I I I I I I I I Ii I I I I I I

Total Page:16

File Type:pdf, Size:1020Kb

I I I I I I I I Ii I I I I I I I I I I ANWR Progress Report FY87 I I I i I ACCURACY ASSESSMENT OF LANDSAT I I LAND COVER MAPS I 1-... _1 OF THE COASTAL PLAIN OF THE ARCTIC NATIONAL WILDLIFE REFUGE, ALASKA, 1987 I N.A. Felix I M. McWhorter · D.L. Binney I L.M. Koestner II I Key Words: Landsat land cover map, vegetation, classification, habitat types, airphoto analysis, tundra, Alaska, Arctic National I Wildlife Refuge, Arctic-Beaufort I I I Arctic National Wildlife Refuge u.s. Fish and Wildlife Service I 101 12th Avenue I Fairbanks, Alaska 99701 FWLB 0254 I 1e Manager Approval~~~, Date:~ I I I. I Accuracy assessment of Landsat-assisted land cover maps of the I coastal plain of the Arctic National Wildlife Refuge, Alaska, 1987 I Nancy A. Felix, Marta McWhorter, Daryl L. Binney, and Lorna M. Koestner. u.s. Fish and Wildlife Service, Arctic National Wildlife Refuge, Fairbanks, Alaska. II Abstract: Accuracy assessments of two versions of Landsat­ assisted land cover maps were conducted on the coastal plain of the Arctic National Wildlife Refuge. Ground determinations and R map classifications were compared for 126 map polygons. Agreement occurred at 53% of the polygons on the 1982 Landsat map and 48% on the 1985 map. The largest source of error (25% on the 1982 map and 27% on the 1985 map) was cutpoints between closely I related land cover classes. Classes are related to each other along gradients of moisture, shrub cover, or total plant cover. Misclassification errors where the plant community found on the I ground clearly did not belong to the map class occurred at 17% of the 1982 map polygons and 22% of the 1985 polygons. Most commonly the map misclassified braided river floodplain I communities as wet or moist plant communities. Description errors indicating that the land cover class description needed additions or modifications to allow the user to accurately identify the class occurred on 6% of the 1982 polygons and 4% of I the 1985 polygons. Since cutpoint errors between closely related classes accounted for the majority of errors, the Landsat­ assisted maps are useful for showing general distributions of I land cover classes. I I I ..;:t 1..0 ex:> N N I 1..0 0 0 0 1..0 I 1..0' "('I') I ('I') ARLIS . Alaska Resources · 2 Library & lf'lformauon SerVices I · · Anchw~~.:, .-t.:dska , · · ·. :•'. I I. I ANWR Progress Report FY87 Assessment of Landsat land cover maps of the coastal plain of the I Arctic National Wildlife Refuge, Alaska, 1987 An accurate map of vegetation types on the coastal plain of the I Arctic National Wildlife Refuge (ANWR) is needed as a basis for wildlife habitat studies. Studies to determine the value of certain portions of the coastal plain to wildlife species are being initiated in order to predict the impacts of further oil I and gas exploration and development. These studies include: - availability of forage plants in areas used by the Porcupine I caribou herd during calving and post-calving periods - comparisons of habitat characteristics of high and low I muskox use areas - studies of snow geese staging grounds I If further oil and gas exploration and development is allowed on the coastal plain, a vegetation base map would be essential for aiding in site selection for facilities and related activities to I minimize environmental impacts. Three versions of a Landsat-derived land cover map were produced for the coastal plain between 1977 and 1985 (Nadler & LaFerriere I 1977, Walker et al. 1982, Markon 1986). An accuracy assessment of the most recent Landsat map was conducted over the entire refuge in 1985, and analyses of the data are in progress. I Preliminary analyses indicated that there was a large amount of disagreement between the Landsat map and the three botanists who determined vegetation types on the ground. There were also many I disagreements among the botanists indicating that better descriptions of the land cover classes are needed to allow consistent ground identifications. I Determining the accuracy of existing maps of the coastal plain will help determine the need for further habitat mapping. The objectives of this study were to evaluate the accuracy of the I 1982 and 1985 Landsat maps on the coastal plain and develop more detailed vegetation descriptions where possible to aid in I identification of land cover types on the ground. Methods I The study area is an irregularly shaped portion of the coastal plain of ANWR, lying between 142° W and 147° W and north of 69° 34'N, covering approximately 630,000 ha (Fig. 1). It is bordered I by the Brooks Range on the south, the Beaufort sea on the north, 3 ·.; . _·: ' ·::-·,.' I .,.· '.' I - - - - ----- - ilil Iiiii IIIII 111111 !1!!!1! 1!111!!1 -- - ,. 145°W 143•w 10 5 0 10 20 MILES E'"3 I I KILOMETERS ,\. 5 0 10 20 Pigw:e 1. Map of study sites on the coastal plain of the Arctic National Wildlife Refuge, Alaska.