Cross Shelf Patterns in Habitat Selectivity of Hawkfish (Family

Total Page:16

File Type:pdf, Size:1020Kb

Cross Shelf Patterns in Habitat Selectivity of Hawkfish (Family 1 Cross Shelf Patterns in Habitat Selectivity of Hawkfish (Family: Cirrhitidae) in the Red Sea; with a Special Case of Varying Color Morphs in Paracirrhites forsteri. Thesis by Veronica Chaidez In Partial Fulfillment of the Requirements For the Degree of Master of Science in Marine Science King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia Approval Date: December 2014 2 The thesis of Veronica Chaidez is approved by the examination committee. Committee Chairperson: Dr. Michael Berumen Committee Member: Dr. Xabier Irigoien Committee Member: Dr. Stein Kaartvedt 3 © 2014 Veronica Chaidez All Rights Reserved 4 ABSTRACT Cross Shelf Patterns in Habitat Selectivity of Hawkfish (Family: Cirrhitidae) in the Red Sea; with a Special Case of Varying Color Morphs in Paracirrhites forsteri. Veronica Chaidez Not much is known about hawkfish worldwide including those that occur in the understudied Red Sea reef system. Hawkfishes are small reef predators that perch in ambush-ready positions and shelter within or on various substrates including live and dead coral. The aim of this study was to look at the distribution and abundance patterns of Red Sea hawkfishes across an inshore and offshore gradient and to investigate the use of benthic habitats. This study was conducted on three inshore, four midshore, and two offshore reefs with surveys at 8 meters and along the reef crest. In total, three species were documented: Paracirrhites forsteri, Cirrhitichthys oxycephalus, and Cirrhitus spilotoceps. We found clear distinctions between depth zones and between continental shelf positions. Cirrhitichthys oxycephalus only occurs at the reef slope and Cirrhitus spilotoceps is only found on reef crests. Paracirrhites forsteri was the most abundant species across all reefs and was found in four varying color morphs. Morph 1 showed the most evidence of being a generalist as it utilized the greatest number of substrates. All three species were more abundant on midshore and offshore reefs which have healthier, 5 intact coral communities. Coral cover is a good indicator of hawkfish abundance even when the species in question does not utilize live coral directly. Keywords: coral cover, habitat selectivity, hawkfish, Red Sea 6 ACKNOWLEDGMENTS I would like to thank Drs. Michael Berumen and Darren Coker for their help in experimental design and data analysis. A special thank you to Dr. Darren Coker for joining me in the field and teaching me many tricks of the trade. Thank you also for teaching me the “whys” of the various techniques I used. Your insight and friendship were invaluable. A warm thank you goes to the entire team of CMOR, especially my faithful skippers that took me out every day to any reef that I needed. I could not have completed this project without you. Skukran. Thank you to Tane-Sinclair Taylor for the gorgeous close-ups of these beautiful fish. Thank you Maha Khalil for creating the map for my sampling sites. I’d like to thank the following people for joining me in the field: Alex Kattan, Alison Monroe, Amr Gusti, Darren Coker, Ioannis Georgakakis, Maddie Emms, Manalle Al- Salamah, May Roberts, Nora Kandler, Noura Ibrahim, Pedro De La Torre, Remy Gatins, Rodrigo Villalobos, Royale Hardenstine, Song He, and Tullia Terraneo. You were excellent buddies. Thank you to my roommate Marcela Herrera for being the domestic one and having been the one to brave IKEA. Thank you for being there for me until the very end of this thesis. Thank you Manalle for all the love. Thank you to my labmates for keeping me young with all the laughs. 7 TABLE OF CONTENTS • Examination Committee Approvals Form………………….…………...…….p.2 • Copyright Page.…………………….………………….………………………p.3 • Abstract……………………………………....…………………...……..…….p.4 • Acknowledgments…………………………....……………………..…......….p.6 • Table of Contents……………………………..…………………….…....…....p.7 • List of Figures…………………………………………………………………p.8 • List of Tables.………………….....…………………………………………...p.9 • 1. Introduction…………..……………...…………………………..………....p.10 o 1.1 Habitat selectivity…………………………………………….......p.10 o 1.2 Habitat structure……………………………………….….…........p.12 o 1.3 Research questions………………………………………...…...…p.13 • 2. Methods……………………………………………………..…..….