Vascular Plants of Kluane
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Willows of Interior Alaska
1 Willows of Interior Alaska Dominique M. Collet US Fish and Wildlife Service 2004 2 Willows of Interior Alaska Acknowledgements The development of this willow guide has been made possible thanks to funding from the U.S. Fish and Wildlife Service- Yukon Flats National Wildlife Refuge - order 70181-12-M692. Funding for printing was made available through a collaborative partnership of Natural Resources, U.S. Army Alaska, Department of Defense; Pacific North- west Research Station, U.S. Forest Service, Department of Agriculture; National Park Service, and Fairbanks Fish and Wildlife Field Office, U.S. Fish and Wildlife Service, Department of the Interior; and Bonanza Creek Long Term Ecological Research Program, University of Alaska Fairbanks. The data for the distribution maps were provided by George Argus, Al Batten, Garry Davies, Rob deVelice, and Carolyn Parker. Carol Griswold, George Argus, Les Viereck and Delia Person provided much improvement to the manuscript by their careful editing and suggestions. I want to thank Delia Person, of the Yukon Flats National Wildlife Refuge, for initiating and following through with the development and printing of this guide. Most of all, I am especially grateful to Pamela Houston whose support made the writing of this guide possible. Any errors or omissions are solely the responsibility of the author. Disclaimer This publication is designed to provide accurate information on willows from interior Alaska. If expert knowledge is required, services of an experienced botanist should be sought. Contents -
Towards Rainy Arctic Winters: Experimental Icing
Supplementary material to: Towards rainy Arctic winters: experimental icing impacts tundra plant productivity and reproduction Mathilde Le Moullec, Anna-Lena Hendel, Matteo Petit Bon, Ingibjörg Svala Jónsdóttir, Øystein Varpe, René van der Wal, Larissa Teresa Beumer, Kate Layton-Matthews, Ketil Isaksen and Brage Bremset Hansen. Table of content: Table S1. Soil volumetric water content. Table S2. Sampling dates and number of repeated measurements. Table S3. Correlation coefficients between maximum NDVI and relative abundance. Table S4. Summary statistic of Salix polaris phenophases. Figure S1. Mesic habitat species composition. Figure S2. Estimated NDVI curves across treatments and years. Figure S3. Annual relative abundance. Figure S4. Ordination of the mesic community species composition. Figure S5. Leaf size traits of Salis polaris across years and treatments. Figure S6. Flower counts per year, treatment and species/group. Figure S7. Annual probability curves of Salix polaris phenophases. Table S1. Soil volumetric water content (i.e., soil moisture in %) measured with a ML3 ThetaProbe Sensor (HH2 Soil Moisture Meter from Delta-T Devices Ltd, UK, 1% accuracy, 5-10 cm depth) via repeated measurements at five points per plot, 3-15 times per summer (rounds). a) Soil moisture estimates and 95% CI per treatment and year, b) Pearson correlation coefficients between soil moisture and sub-surface (5 cm depth) temperature for years with repeated measurements across the growing season (2018-2019, df = 18). To compute these correlation coefficients we first fitted separate models for moisture and temperature , with treatment × day-of-year (factor) included as fixed effect, and repeated point measurements nested within plots nested within blocks included as random intercept structure. -
Sanionia Uncinata and Salix Polaris As Bioindicators of Trace Element Pollution in the High Arctic: a Case Study at Longyearbyen, Spitsbergen, Norway
Polar Biology (2019) 42:1287–1297 https://doi.org/10.1007/s00300-019-02517-0 ORIGINAL PAPER Sanionia uncinata and Salix polaris as bioindicators of trace element pollution in the High Arctic: a case study at Longyearbyen, Spitsbergen, Norway Bronisław Wojtuń1 · Ludmiła Polechońska1 · Paweł Pech1 · Kinga Mielcarska1 · Aleksandra Samecka‑Cymerman1 · Wojciech Szymański2 · Maria Kolon1 · Marcin Kopeć1 · Kornelia Stadnik1 · Alexander J. Kempers3 Received: 27 August 2018 / Revised: 27 May 2019 / Accepted: 8 June 2019 / Published online: 19 June 2019 © The Author(s) 2019 Abstract Longyearbyen (Spitsbergen) is infuenced by local contamination sources, such as exhausts from power plants, trafc, coal mines, and industrial waste dumps subject to weathering, which threatens soil and living organisms. Therefore, the trace element level in this area needs to be evaluated. The moss Sanionia uncinata and prostrate dwarf-shrub Salix polaris were collected as contamination indicators. Concentrations of Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn in these species were measured. The tested hypotheses were: in Longyearbyen and its vicinity (1) the moss S. uncinata and the willow S. polaris may be used as phytoaccumulators and therefore as bioindicators and bioremediators of certain trace elements; (2) the moss S. uncinata contains higher concentrations of metals than the willow S. polaris. The soil of Longyearbyen was contaminated with Cd, Co, Cu, Ni, Pb, and Zn. The willow S. polaris may be used in phytoaccumulation and therefore in the bioremedia- tion and bioindication of Cd and Zn from its environment. Stems of S. polaris from Longyearbyen are better bioindicators of Cr, Cu, Hg, Ni, and Pb and poorer bioindicators of Cd, Mn, and Zn than leaves of this species. -