· I. the Aichilik River on the east, and the Canning River on the I west. The study area comprises tundra and is mostly continuously vegetated with low-growing plants, including sedges, grasses, mosses, lichens, forbs, and dwarf shrubs. Taller shrubs are I generally restricted to drainages. Shallow soils are underlain with permafrost, and the ground surface remains frozen from about mid-September to mid-May. A detailed description of the study I area, including geology, climate, soils, vegetation, and wildlife can be found in Garner and Reynolds (1986). Eighteen sites were randomly selected on the coastal plain (Fig. I 1). Enlarged maps of each site were produced from digitized data of 1985 Landsat land cover classes. Five to ten unique polygons of uniform vegetation were delineated on the maps within a 3-mile H radius at each site, for a total of 126 polygons. Polygons were transferred from the maps to 1:63,000 color infrared photographs using a zoom transfer scope. These photos were used in the field I to locate the polygons. Two botanists were transported to each polygon by helicopter. The polygons were observed from the air to determine which I vegetation type covered the majority of the area. A brief data collection stop was made, and plant community descriptions, including moisture level, dominant species, and major life forms I were recorded. The polygon was then classified into the Landsat land cover types developed for the 1982 and 1985 maps {Walker et al. 1982, Markon 1986). Ground or aerial photographs were taken I at most polygons to provide a record of the vegetation. Map classification of polygons was determined on the enlarged Landsat 1985 maps. Landsat 1982 classifications were determined from a 1:250,000 scale map since the digitized data was unavailable and enlargements could not be produced. A zoom transfer scope was used to overlay polygons from the Landsat 1985 maps onto the 1982 map. The Landsat 1982 classification which covered the majority of the polygon was recorded. SAS Tabulate Procedure was used to.produce contingency tables ·I depicting agreements and disagreements between the following: - ground observations and Landsat 1982 map classes I - ground observations and Landsat 1985 map classes ground observations using Landsat 1982 and Landsat 1985 classes I - map classifications for Landsat 1982 and Landsat 1985 The major diagonal of each table shows the number of agreements that occurred, while the off-diagonal elements of the table show I disagreements. Column and row totals show commission and omission errors for each vegetation type. Commission errors occured when a site was interpreted as one type on the maps but I was found to be another type on the ground, while omission errors I 5 I I. occurred when types on the ground were not recognized on the I maps. Detailed ground descriptions of plant communities were used to I determine why disagreements occurred. Map and botanist classifications and community descriptions were entered into dBase, data base management software (Ashton-Tate 1986). community descriptions often included more than one vegetation I type, and these were listed in order of importance. Percentages of.each community and surface form descriptions were included when available from field data. Data were ordered by map or I botanist classifications, and tables listing classifications and community descriptions were produced. B This data was used to classify disagreements in to the following types of errors: - cutpoint - plant community is intermediate between two I closely related land cover classes - misclassification - plant community clearly does not belong to map classification I - description - land cover class description needs modification to clearly include this plant community I Results and Discussion I 1982 Landsat map Landcover types on the 1982 Landsat map had 53% agreement with I ground determinations (Table 1). Disagreements at 25% of the points w~re caused by difficulties in determining cutpoints between closely related land cover classes (Table 2). Seventeen percent of the points had been misclassified on the map, and I disagreements at 6% of the points were due to problems with the land cover class descriptions. I cutpoint errors frequently occurred between adjacent land cover classes on a moisture gradient: II - water (I) ' - aquatic tundra: pond/sedge tundra complex (II) - wet sedge tundra (III) II - moist/wet sedge complex (IVa) - moist sedge, prostrate shrub tundra (V) All sites with water alone were correctly classified by the map. Three disagreements occurred between.water and aquatic tundra on sites with small amounts of vegetation. The amount of vegetated area allowed in a site classified as water is not included· in the I land cover description. One disagreement occurred between I I ------------------- Table 1.