…........p.14 o 2.1 Study site………….………..……………………………..………p.14 o 2.2 Study species…...……………………………...……………….....p.14 o 2.3 Surveys of fish and microhabitat………………………….……....p.15 o 2.4 Data Analysis……………………………………………….…..…p.16 o 2.5 Microhabitat selection……………..……………………….……..p.16 • 3. Results………………………..…………………………………….........…p.18 o 3.1 Benthic profiles……………………...……………………............p.18 o 3.2 Abundance……………………. …………………………….……p.19 o 3.3 Habitat selectivity ………...……………….………………….….p.20 o 3.4 Paracirrhites forsteri: four color morphs ……………………..….p.21 • 4. Discussion………………………..………………………………………...p.23 • 5. Conclusions………………………………………………………………...p.28 • References………………………………..………………………………..….p.30 • Appendices………………………………………………………………..…..p.33 8 LIST OF FIGURES 1. Figure 1. Sampling sites near Thuwal of the Central Red Sea. Green circles indicate inshore reefs, red circles indicate midshore reefs, and white circles indicate offshore reefs. Six sites were sampled at each of the three shelf positions………………………………………………………………………..p.33 2. Figure 2. Various color morphs of the Red Sea freckled hawkfish (Paracirrhites forsteri). a) Morph 1, b) Morph 2, c) Morph 3, d) Morph 4……………...……p.34 3. Figure 3. Substrate composition at three shelf positions: inshore, midshore, and offshore; and at two zones: crest and slope. a) inshore crest, b) inshore slope, c) midshore crest, d) midshore slope, e) offshore crest, f) offshore slope….…….p.35 4. Figure 4. Mean abundances of three species of hawkfish across two shelf positions and two zones. a) midshore crest, b) midshore slope, c) offshore crest, d) offshore slope Asterisks signify a significant difference between the two columns. …………………………………………………..………………………..…….p.36 5. Figure 5. Averages of the four P. forsteri color morphotypes at two shelf positions and two reef zones. a) midshore crest, b) midshore slope, c) offshore crest, d) offshore slope. Asteriks denote significant differences in abundances. In panel a), double asterisks mean morph 2 and 3 are not different from each other but both are different from morph 1……………………………………………………..p.36 9 LIST OF TABLES 1. Table 1. Percentage of live hard coral cover across shelf positions: inshore, midshore, and offshore and across reef zones: crest and slope…………….….p.37 2. Table 2. Selectivity index of three species of hawkfish across an inshore to offshore gradient for 14 categories of substrate. “=” denotes a category that was used in proportion to its availability, “+” means the category was used in greater proportion to its availability, “-“ means the category was used at a lower proportion than its availability, and “U” means the category went unused. “NA” means the substrate was not present. Subscripts represent Manly’s standardized selection ratio (B)……………………………………………………….…......p.38 3. Table 3. Selectivity index of the four color morphs of P. forsteri across an inshore to offshore gradient for 14 categories of substrate. “=” denotes a category that was used in proportion to its availability, “+” means the category was used in greater proportion to its availability, “-“ means the category was used at a lower proportion than its availability, and “U” means the category went unused. “NA” means the substrate was not present. Subscripts represent Manly’s standardized selection ratio (B)……………………………………………………..……….p.39 10 INTRODUCTION 1.1 Habitat Selectivity Organisms use their environment in a variety of ways and become adapted to their environment to different degrees. The degree of specialization for any organism lies on a continuum with generalists using a variety of habitats or resources, specialists using a narrower range of resources, and highly specialized organisms that optimize the use of one or two resources. This type of partitioning, allows for a host of diverse organisms and life strategies to co-exist and flourish in the same area (Morris 1996). The levels of biodiversity and speciation that we find in an ecosystem are functions of habitat selection strategies employed by members of the ecological community. Habitat selection expressed by species and populations gives us basic ecological knowledge of a system. The manner in which resources are partitioned among organisms has direct effects on population densities, species interactions, and the assemblage of ecological communities (Fretwell and Lucas 1970, Fretwell 1972, Rosenzweig 1974, Morris 2003). The various