Historical Records of Climate-Related Growth in Cassiope Tetragona from the Arctic
Historical Records of Climate-Related Growth in Cassiope Tetragona from the Arctic T. V. Callaghan; B. A. Carlsson; N. J. C. Tyler The Journal of Ecology, Vol. 77, No. 3. (Sep., 1989), pp. 823-837. Stable URL: http://links.jstor.org/sici?sici=0022-0477%28198909%2977%3A3%3C823%3AHROCGI%3E2.0.CO%3B2-U The Journal of Ecology is currently published by British Ecological Society. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/briteco.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. -
Guide Alaska Trees
x5 Aá24ftL GUIDE TO ALASKA TREES %r\ UNITED STATES DEPARTMENT OF AGRICULTURE FOREST SERVICE Agriculture Handbook No. 472 GUIDE TO ALASKA TREES by Leslie A. Viereck, Principal Plant Ecologist Institute of Northern Forestry Pacific Northwest Forest and Range Experiment Station ÜSDA Forest Service, Fairbanks, Alaska and Elbert L. Little, Jr., Chief Dendrologist Timber Management Research USD A Forest Service, Washington, D.C. Agriculture Handbook No. 472 Supersedes Agriculture Handbook No. 5 Pocket Guide to Alaska Trees United States Department of Agriculture Forest Service Washington, D.C. December 1974 VIERECK, LESLIE A., and LITTLE, ELBERT L., JR. 1974. Guide to Alaska trees. U.S. Dep. Agrie., Agrie. Handb. 472, 98 p. Alaska's native trees, 32 species, are described in nontechnical terms and illustrated by drawings for identification. Six species of shrubs rarely reaching tree size are mentioned briefly. There are notes on occurrence and uses, also small maps showing distribution within the State. Keys are provided for both summer and winter, and the sum- mary of the vegetation has a map. This new Guide supersedes *Tocket Guide to Alaska Trees'' (1950) and is condensed and slightly revised from ''Alaska Trees and Shrubs" (1972) by the same authors. OXFORD: 174 (798). KEY WORDS: trees (Alaska) ; Alaska (trees). Library of Congress Catalog Card Number î 74—600104 Cover: Sitka Spruce (Picea sitchensis)., the State tree and largest in Alaska, also one of the most valuable. For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402—Price $1.35 Stock Number 0100-03308 11 CONTENTS Page List of species iii Introduction 1 Studies of Alaska trees 2 Plan 2 Acknowledgments [ 3 Statistical summary . -
Nova Scotia Provincial Status Report on Hoary Willow Salix Candida
i Nova Scotia Provincial Status Report on Hoary Willow Salix candida Flűeggé ex Willd. prepared for The Nova Scotia Species at Risk Working Group by Ruth E. Newell E.C. Smith Herbarium K.C. Irving Environmental Science Centre Acadia University Wolfville, Nova Scotia B4P 2R6 Funding provided by the Nova Scotia Species at Risk Conservation Fund Submitted December 16th, 2010 ii EXECUTIVE SUMMARY Wildlife Species Description and Significance Salix candida (Hoary Willow) is a low, deciduous, dioecious shrub, densely white woolly on current season’s twigs and lower leaf surfaces. The mature medial leaves are narrowly elliptic or oblanceolate, usually at least 4x as long as wide. Leaf margins are entire and slightly to strongly rolled under. Flowering occurs concurrently with leaf emergence. Female flowers have stalks 0.1 to 1.2 mm long and tomentose pistils. The anthers of male flowers are purple later changing to yellow. The fruit is a tomentose, pear-shaped capsule. Reproduction is both sexual and asexual by layering. Salix candida is an extremely rare species in Nova Scotia occurring in a rare habitat type i.e., rich, calcareous fens or marshes. Distribution In Nova Scotia, Hoary Willow occurs within the Black River system at the northwest end of Lake Ainslie, Inverness County, Cape Breton Island. Here it is known from four rich calcareous fens in close proximity to the river floodplain plus a single plant in a calcareous graminoid marsh. Field work failed to confirm the presence of Salix candida in Huntington, Cape Breton County - a record based on a herbarium specimen from Cape Breton University herbarium. -
Czech University of Life Sciences Prague Faculty of Forestry and Wood Sciences