Recommended publications
  • Vascular Plants of Kluane
    26 Blueleaved strawberry Fragaria virginiana 63 Greyleaf willow Salix glauca Kluane National Park and Reserve 27 Bog blueberrry Vaccinium uliginosum 64 Ground cedar, Lycopodium complanatum 28 Bog labrador-tea Ledum groenlandica Creeping jenny 65 Hairy rockcress Arabis hirsuta 29 Boreal aster Aster alpinus 30 Boreal wormwood Artemisia arctica 66 Heart-leaf listera Listera borealis Vascular 31 Bristly stickseed Lappula myosotis 67 Heartleaf arnica Arnica cordifolia 32 Broadglumed wheatgrass Agropyron trachycaulum 68 High bush cranbery Viburnum edule Plants List 33 Broadleaf lupine Lupinus arcticus 69 Holboell's rockcress Arabis holboellii 34 Buffaloberry, Soapberry Sheperdia canadensis 70 Horned dandelion Taraxacum lacerum 35 Canada butterweed Senecio pauperculus 71 Kotzebue's grass-of- Parnassia kotzebuei 36 Chestnut rush Juncus castaneus parnassus 1 Alaska moss heath Cassiope stelleriana 37 Cleft-leaf groundsel Senecio streptanthifolius 72 Kuchei's lupine Lupinus kuschei 2 Alaska willow Salix alaxensis 38 Common horsetail Equisetum arvense 73 Labrador lousewort Pedicularis labradorica 3 Alkali bluegrass Poa juncifolia 39 Common mountain Juniperus communis 74 Lance-leaved draba Draba lanceolata 4 Alkali grass Puccinellia interior juniper 75 Lanceleaved stonecrop Sedum lanceolatum 5 Alpine bluegrass Poa alpina 40 Cow parsnip Heracleum lanatum 76 Lapland cassiope Cassiope tetragona 6 Alpine fescue Festuca ovina 41 Creeping juniper Juniperus horizontalis 77 Leafless pyrola Pyrola asarifolia 7 Alpine milk-vetch Astragalus alpinus 42 Creeping
    [Show full text]
  • Kenai National Wildlife Refuge Species List, Version 2018-07-24
    Kenai National Wildlife Refuge Species List, version 2018-07-24 Kenai National Wildlife Refuge biology staff July 24, 2018 2 Cover image: map of 16,213 georeferenced occurrence records included in the checklist. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 55 Vascular Plants........................................................ 91 Bryophytes ..........................................................164 Other Plants .........................................................171 Chromista...........................................................171 Fungi .............................................................173 Protozoans ..........................................................186 Non-native species 187 Vertebrates ..........................................................187 Invertebrates .........................................................187 Vascular Plants........................................................190 Extirpated species 207 Vertebrates ..........................................................207 Vascular Plants........................................................207 Change log 211 References 213 Index 215 3 Introduction Purpose to avoid implying
    [Show full text]
  • Carex and Scleria
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Transactions of the Nebraska Academy of Sciences and Affiliated Societies Nebraska Academy of Sciences 1997 Keys and Distributional Maps for Nebraska Cyperaceae, Part 2: Carex and Scleria Steven B. Rolfsmeier Barbara Wilson Oregon State University Follow this and additional works at: https://digitalcommons.unl.edu/tnas Part of the Life Sciences Commons Rolfsmeier, Steven B. and Wilson, Barbara, "Keys and Distributional Maps for Nebraska Cyperaceae, Part 2: Carex and Scleria" (1997). Transactions of the Nebraska Academy of Sciences and Affiliated Societies. 73. https://digitalcommons.unl.edu/tnas/73 This Article is brought to you for free and open access by the Nebraska Academy of Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Transactions of the Nebraska Academy of Sciences and Affiliated Societiesy b an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 1997. Transactions of the Nebraska Academy of Sciences, 24: 5-26 KEYS AND DISTRIBUTIONAL MAPS FOR NEBRASKA CYPERACEAE, PART 2: CAREX AND SCLERIA Steven B. Rolfsmeier and Barbara Wilson* 2293 Superior Road Department of Biology Milford, Nebraska 68405-8420 University of Nebraska at Omaha Omaha, Nebraska 68182-0040 *Present address: Department of Botany, Oregon State University, Corvallis, Oregon ABSTRACT Flora GP are deleted based on misidentifications: Carex Keys and distributional maps are provided for the 71 species and one hybrid of Carex and single species of Scleria festucacea, C. haydenii, C. muehlenbergii var. enervis, documented for Nebraska. Six species-Carex albursina, C. C. normalis, C. siccata (reported as C. foenea), C. stricta, melanostachya, C.