habitat selection strategies employed by organisms may also give us insight into their evolutionary trajectories (Morris 2003). Knowing the distribution patterns of a particular resource or habitat, allows us to better estimate abundance patterns of species that rely on them. For example, data on resource selection, informed management’s decision in Southcentral Wyoming to remove excess feral horses from the environment (Crane et al. 1997). Quantifying habitat and resource use has been a common practice in terrestrial management, especially for large mammals such as moose (Rounds 1981, Cederlund and Okarma 1988, Van Beest et al. 2010). In order to manage both moose populations and young pine seedlings which 11 moose like to eat, Van Beest et al. (2010) conducted a habitat use study to determine if artificial feeding sites made a difference in foraging behavior. There are many habitat selectivity studies that also look at seasonality
Recommended publications
  • Cirrhitidae 3321
    click for previous page Perciformes: Percoidei: Cirrhitidae 3321 CIRRHITIDAE Hawkfishes by J.E. Randall iagnostic characters: Oblong fishes (size to about 30 cm), body depth 2 to 4.6 times in standard Dlength. A fringe of cirri on posterior edge of anterior nostril. Two indistinct spines on opercle. A row of canine teeth in jaws, the longest usually anteriorly in upper jaw and half-way back on lower jaw; a band of villiform teeth inside the canines, broader anteriorly (in lower jaw only anteriorly). One or more cirri projecting from tips of interspinous membranes of dorsal fin. Dorsal fin continuous, with X spines and 11 to 17 soft rays, notched between spinous and soft portions; anal fin with III spines and 5 to 7 (usually 6) soft rays; pectoral fins with 14 rays, the lower 5 to 7 rays unbranched and usually enlarged, with the membranes deeply incised; pelvic fins with I spine and 5 soft rays. Principal caudal-fin rays 15. Branchiostegal rays 6. Scales cycloid. Swimbladder absent. Vertebrae 26. Colour: variable with species. cirri lower pectoral-fin rays thickened and unbranched Remarks: The hawkfish family consists of 10 genera and 38 species, 33 of which occur in the Indo-Pacific region; 19 species are found in the Western Central Pacific. Habitat, biology, and fisheries: Cirrhitids are bottom-dwelling fishes of coral reefs or rocky substrata; the majority occur in shallow water. They use their thickened lower pectoral-fin rays to wedge themselves in position in areas subject to surge. All species are carnivorous, feeding mainly on benthic crustaceans.
    [Show full text]
  • A Multifunction Trade-Off Has Contrasting Effects on the Evolution of Form and Function ∗ KATHERINE A
    Syst. Biol. 0():1–13, 2020 © The Author(s) 2020. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For permissions, please email: [email protected] DOI:10.1093/sysbio/syaa091 Downloaded from https://academic.oup.com/sysbio/advance-article/doi/10.1093/sysbio/syaa091/6040745 by University of California, Davis user on 08 January 2021 A Multifunction Trade-Off has Contrasting Effects on the Evolution of Form and Function ∗ KATHERINE A. CORN ,CHRISTOPHER M. MARTINEZ,EDWARD D. BURRESS, AND PETER C. WAINWRIGHT Department of Evolution & Ecology, University of California, Davis, 2320 Storer Hall, 1 Shields Ave, Davis, CA, 95616 USA ∗ Correspondence to be sent to: University of California, Davis, 2320 Storer Hall, 1 Shields Ave, Davis, CA 95618, USA; E-mail: [email protected] Received 27 August 2020; reviews returned 14 November 2020; accepted 19 November 2020 Associate Editor: Benoit Dayrat Abstract.—Trade-offs caused by the use of an anatomical apparatus for more than one function are thought to be an important constraint on evolution. However, whether multifunctionality suppresses diversification of biomechanical systems is challenged by recent literature showing that traits more closely tied to trade-offs evolve more rapidly. We contrast the evolutionary dynamics of feeding mechanics and morphology between fishes that exclusively capture prey with suction and multifunctional species that augment this mechanism with biting behaviors to remove attached benthic prey. Diversification of feeding kinematic traits was, on average, over 13.5 times faster in suction feeders, consistent with constraint on biters due to mechanical trade-offs between biting and suction performance.