Czech University of Life Sciences Prague Faculty of Forestry and Wood Sciences Ph.D. Thesis 2016 Mgr. et Ing. Jiří Lehejček Czech University of Life Sciences Prague Faculty of Forestry and Wood Sciences Department of Forest Ecology Arctic tundra dendrochronology Ph.D. thesis Author: Mgr. et Ing. Jiří Lehejček Supervisor: prof. Ing. Miroslav Svoboda, Ph.D. Consultant: doc. Mgr. Daniel Nývlt, Ph.D. 2016 „I hereby confirm that this Ph.D. thesis “Arctic tundra dendrochronology” was elaborated independently with the usage of quoted literature and based on consultations and recommendations of my supervisor. I agree with publishing this Ph.D. thesis according to Czech law n. 111/1998 Sb. about the universities in its current valid wording. This agreement is independent from the result of defence. October 15th 2016, Prague Authors signature Acknowledgement: Many thanks especially to my supervisor prof. Ing. Miroslav Svoboda, Ph.D. who has significant credit for existence of this thesis. I would like to also thank to my consultant doc. Mgr. Daniel Nývlt, Ph.D., and my colleagues Dr. Allan Buras and prof. Martin Wilmking for their useful advices. My technical-laboratory skill would not be possible without patient care of Dr. Holger Gäertner and prof. Fritz Schweingruber. Last but not least, I must thank my family for their support of my education activities during whole life. The research leading to this thesis was supported by Internal Grant Agency of Czech University of Life Sciences Prague, Project No. 20154304, and the Internal Grant Agency of Faculty of Forestry and Wood Sciences, Czech University of Life Sciences. -
A Guide to the Identification of Salix (Willows) in Alberta
A Guide to the identification of Salix (willows) in Alberta George W. Argus 2008 Devonian Botanical Garden Workshop on willow identification Jasper National Park, Alberta 2 Available from: George W. Argus 310 Haskins Rd, Merrickville R3, Ontario, Canada K0G 1N0 email: [email protected] http://aknhp.uaa.alaska.edu/willow/index.html 3 CONTENTS Preface............................................................................................................................... 5 Salicaceae ...........…………………...........……........................................……..........…. 8 Classification ..........……………….…..….................................................….............…. 9 Some Useful Morphological Characters .......................................................….............. 11 Key to the Species.............................................................................................................13 Taxonomic Treatment .........................................................…..……….………............ 18 Glossary .....………………………………………....…..................………...........….... 61 Cited and Selected References ......................................................................................... 64 Salix Web Sites ...................……..................................……..................……............…. 68 Distribution Maps ............................................................................................................ 69 TABLES Table 1. Comparison of Salix athabascensis and Salix pedicellaris .............................. -
Survey and Analysis of Plant Community Types of Writing-On-Stone Provincial Park
Survey and Analysis of Plant Community Types of Writing-on-Stone Provincial Park Survey and Analysis of Plant Community Types of Writing-on-Stone Provincial Park FINAL REPORT Prepared for Alberta Sustainable Resource Development Resource Data Branch Edmonton, Alberta Prepared by Wildlands Ecological Consulting Ltd. #60 Neal Close, Red Deer, AB T4P 1N4 Office: (403) 346-1057 Fax: (403) 346-3257 March 29, 2004 ABSTRACT Identification and monitoring of biological diversity in Alberta is the primary mandate of Alberta Natural Heritage Information Centre (ANHIC). A fundamental strategy in the preservation of functional ecosystems is to identify and preserve a full compliment of habitat types, which in return support a diversity of animals, plants, and other life forms. Vegetation is an integral component of habitat and provides a relatively easy means of inventory and monitoring of ecosystem health both spatially and temporally. The current study, in Writing-on-Stone Provincial Park, focuses on the identification of unique riparian and coulee plant associations, or plant community type. The study area is situated approximately 8 km north of the USA border and 40 km east of the town of Milk River and occurs at the interface between the Mixedgrass and Dry Mixedgrass Natural Subregions. Priority research is currently required to address gaps in the identification, description and distribution of plant associations within the coulee and riparian zones of these Subregions. Many of these communities recur over the landscape but may occur as very small patches of 1m2 or less. Alberta Sustainable Resource Development (ASRD) Resource Data Division contracted Wildlands Ecological to complete an inventory of natural/semi-natural plant communities, statistically analyse the data, and describe potential plant community or association types. -