    [Show full text]
  • Carex of New England
    Field Guide to Carex of New England Lisa A. Standley A Special Publication of the New England Botanical Club About the Author: Lisa A. Standley is an environmental consultant. She obtained a B.S, and M.S. from Cornell University and Ph.D. from the University of Washington. She has published several articles on the systematics of Carex, particularly Section Phacocystis, and was the author of several section treatments in the Flora of North America. Cover Illustrations: Pictured are Carex pensylvanica and Carex intumescens. Field Guide to Carex of New England Lisa A. Standley Special Publication of the New England Botanical Club Copyright © 2011 Lisa A. Standley Acknowledgements This book is dedicated to Robert Reed, who first urged me to write a user-friendly guide to Carex; to the memory of Melinda F. Denton, my mentor and inspiration; and to Tony Reznicek, for always sharing his expertise. I would like to thank all of the people who helped with this book in so many ways, particularly Karen Searcy and Robert Bertin for their careful editing; Paul Somers, Bruce Sorrie, Alice Schori, Pam Weatherbee, and others who helped search for sedges; Arthur Gilman, Melissa Dow Cullina, and Patricia Swain, who carefully read early drafts of the book; and to Emily Wood, Karen Searcy, and Ray Angelo, who provided access to the herbaria at Harvard University, the University of Massachusetts, and the New England Botanical Club. CONTENTS Introduction .......................................................................................................................1
    [Show full text]
  • NWI Notes to the User for North Slope 1:63,360 Scale Maps
    NATIONAL WETLANDS INVENTORY NOTES TO THE USER FOR NORTH SLOPE 1:63,360 SCALE MAPS INTRODUCTION The U.S. Fish and Wildlife Service (Service) has major responsibility for the protection and proper management of fish, wildlife and their habitats. The Fish and Wildlife Coordination Act authorizes the Secretary of the Interior "to make surveys and investigations of the wildlife of the public domain including lands and waters or interests therein acquired or controlled by an agency of the United States" (16 U.S.C. 669). This Act expands the concept of wildlife and wildlife resources to include not only animal life but also all types of "aquatic and land vegetation upon which wildlife is dependent." Within the last thirty years, a large amount of wetland modification has occurred. Increased emphasis on wetland preservation and management has been expressed through presidential executive orders and recent legislation. Amendments to the Clean Water Act of 1977 (33 U.S.C. 466) specify a major role for the National Wetlands Inventory (Inventory) in the administration of that Act. The Emergency Wetlands Act of 1986 (16 U.S.C. 3901) directs the Service to continue the inventory of wetlands through 1998. The Service has always recognized the importance of wetlands to waterfowl and other migratory birds. Consequently, the Service has a direct interest in protecting wetlands, especially the waterfowl breeding and overwintering wetlands. Wetlands, however, also provide a wealth of other values for the public including: (1) Fish and shellfish protection. (2) Furbearer and other wildlife production. (3) Habitats for threatened or endangered plants and animals.
    [Show full text]
  • TB1066 Current Stateof Knowledge and Research on Woodland
    June 2020 A Review of the Relationship Between Flow,Current Habitat, State and of Biota Knowledge in LOTIC and SystemsResearch and on Methods Woodland for Determining Caribou Instreamin Canada Low Requirements 9491066 Current State of Knowledge and Research on Woodland Caribou in Canada No 1066 June 2020 Prepared by Kevin A. Solarik, PhD NCASI Montreal, Quebec National Council for Air and Stream Improvement, Inc. Acknowledgments A great deal of thanks is owed to Dr. John Cook of NCASI for his considerable insight and the revisions he provided in improving earlier drafts of this report. Helpful comments on earlier drafts were also provided by Kirsten Vice, NCASI. For more information about this research, contact: Kevin A. Solarik, PhD Kirsten Vice NCASI NCASI Director of Forestry Research, Canada and Vice President, Sustainable Manufacturing and Northeastern/Northcentral US Canadian Operations 2000 McGill College Avenue, 6th Floor 2000 McGill College Avenue, 6th Floor Montreal, Quebec, H3A 3H3 Canada Montreal, Quebec, H3A 3H3 Canada (514) 907-3153 (514) 907-3145 [email protected] [email protected] To request printed copies of this report, contact NCASI at [email protected] or (352) 244-0900. Cite this report as: NCASI. 2020. Current state of knowledge and research on woodland caribou in Canada. Technical Bulletin No. 1066. Cary, NC: National Council for Air and Stream Improvement, Inc. Errata: September 2020 - Table 3.1 (page 34) and Table 5.2 (pages 55-57) were edited to correct omissions and typos in the data. © 2020 by the National Council for Air and Stream Improvement, Inc. EXECUTIVE SUMMARY • Caribou (Rangifer tarandus) is a species of deer that lives in the tundra, taiga, and forest habitats at high latitudes in the northern hemisphere, including areas of Russia and Scandinavia, the United States, and Canada.
    [Show full text]
  • Arbuscular Mycorrhizal Fungi and Dark Septate Fungi in Plants Associated with Aquatic Environments Doi: 10.1590/0102-33062016Abb0296
    Arbuscular mycorrhizal fungi and dark septate fungi in plants associated with aquatic environments doi: 10.1590/0102-33062016abb0296 Table S1. Presence of arbuscular mycorrhizal fungi (AMF) and/or dark septate fungi (DSF) in non-flowering plants and angiosperms, according to data from 62 papers. A: arbuscule; V: vesicle; H: intraradical hyphae; % COL: percentage of colonization. MYCORRHIZAL SPECIES AMF STRUCTURES % AMF COL AMF REFERENCES DSF DSF REFERENCES LYCOPODIOPHYTA1 Isoetales Isoetaceae Isoetes coromandelina L. A, V, H 43 38; 39 Isoetes echinospora Durieu A, V, H 1.9-14.5 50 + 50 Isoetes kirkii A. Braun not informed not informed 13 Isoetes lacustris L.* A, V, H 25-50 50; 61 + 50 Lycopodiales Lycopodiaceae Lycopodiella inundata (L.) Holub A, V 0-18 22 + 22 MONILOPHYTA2 Equisetales Equisetaceae Equisetum arvense L. A, V 2-28 15; 19; 52; 60 + 60 Osmundales Osmundaceae Osmunda cinnamomea L. A, V 10 14 Salviniales Marsileaceae Marsilea quadrifolia L.* V, H not informed 19;38 Salviniaceae Azolla pinnata R. Br.* not informed not informed 19 Salvinia cucullata Roxb* not informed 21 4; 19 Salvinia natans Pursh V, H not informed 38 Polipodiales Dryopteridaceae Polystichum lepidocaulon (Hook.) J. Sm. A, V not informed 30 Davalliaceae Davallia mariesii T. Moore ex Baker A not informed 30 Onocleaceae Matteuccia struthiopteris (L.) Tod. A not informed 30 Onoclea sensibilis L. A, V 10-70 14; 60 + 60 Pteridaceae Acrostichum aureum L. A, V, H 27-69 42; 55 Adiantum pedatum L. A not informed 30 Aleuritopteris argentea (S. G. Gmel) Fée A, V not informed 30 Pteris cretica L. A not informed 30 Pteris multifida Poir.
    [Show full text]
  • Dendroecology of the Dwarf Shrub Dryas Integrifolia Near Churchill, Manitoba
    Dendroecology of the dwarf shrub Dryas integrifolia near Churchill, Manitoba Robert Au Supervisor: Jacques Tardif A thesis submitted in partial fulfillment of the Honours Thesis Course (05.4111/6) Department of Biology The University of Winnipeg 2006 Abstract Shrubs have generally been overlooked in dendrochronology and little information exists on allometric relationships in dwarf shrubs. In this study, the dimensions (mat, stem and root) of the shrub, Dryas integrifolia M. Vahl., were measured and anatomical slides containing annual growth rings were prepared for each individual. The first objective was to compare allometric relationships among descriptors of shrub dimension and between these descriptors and shrub age in four populations of D. integrifolia. Secondary objectives included the documentation of maximum age and evaluation of a potential for cross-dating among individual shrubs. A strong, consistent allometric relationship between mat and stem diameter was observed in individuals among sites, although relationships with root length were more variable. Moreover, growth rates in individuals varied within and between sites and were much higher for the significantly younger D. integrifolia from site-A. Dryas integrifolia from Churchill, Manitoba could be cross- dated. The radial growth – climate association was found to be similar to that of white spruce, black spruce and tamarack regarding the impact of October climatic conditions. Snow accumulation and onset of the growing season appear to be the most important factors controlling D. integrifolia growth. These findings suggest that past climatic information can be obtained from the dwarf shrub, D. integrifolia, in areas where meteorological data are lacking such as in the Canadian arctic.
    [Show full text]
  • Common Plants on the North Slope | the North Slope Borough
    8/17/2020 Common Plants on the North Slope | The North Slope Borough CALENDAR CONTACT Harry K. Brower Jr. , Mayor COMMON PLANTS ON THE NORTH SLOPE Home » Departments » Wildlife Management » Other Topics of Interest » Common Plants on the North Slope Plants are an important subsistence resource for residents across the North Slope. This page provides information on some of the common plants found on the North Slope of Alaska, including plants not used for subsistence. Plant names (common, scientific and Iñupiaq) are provided as well as descriptions, pictures and traditional uses. The resources used for identification are listed here as well as other resources for information on plants. List of Common Plants and others of the North Slope PDF Version Photo Identification of these Common Plants Unknowns - Got any ideas? Please send them to us! Plant Identification and Other Resources Thes pages are a work in progress. If you see any misinformation, misidentifications, or have pictures to add, please contact us. Information on the Iñupiaq names and traditional uses of these plants is especially welcomed. Check out "Unknown" pictures at bottom of page. Thanks! DISCLAIMER: This guide includes traditional uses of plants and other vegetation. The information is not intended to replace the advice of a physician or be used as a guide for self- medication. Neither the author nor the North Slope Borough claims that information in this guide will cure any illness. Just as prescription medicines can have different effects on www.north-slope.org/departments/wildlife-management/other-topics/common-plants-north-slope 1/3 8/17/2020 Common Plants on the North Slope | The North Slope Borough individuals, so too can plants.
    [Show full text]
  • Circumpolar Arctic Vegetation Classification
    Phytocoenologia Research Paper Published online December 2017 Open Access Article Circumpolar Arctic Vegetation Classification Donald A. Walker*, Fred J.A. Daniëls, Nadezhda V. Matveyeva, Jozef Šibík, Marilyn D. Walker, Amy L. Breen, Lisa A. Druckenmiller, Martha K. Raynolds, Helga Bültmann, Stephan Hennekens, Marcel Buchhorn, Howard E. Epstein, Ksenia Ermokhina, Anna M. Fosaa, Starri Hei∂marsson, Birgit Heim, Ingibjörg S. Jónsdóttir, Natalia Koroleva, Esther Lévesque, William H. MacKenzie, Greg H.R. Henry, Lennart Nilsen, Robert Peet, Volodya Razzhivin, Stephen S. Talbot, Mikhail Telyatnikov, Dietbert Thannheiser, Patrick J. Webber & Lisa M. Wirth Abstract Aims: An Arctic Vegetation Classification (AVC) is needed to address issues related to rapid Arctic-wide changes to climate, land-use, and biodiversity. Location: The 7.1 million km2 Arctic tundra biome. Approach and conclusions: The purpose, scope and conceptual framework for an Arctic Vegetation Archive (AVA) and Classification (AVC) were developed during numerous workshops starting in 1992. The AVA and AVC are modeled after the European vegetation archive (EVA) and classification (EVC). The AVA will use Turboveg for data management. The AVC will use a Braun-Blanquet (Br.-Bl.) classification approach. There are approxi- mately 31,000 Arctic plots that could be included in the AVA. An Alaska AVA (AVA-AK, 24 datasets, 3026 plots) is a prototype for archives in other parts of the Arctic. The plan is to eventually merge data from other regions of the Arctic into a single Turboveg v3 database. We present the pros and cons of using the Br.-Bl. clas- sification approach compared to the EcoVeg (US) and Biogeoclimatic Ecological Classification (Canada) ap- proaches.
    [Show full text]
  • Eriophorum Scheuchzeri Hoppe (White Cottongrass): a Technical Conservation Assessment
    Eriophorum scheuchzeri Hoppe (white cottongrass): A Technical Conservation Assessment Prepared for the USDA Forest Service, Rocky Mountain Region, Species Conservation Project March 2, 2006 Juanita A. R. Ladyman, Ph.D. JnJ Associates LLC 6760 S. Kit Carson Circle East Centennial, CO 80122 Peer Review Administered by Society of Conservation Biology Ladyman, J.A.R. (2006, March 2). Eriophorum scheuchzeri Hoppe (white cottongrass): a technical conservation assessment. [Online]. USDA Forest Service, Rocky Mountain Region. Available: http://www.fs.fed.us/r2/ projects/scp/assessments/eriophorumscheuchzeri.pdf [date of access]. ACKNOWLEDGMENTS The time spent and help given by all the people and institutions mentioned in the reference section are gratefully acknowledged. I value the information provided by Jacques Cayouette, with Agriculture and Agri-food Canada, and thank him for his help. I also appreciate the access to files and the assistance given to me by Andrew Kratz, USDA Forest Service Region 2, and Chuck Davis, US Fish and Wildlife Service, both in Denver, Colorado. The information sent from Bonnie Heidel, Wyoming Natural Diversity Database; Teresa Prendusi, USDA Forest Service Region 4; Thomas A. Zanoni, New York Botanical Garden; Rusty Russell, United States National Herbarium; Ronald Hartman and Joy Handley, Rocky Mountain Herbarium at the University of Wyoming; Alan Batten, University of Alaska Museum of the North; Mary Barkworth and Michael Piep, the Intermountain Herbarium; Jennifer Penny and Marta Donovan, British Columbia Conservation Data Centre; John Rintoul, Alberta Natural Heritage Information Center; and Ann Kelsey, Garrett Herbarium, are also very much appreciated. I would also like to thank Deb Golanty, Helen Fowler Library at Denver Botanic Gardens, for her persistence in retrieving some rather obscure articles.
    [Show full text]
  • Wetland Sedges of Alaska. Finally, We Appreciate the Critical Review of the Manuscript by Botanists Dr
    WETLAND SEDGES of ALASKA Gerald Tande & Robert Lipkin Alaska Natural Heritage Program Environment and Natural Resources Institute, University of Alaska Anchorage Prepared for the U.S. Environmental Protection Agency • 2003 WETLAND SEDGES OF ALASKA Gerald Tande and Robert Lipkin Alaska Natural Heritage Program Environment and Natural Resources Institute University of Alaska Anchorage 707 A Street, Suite 101, Anchorage, AK 99501 With Contributions From Dr. David F. Murray, Professor Emeritus University of Alaska Museum Herbarium Fairbanks, AK 99775 Prepared for the U.S. Environmental Protection Agency Phil North, EPA Project Officer 514 Funny River Road AOO/Kenai, AK 99669 2003 UAA IS AN EO/AA EMPLOYER AND LEARNING INSTITUTION. 1 2 Contents 5 Acknowledgements 6 About This Guide 6 Overview of the Genus Carex 7 The Role and Function of Sedges in Wetlands 14 Overall Format of the Guide 14 References 15 Page Format of the Species Descriptions 16 Measurements 16 Differentiating Between the Different Grasslike Families 18 Guide to Sedge Morphology 23 Keys 23 Key to Genera of the Sedge Family 24 Key to the Common Wetland Sedges of Alaska 33 Species Descriptions 35 Carex anthoxanthea 37 C. aquatilis C. sitchensis C. stans 41 C. aurea C. bicolor C. garberi 43 C. bigelowii 45 C. buxbaumii 47 C. canescens 49 C. capillaris 51 C. chordorrhiza 53 C. echinata ssp. phyllomanica 55 C. glareosa 57 C. gmelinii 59 C. gynocrates 61 C. laeviculmis 63 C. lasiocarpa 65 C. lenticularis var. lipocarpa var. dolia var. limnophila 69 C. leptalea 71 C. limosa 73 C. livida 3 75 C. loliacea 77 C. lyngbyei 79 C.
    [Show full text]