    [Show full text]
  • Latitudinal Gradients in Atlantic Reef Fish Communities: Trophic Structure and Spatial Use Patterns
    Journal of Fish Biology (2004) 64, 1680–1699 doi:10.1111/j.1095-8649.2004.00428.x,availableonlineathttp://www.blackwell-synergy.com Latitudinal gradients in Atlantic reef fish communities: trophic structure and spatial use patterns S. R. FLOETER*†,C.E.L.FERREIRA‡, A. DOMINICI-AROSEMENA§ AND I. R. ZALMON* *Lab. de Cieˆncias Ambientais, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28 013-600, Brasil, ‡Depto. de Oceanografia, IEAPM, Rua Kioto 253, Arraial do Cabo, RJ, 28 930-000, Brasil and §Center for Tropical Marine Ecology (ZMT), Fahrenheitstrasse 6, 28 359, Bremen, Germany (Received 1 August 2003, Accepted 19 March 2004) Trophic strategies and spatial use habits were investigated in reef fish communities. The results supported the hypothesis of differential use of food resources among tropical and higher latitude reef fishes, i.e. the number of species and relative abundance of fishes relying on relatively low-quality food significantly decreased from tropical to temperate latitudes. The species : genus ratio of low-quality food consumers increased toward the tropics, and was higher than the overall ratio considering all fishes in the assemblages. This supports the view that higher speciation rates occurred among this guild of fishes in warm waters. It was also demonstrated that density of herbivorous fishes (the dominant group relying on low-quality food resources) in the western Atlantic decreased from tropical to temperate latitudes. Spatial use and mobility varied with latitude and consequently reef type and complexity. Fishes with small-size home ranges predominated on tropical coral reefs. # 2004 The Fisheries Society of the British Isles Key words: community structure; herbivory; latitudinal gradient; macroecology; reef fishes.
    [Show full text]
  • Morphological Variations in the Scleral Ossicles of 172 Families Of
    Zoological Studies 51(8): 1490-1506 (2012) Morphological Variations in the Scleral Ossicles of 172 Families of Actinopterygian Fishes with Notes on their Phylogenetic Implications Hin-kui Mok1 and Shu-Hui Liu2,* 1Institute of Marine Biology and Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung 804, Taiwan 2Institute of Oceanography, National Taiwan University, 1 Roosevelt Road, Sec. 4, Taipei 106, Taiwan (Accepted August 15, 2012) Hin-kui Mok and Shu-Hui Liu (2012) Morphological variations in the scleral ossicles of 172 families of actinopterygian fishes with notes on their phylogenetic implications. Zoological Studies 51(8): 1490-1506. This study reports on (1) variations in the number and position of scleral ossicles in 283 actinopterygian species representing 172 families, (2) the distribution of the morphological variants of these bony elements, (3) the phylogenetic significance of these variations, and (4) a phylogenetic hypothesis relevant to the position of the Callionymoidei, Dactylopteridae, and Syngnathoidei based on these osteological variations. The results suggest that the Callionymoidei (not including the Gobiesocidae), Dactylopteridae, and Syngnathoidei are closely related. This conclusion was based on the apomorphic character state of having only the anterior scleral ossicle. Having only the anterior scleral ossicle should have evolved independently in the Syngnathioidei + Dactylopteridae + Callionymoidei, Gobioidei + Apogonidae, and Pleuronectiformes among the actinopterygians studied in this paper. http://zoolstud.sinica.edu.tw/Journals/51.8/1490.pdf Key words: Scleral ossicle, Actinopterygii, Phylogeny. Scleral ossicles of the teleostome fish eye scleral ossicles and scleral cartilage have received comprise a ring of cartilage supporting the eye little attention. It was not until a recent paper by internally (i.e., the sclerotic ring; Moy-Thomas Franz-Odendaal and Hall (2006) that the homology and Miles 1971).
    [Show full text]
  • Metabarcoding Dietary Analysis of Coral Dwelling Predatory Fish Demonstrates the Minor Contribution of Coral Mutualists to Their Highly Partitioned, Generalist Diet
    Metabarcoding dietary analysis of coral dwelling predatory fish demonstrates the minor contribution of coral mutualists to their highly partitioned, generalist diet Matthieu Leray1,2,3 , Christopher P. Meyer3 and Suzanne C. Mills1,2 1 USR 3278 CRIOBE CNRS-EPHE-UPVD, CBETM de l’Universite´ de Perpignan, Perpignan Cedex, France 2 Laboratoire d’Excellence “CORAIL” 3 Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., USA ABSTRACT Understanding the role of predators in food webs can be challenging in highly diverse predator/prey systems composed of small cryptic species. DNA based dietary analysis can supplement predator removal experiments and provide high resolution for prey identification. Here we use a metabarcoding approach to provide initial insights into the diet and functional role of coral-dwelling predatory fish feeding on small invertebrates. Fish were collected in Moorea (French Polynesia) where the BIOCODE project has generated DNA barcodes for numerous coral associated invertebrate species. Pyrosequencing data revealed a total of 292 Operational Taxonomic Units (OTU) in the gut contents of the arc-eye hawkfishParacirrhites ( arcatus), the flame hawkfishNeocirrhites ( armatus) and the coral croucher (Caracanthus maculatus). One hundred forty-nine (51%) of them had species-level matches in reference libraries (>98% similarity) while 76 additional OTUs (26%) could be identified to higher taxonomic levels. Decapods that have a mutualistic relationship with Pocillopora and are typically dominant among coral branches, represent a minor Submitted 7 April 2015 contribution of the predators’ diets. Instead, predators mainly consumed transient Accepted 2 June 2015 species including pelagic taxa such as copepods, chaetognaths and siphonophores Published 25 June 2015 suggesting non random feeding behavior.
    [Show full text]
  • Towards a Global Names Architecture: the Future of Indexing Scientific Names
    A peer-reviewed open-access journal ZooKeys 550: 261–281Towards (2016) a Global Names Architecture: The future of indexing scientific names 261 doi: 10.3897/zookeys.550.10009 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Towards a Global Names Architecture: The future of indexing scientific names Richard L. Pyle1 1 Bernice Pauahi Bishop Museum, 1525 Bernice Street, Honolulu, HI 96817, USA Corresponding author: Richard L. Pyle (email address) Academic editor: Ellinor Michel | Received 19 May 2015 | Accepted 20 May 2015 | Published 7 January 2016 http://zoobank.org/AD5B8CE2-BCFC-4ABC-8AB0-C92DEC7D4D85 Citation: Pyle RL (2016) Towards a Global Names Architecture: The future of indexing scientific names. In: Michel E (Ed.) Anchoring Biodiversity Information: From Sherborn to the 21st century and beyond. ZooKeys 550: 261–281. doi: 10.3897/zookeys.550.10009 Abstract For more than 250 years, the taxonomic enterprise has remained almost unchanged. Certainly, the tools of the trade have improved: months-long journeys aboard sailing ships have been reduced to hours aboard jet airplanes; advanced technology allows humans to access environments that were once utterly inacces- sible; GPS has replaced crude maps; digital hi-resolution imagery provides far more accurate renderings of organisms that even the best commissioned artists of a century ago; and primitive candle-lit micro- scopes have been replaced by an array of technologies ranging from scanning electron microscopy to DNA sequencing. But the basic paradigm remains the same. Perhaps the most revolutionary change of all – which we are still in the midst of, and which has not yet been fully realized – is the means by which taxonomists manage and communicate the information of their trade.
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]
  • The Marine Biodiversity and Fisheries Catches of the Pitcairn Island Group
    The Marine Biodiversity and Fisheries Catches of the Pitcairn Island Group THE MARINE BIODIVERSITY AND FISHERIES CATCHES OF THE PITCAIRN ISLAND GROUP M.L.D. Palomares, D. Chaitanya, S. Harper, D. Zeller and D. Pauly A report prepared for the Global Ocean Legacy project of the Pew Environment Group by the Sea Around Us Project Fisheries Centre The University of British Columbia 2202 Main Mall Vancouver, BC, Canada, V6T 1Z4 TABLE OF CONTENTS FOREWORD ................................................................................................................................................. 2 Daniel Pauly RECONSTRUCTION OF TOTAL MARINE FISHERIES CATCHES FOR THE PITCAIRN ISLANDS (1950-2009) ...................................................................................... 3 Devraj Chaitanya, Sarah Harper and Dirk Zeller DOCUMENTING THE MARINE BIODIVERSITY OF THE PITCAIRN ISLANDS THROUGH FISHBASE AND SEALIFEBASE ..................................................................................... 10 Maria Lourdes D. Palomares, Patricia M. Sorongon, Marianne Pan, Jennifer C. Espedido, Lealde U. Pacres, Arlene Chon and Ace Amarga APPENDICES ............................................................................................................................................... 23 APPENDIX 1: FAO AND RECONSTRUCTED CATCH DATA ......................................................................................... 23 APPENDIX 2: TOTAL RECONSTRUCTED CATCH BY MAJOR TAXA ............................................................................
    [Show full text]
  • Report Re Report Title
    ASSESSMENT OF CORAL REEF BIODIVERSITY IN THE CORAL SEA Edgar GJ, Ceccarelli DM, Stuart-Smith RD March 2015 Report for the Department of Environment Citation Edgar GJ, Ceccarelli DM, Stuart-Smith RD, (2015) Reef Life Survey Assessment of Coral Reef Biodiversity in the Coral Sea. Report for the Department of the Environment. The Reef Life Survey Foundation Inc. and Institute of Marine and Antarctic Studies. Copyright and disclaimer © 2015 RLSF To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of RLSF. Important disclaimer RLSF advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, RLSF (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it. Cover Image: Wreck Reef, Rick Stuart-Smith Back image: Cato Reef, Rick Stuart-Smith Catalogue in publishing details ISBN ……. printed version ISBN ……. web version Chilcott Island Contents Acknowledgments ........................................................................................................................................ iv Executive summary........................................................................................................................................ v 1 Introduction ...................................................................................................................................
    [Show full text]
  • Reef Fishes of the Bird's Head Peninsula, West Papua, Indonesia
    Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT).
    [Show full text]
  • Cottoidei: Cottidae) Necessitates Generic Realignment
    G C A T T A C G G C A T genes Article Genetic Evidence for a Mixed Composition of the Genus Myoxocephalus (Cottoidei: Cottidae) Necessitates Generic Realignment Evgeniy S. Balakirev 1,2,*, Alexandra Yu. Kravchenko 1,3 and Alexander A. Semenchenko 3 1 A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia; [email protected] 2 School of Biomedicine, Far Eastern Federal University, Vladivostok 690950, Russia 3 Laboratory of Ecology and Evolutionary Biology of Aquatic Organisms, School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russia; [email protected] * Correspondence: [email protected] Received: 7 July 2020; Accepted: 9 September 2020; Published: 11 September 2020 Abstract: Sculpin fishes belonging to the family Cottidae represent a large and complex group, inhabiting a wide range of freshwater, brackish-water, and marine environments. Numerous studies based on analysis of their morphology and genetic makeup frequently provided controversial results. In the present work, we sequenced complete mitochondrial (mt) genomes and fragments of nuclear ribosomal DNA (rDNA) of the fourhorn sculpin Myoxocephalus quadricornis and some related cottids to increase the power of phylogenetic and taxonomic analyses of this complex fish group. A comparison of the My. quadricornis mt genomes obtained by us with other complete mt genomes available in GenBank has revealed a surprisingly low divergence (3.06 0.12%) with Megalocottus platycephalus ± and, at the same time, a significantly higher divergence (7.89 0.16%) with the species of the genus ± Myoxocephalus. Correspondingly, phylogenetic analyses have shown that My. quadricornis is clustered with Me.
    [Show full text]
  • Annotated Checklist of the Fish Species (Pisces) of La Réunion, Including a Red List of Threatened and Declining Species
    Stuttgarter Beiträge zur Naturkunde A, Neue Serie 2: 1–168; Stuttgart, 30.IV.2009. 1 Annotated checklist of the fish species (Pisces) of La Réunion, including a Red List of threatened and declining species RONALD FR ICKE , THIE rr Y MULOCHAU , PA tr ICK DU R VILLE , PASCALE CHABANE T , Emm ANUEL TESSIE R & YVES LE T OU R NEU R Abstract An annotated checklist of the fish species of La Réunion (southwestern Indian Ocean) comprises a total of 984 species in 164 families (including 16 species which are not native). 65 species (plus 16 introduced) occur in fresh- water, with the Gobiidae as the largest freshwater fish family. 165 species (plus 16 introduced) live in transitional waters. In marine habitats, 965 species (plus two introduced) are found, with the Labridae, Serranidae and Gobiidae being the largest families; 56.7 % of these species live in shallow coral reefs, 33.7 % inside the fringing reef, 28.0 % in shallow rocky reefs, 16.8 % on sand bottoms, 14.0 % in deep reefs, 11.9 % on the reef flat, and 11.1 % in estuaries. 63 species are first records for Réunion. Zoogeographically, 65 % of the fish fauna have a widespread Indo-Pacific distribution, while only 2.6 % are Mascarene endemics, and 0.7 % Réunion endemics. The classification of the following species is changed in the present paper: Anguilla labiata (Peters, 1852) [pre- viously A. bengalensis labiata]; Microphis millepunctatus (Kaup, 1856) [previously M. brachyurus millepunctatus]; Epinephelus oceanicus (Lacepède, 1802) [previously E. fasciatus (non Forsskål in Niebuhr, 1775)]; Ostorhinchus fasciatus (White, 1790) [previously Apogon fasciatus]; Mulloidichthys auriflamma (Forsskål in Niebuhr, 1775) [previously Mulloidichthys vanicolensis (non Valenciennes in Cuvier & Valenciennes, 1831)]; Stegastes luteobrun- neus (Smith, 1960) [previously S.
    [Show full text]