Rock Garden Quarterly
ROCK GARDEN QUARTERLY VOLUME 53 NUMBER 1 WINTER 1995 COVER: Aquilegia scopulorum with vespid wasp by Cindy Nelson-Nold of Lakewood, Colorado All Material Copyright © 1995 North American Rock Garden Society ROCK GARDEN QUARTERLY BULLETIN OF THE NORTH AMERICAN ROCK GARDEN SOCIETY formerly Bulletin of the American Rock Garden Society VOLUME 53 NUMBER 1 WINTER 1995 FEATURES Alpine Gesneriads of Europe, by Darrell Trout 3 Cassiopes and Phyllodoces, by Arthur Dome 17 Plants of Mt. Hutt, a New Zealand Preview, by Ethel Doyle 29 South Africa: Part II, by Panayoti Kelaidis 33 South African Sampler: A Dozen Gems for the Rock Garden, by Panayoti Kelaidis 54 The Vole Story, by Helen Sykes 59 DEPARTMENTS Plant Portrait 62 Books 65 Ramonda nathaliae 2 ROCK GARDEN QUARTERLY VOL. 53:1 ALPINE GESNERIADS OF EUROPE by Darrell Trout J. he Gesneriaceae, or gesneriad Institution and others brings the total family, is a diverse family of mostly Gesneriaceae of China to a count of 56 tropical and subtropical plants with genera and about 413 species. These distribution throughout the world, should provide new horticultural including the north and south temper• material for the rock garden and ate and tropical zones. The 125 genera, alpine house. Yet the choicest plants 2850-plus species include terrestrial for the rock garden or alpine house and epiphytic herbs, shrubs, vines remain the European genera Ramonda, and, rarely, small trees. Botanically, Jancaea, and Haberlea. and in appearance, it is not always easy to separate the family History Gesneriaceae from the closely related The family was named for Konrad Scrophulariaceae (Verbascum, Digitalis, von Gesner, a sixteenth century natu• Calceolaria), the Orobanchaceae, and ralist. -
Kenai National Wildlife Refuge Species List, Version 2018-07-24
Kenai National Wildlife Refuge Species List, version 2018-07-24 Kenai National Wildlife Refuge biology staff July 24, 2018 2 Cover image: map of 16,213 georeferenced occurrence records included in the checklist. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 55 Vascular Plants........................................................ 91 Bryophytes ..........................................................164 Other Plants .........................................................171 Chromista...........................................................171 Fungi .............................................................173 Protozoans ..........................................................186 Non-native species 187 Vertebrates ..........................................................187 Invertebrates .........................................................187 Vascular Plants........................................................190 Extirpated species 207 Vertebrates ..........................................................207 Vascular Plants........................................................207 Change log 211 References 213 Index 215 3 Introduction Purpose to avoid implying -
Annotated Checklist of Vascular Flora, Bryce
National Park Service U.S. Department of the Interior Natural Resource Program Center Annotated Checklist of Vascular Flora Bryce Canyon National Park Natural Resource Technical Report NPS/NCPN/NRTR–2009/153 ON THE COVER Matted prickly-phlox (Leptodactylon caespitosum), Bryce Canyon National Park, Utah. Photograph by Walter Fertig. Annotated Checklist of Vascular Flora Bryce Canyon National Park Natural Resource Technical Report NPS/NCPN/NRTR–2009/153 Author Walter Fertig Moenave Botanical Consulting 1117 W. Grand Canyon Dr. Kanab, UT 84741 Sarah Topp Northern Colorado Plateau Network P.O. Box 848 Moab, UT 84532 Editing and Design Alice Wondrak Biel Northern Colorado Plateau Network P.O. Box 848 Moab, UT 84532 January 2009 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The Natural Resource Publication series addresses natural resource topics that are of interest and applicability to a broad readership in the National Park Service and to others in the management of natural resources, including the scientifi c community, the public, and the NPS conservation and environmental constituencies. Manuscripts are peer-reviewed to ensure that the information is scientifi cally credible, technically accurate, appropriately written for the intended audience, and is designed and published in a professional manner. The Natural Resource Technical Report series is used to disseminate the peer-reviewed results of scientifi c studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service’s mission. The reports provide contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations.