived as an excessive num- ber, duration, or severity of infections. Because of this, the starting point for evaluating patients for suspected immunodeficiency is based on what constitutes ”too many infections.” It generally is agreed that children with normal immune systems may have an average of 6 to 8 respiratory tract infections per year for the first decade of life. Even after a pattern of ab- normal infection is established, questions of secondary immunodeficiency should first be raised. The relatively uncommon primary immunodefi- ciency diseases are statistically dwarfed by secondary causes of recurrent infection, such as malnutrition, respiratory allergy, chronic cardiovascular, pulmonary, and renal disease, and environmental factors. On the other hand, a dizzying spiral of progress in our understanding of the genetics and immunology of primary immunodeficiency disease has resulted in improved diagnostic and therapeutic tools. Twenty-five newly recognized immunologic disease genes have been cloned in the last 5 ~ears.2~It has become arguably more important than ever for us to recognize the clinical and laboratory features of these relatively uncommon, but increasingly treatable, disorders. CLASSIFICATION The immune system has been classically divided into four separate arms: The B-cell system responsible for antibody formation, the T-cell sys- From the Division of Pediatric Allergy and Immunology, Texas Tech University Health Sci- ences Center, Lubbock, Texas PRIMARY CARE VOLUME 25 NUMBER 4 DECEMBER 1998 739 740 MAMLOK tem responsible for immune cellular regulation, the phagocytic (poly- morphonuclear and mononuclear) system and the complement (opsonic) system.
    [Show full text]
  • Fracp Lecture 2010 Immune Deficiency 3
    FRACP LECTURE 2010 IMMUNE DEFICIENCY 3 DR MARNIE ROBINSON PAEDIATRIC IMMUNOLOGIST/ALLERGIST IMMUNOLOGY LECTURE 3 • Neutrophil defects • INTERFERON –Y /IL‐12 pathway defect • Dysregulatory immune dfiideficienc ies NEUTROPHIL DEFECTS • Neutropaenia – Allo immune /au to immune – Kostmann, WHIM – cyclllical • Chronic granulomatous disease • Leukocyte adhesion deficiency • Neutrophil specific granule deficiency • Chediak –higashi syndrome AUTOIMMUNE NEUTROPAENIA • Antibodies against different neutrophil antigen • Aeitiology unknown • Slightly more common in females • Present with skin and upper respiratory tract infections (pneumonia /menin gitis /se psis less common) • Neutrophil count usually <0. 5 but may increase during infection • Treatment with G‐CSF (IVIG) • Usually remits spontaneously by <24 months ALLOIMMUNE NEUTROPAENIA • Caused by transplacental transfer of maternal against the FcyRIIIb isotypes of NA 1 and NA2 causing immune destruction of neutrophils • Incidence of 1/500 • Usually presents in first weeks of life • Present with omphalitis, cellulitis, pneumonia • Diagnosed by detection of neutrophil specific alloantibodies in maternal blood • Treat with G‐CSF • resolves with waning of maternal antibodies KOSTMANN’S SYNDROME • Bone marrow granulocyte arrest at promyeolocyte or myelocyte stage • Present early in life (usually <6 months) • Present with omphalitis , respiratory tract ifinfect ions, skin and liver abscesses • Increased susceptibility to AML • Treatment is with G‐CSF CYCLICAL NEUTROPAENIA • Defect in elastase 2 • Sporadic
    [Show full text]
  • The Significance of Various Granulocytic Inclusions
    4/8/19 THE SIGNIFICANCE OF VARIOUS DISCLOSURES GRANULOCYTIC INCLUSIONS ¡ No relevant financial interests to disclose. KRISTLE HABERICHTER, DO, FCAP GRAND TRAVERSE PATHOLOGY, PLLC OBJECTIVES GRANULOCYTES ¡ Innate immune system ¡ Travel to sites of infection, recognize and phagocytose pathogens ¡ Recognize common and uncommon granulocytic inclusions, including those associated with certain ¡ Utilize numerous cytotoxic mechanisms to kill pathogens inherited disorders and infectious etiologies ¡ Granulopoiesis occurs in the bone marrow ¡ Sufficient stem cells, adequate microenvironment, and regulatory factors ¡ Identify newly described green neutrophilic inclusions ¡ Granulocyte colony stimulating factor (G-CSF) → Granulocytes ¡ Monocyte colony stimulating factor (M-CSF) → Monocytes ¡ Understand the clinical significance and implications of various inclusions ¡ Granulocyte-monocytes colony stimulating factor (GM-CSF) → Granulocytes & Monocytes ¡ 1-3 weeks for complete granulopoiesis to occur ¡ Neutrophils only circulate for a few hours before migrating to the tissues Photo by K. Haberichter (Giemsa, 1000x) GRANULOCYTES INCLUSION CATEGORIES ¡ Primary granules → Myeloperoxidase Reactive/Acquired Changes Congenital Abnormalities Infectious Etiologies ¡ “Late” myeloblasts and promyelocytes ¡ To x ic G r a n u la t io n ¡ Chédiak-Higashi Syndrome ¡ Anaplasma ¡ Secondary granules → Leukocyte alkaline phosphatase ¡ Döhle Bodies ¡ Alder-Reilly Anomaly ¡ Ehrlichia ¡ Myelocytes, metamyelocytes, band and segmented neutrophils ¡ Cytokine Effect ¡ May-Hegglin
    [Show full text]
  • Blood and Immunity
    Chapter Ten BLOOD AND IMMUNITY Chapter Contents 10 Pretest Clinical Aspects of Immunity Blood Chapter Review Immunity Case Studies Word Parts Pertaining to Blood and Immunity Crossword Puzzle Clinical Aspects of Blood Objectives After study of this chapter you should be able to: 1. Describe the composition of the blood plasma. 7. Identify and use roots pertaining to blood 2. Describe and give the functions of the three types of chemistry. blood cells. 8. List and describe the major disorders of the blood. 3. Label pictures of the blood cells. 9. List and describe the major disorders of the 4. Explain the basis of blood types. immune system. 5. Define immunity and list the possible sources of 10. Describe the major tests used to study blood. immunity. 11. Interpret abbreviations used in blood studies. 6. Identify and use roots and suffixes pertaining to the 12. Analyse several case studies involving the blood. blood and immunity. Pretest 1. The scientific name for red blood cells 5. Substances produced by immune cells that is . counteract microorganisms and other foreign 2. The scientific name for white blood cells materials are called . is . 6. A deficiency of hemoglobin results in the disorder 3. Platelets, or thrombocytes, are involved in called . 7. A neoplasm involving overgrowth of white blood 4. The white blood cells active in adaptive immunity cells is called . are the . 225 226 ♦ PART THREE / Body Systems Other 1% Proteins 8% Plasma 55% Water 91% Whole blood Leukocytes and platelets Formed 0.9% elements 45% Erythrocytes 10 99.1% Figure 10-1 Composition of whole blood.
    [Show full text]
  • Persistent Eosinophilia Is a Challenging Problem
    DOI: 10.26717/BJSTR.2017.01.000244 Nahla A M Hamed. Biomed J Sci & Tech Res ISSN: 2574-1241 Editorial Open Access Persistent Eosinophilia is a Challenging Problem Nahla AM Hamed* Professor of Hematology, Faculty of Medicine, Alexandria University, Egypt Received: July 25, 2017; Published: August 01, 2017 *Corresponding author: Nahla AM Hamed, Professor of Hematology, Faculty of Medicine, Alexandria University, Egypt Abstract 9 HE is defined as >1.5 x 10 /L eosinophils in the blood on 2 examinations (interval >1 mo) and/or tissue HE defined by: eosinophils percentage in BM section exceeding 20% of all nucleated cells; and/or extensive eosinophilic tissue infiltration by pathologist opinion; and/or presenceAbbreviations: of marked deposition of eosinophil granule proteins (in the absence or presence of major tissue eosinophils infiltration). AEC: absolute eosinophil count; HE: Hypereosinophilia; ABPA: Allergic Bronchopulmonary Aspergillosis; B-ALL: Acute B-cell lymphoblastic leukemia; GVHD: Graft-Versus-Host Disease; BM: Bone Marrow; PB: Peripheral Blood; IL5: Interleukin 5; AML: Acute Myeloid Leukemia; LV: Lymphocytic Variant; Th2:T-cells have a helper type 2; EPPER: Eosinophilic, polymorphic, and pruritic Eruption Associated with Radiotherapy; MPN: Myeloproliferative Neoplasm; HES: Hypereosinophilic Syndrome; PDGFRA: Platelet-Derived Growth Factor Receptor Alpha; PDGFRB: Platelet-Derived Growth Factor Receptor Beta; FGFR1: Fibroblast Growth Factor Receptor 1; CEL-NOS: Chronic Eosinophilic Leukemia-Not Otherwise Specified; MDS: Myelodysplastic Syndrome; IgH: Ig Heavy Chain; EBV: Epstein-Barr virus Introduction cystic structures (e.g. hydatid cyst, neurocysticercosis) are unlikely Eosinophilia3 is defined as an AEC >500/μL [1].3 The severity ), and severe to cause eosinophilia [7]. Disseminated coccidioidomycosis and of eosinophilia has3 been arbitrarily divided into mild9 (AEC: 500- aspergillosis (when presenting as ABPA) are well-known fungal 1,500/mm ), moderate (AEC: 1,500-5,000/mm causes of eosinophilia.
    [Show full text]
  • Canine Granulocytopathy Syndrome an Inherited Disorder Ofleukocyte Function
    Canine Granulocytopathy Syndrome An Inherited Disorder ofLeukocyte Function Harland W. Renshaw, DVM, PhD, and William C. Davis, PhD A disease closely resembling the human neutrophil dysfunction syndromes has been identified in a colony of dogs. The syndrome, referred to as the canine gran- ulocytopathy syndrome, is characterized by recurrent life-threatening bacterial infec- tions and a greatly shortened life span. The disease is genetically determined, being transmitted as an autosomal recessive trait. The increased susceptibility to pyogenic infections and shortened life span is related to an impairment of leukocvte function at the cellular level. Preparations of neutrophils from affected animals exhibit impaired in ritro killing of Escherichia coli. The defect in bactericidal activity is associated with reduced glucose oxidation by the hexose monophosphate shunt and an increased capac- ity to reduce nitroblue tetrazolium dye. The data obtained thus far indicate the canine granulocytopathy syndrome will be of considerable value as a model for the study of granulocytopathy syndromes in man. (Am J Pathol 95:731-744, 1979) STUDIES OF LEUKOCY-TE structure and function in host defense failure syndromes of man and animals have provided dramatic evidence for the necessitv of adequate neutrophil function for normal host resis- tance.`6 A group of human diseases, characterized clinically bv enhanced susceptibilitv to pyogenic infections, has been related to impaired killing of microorganisms by neutrophils and monocytes.7-12 A direct correlation
    [Show full text]
  • Eosinophilia and Neutrophilia Associated with Antipd-1 Use In
    ISSN: 2688-8203 DOI: 10.33552/ACRCI.2021.03.000555 Advances in Cancer Research & Clinical Imaging Case Report Copyright © All rights are reserved by Yasir Khan Eosinophilia and Neutrophilia Associated with Anti- PD-1 use in Metastatic Non-Small Cell Lung Cancer – A Case Report Yasir Khan* and Christopher Lomma Department of Medical Oncology, Fiona Stanley Hospital, Western Australia, Australia *Corresponding author: Yasir Khan, Department of Medical Oncology, Fiona Stanley Received Date: January 23, 2021 Hospital, Australia. Published Date: January 29, 2021 Abstract The use of immunotherapy has dramatically changed the way many cancers are treated with several studies having looked at the relationship between eosinophils and immunotherapy. This case study reports nivolumab induced eosinophilia and neutrophilia with no other systemic adverse effects in a patient with metastatic non-small cell lung cancer. A 61-year-old woman with Eastern Cooperative Oncology Group performance status 1 was diagnosed with metastatic non-small cell lung cancer without any driver mutations and was commenced on nivolumab after progressing on platinum doublet therapy. She had mild eosinophilia and neutrophilia at baseline in the context of a lower respiratory tract infection which peak levels at week-35. She developed postural hypotension during the course of her disease and prednisolone was commenced to treat possible became more pronounced with the introduction of nivolumab. Nivolumab was ceased at week-26 due to significant eosinophilia and reached for 8 months after commencement of immunotherapy before progression of disease leading to clinical deterioration and death. Asymptomatic adrenal insufficiency from metastasis. The introduction of steroids led to the improvement in eosinophilia and neutrophilia.
    [Show full text]
  • Neutrophilic Leukocytosis in Advanced Stage Polycythemia Vera
    Modern Pathology (2015) 28, 1448–1457 1448 © 2015 USCAP, Inc All rights reserved 0893-3952/15 $32.00 Neutrophilic leukocytosis in advanced stage polycythemia vera: hematopathologic features and prognostic implications Leonardo Boiocchi1,2, Umberto Gianelli2, Alessandra Iurlo3, Falko Fend4, Irina Bonzheim4, Daniele Cattaneo3, Daniel M Knowles1 and Attilio Orazi1 1Department of Pathology and Laboratory Medicine, Weill Cornell Medical College/New York Presbyterian Hospital, New York, NY, USA; 2Hematopathology Service, Division of Pathology, Department of Pathophysiology and Transplantation, University of Milan and IRCCS Ca’ Granda - Ospedale Maggiore Policlinico Foundation, Milan, Italy; 3Oncohematology Unit of the Elderly, Division of Oncohematology, IRCCS Ca’ Granda - Ospedale Maggiore Policlinico Foundation, Milan, Italy and 4Department of Pathology, University of Tubingen, Tubingen, Germany Polycythemia vera in 20–30% of cases progresses towards post-polycythemic myelofibrosis, an advanced phase characterized by decreased red blood cells counts and increasing splenomegaly with extramedullary hematopoiesis. There is evidence that the presence of neutrophilic leukocytosis at polycythemia vera disease outset is associated with an increased risk of recurrent thrombosis. However, its clinical significance when developing later in the course of the disease is not well defined. Over a period of 8 years we identified from the files of two reference centers 10 patients (7M/3F, median age: 68 years) who developed persistent absolute leukocytosis ≥ 13 × 109/l (median: 25.1 × 109/l; range: 16.1–89.7 × 109/l) at or around the time of diagnosis of post-polycythemic myelofibrosis (median interval from diagnosis:0 months; range: − 6/31) and persisted for a median period of 13 months. Peripheral blood smears showed numerous neutrophils without dysplastic features and, in four, ≥ 10% immature myeloid precursors.
    [Show full text]
  • Diagnosis and Management of Immunodeficiencies in Adults By
    GUIDELINES Diagnosis and Management of Immunodefi ciencies in Adults by Allergologists JM García,1 P Gamboa,2 A de la Calle,3 MD Hernández,4 MT Caballero,5 on behalf of the Committee of Immunology of the Spanish Society of Allergology and Clinical Immunology (SEAIC) (BE García, M Labrador, C Lahoz, N Longo Areso, M López Hoyos, J Martínez Quesada, L Mayorga, FJ Monteseirin, ML Sanz) 1Department of Pediatric Allergology and Clinical Immunology, Hospital de Cruces, Baracaldo-Vizcaya, Spain 2Department of Allergology, Hospital de Basurto, Bilbao, Spain 3Department of Allergology, Hospital Virgen Macarena, Sevilla, Spain 4Department of Allergology, Hospital La Fe, Valencia, Spain 5Department of Allergology, University Hospital La Paz, Madrid, Spain ■ Abstract Primary immunodefi ciencies (PIDs) are genetic diseases that cause alterations in the immune response and occur with an increased rate of infection, allergy, autoimmune disorders, and cancer. They affect adults and children, and the diagnostic delay, morbidity, effect on quality of life, and socioeconomic impact are important. Therapy (γ-globulin substitution in most cases) is highly effective. We examine adult PIDs and their clinical presentation and provide a sequential and directed framework for their diagnosis. Finally, we present a brief review of the most important adult PIDs, common variable immunodefi ciency, including diagnosis, pathogenesis, clinical signs, and disease management. Key words: Immunologic defi ciency syndromes. Common variable immunodefi ciency. Adult. Allergologist. ■ Resumen Las inmunodefi ciencias primarias (IDP) son enfermedades genéticas que ocasionan alteraciones en la respuesta inmunológica y que cursan con aumento de infecciones, alergia, autoinmunidad y cáncer. Afectan tanto a adultos como a niños, y el retraso diagnóstico, la morbilidad, la afectación de calidad de vida de los pacientes y el impacto socioeconómico que implican son considerables.
    [Show full text]