Screening of Mangrove Endophytic Fungi for Bioactive Compounds

Total Page:16

File Type:pdf, Size:1020Kb

Screening of Mangrove Endophytic Fungi for Bioactive Compounds Screening of Mangrove Endophytic Fungi for Bioactive Compounds by ONN MAY LING A thesis presented in fulfillment of the requirements for the degree of Masters of Science (by Research) at Swinburne University of Technology 2013 Abstract Endophytic fungi are an underexplored group of microorganisms as only a few plants have been studied with regards to this community. They live inside the tissues of other organisms, such as mangrove plants that provide protection to them and in return endophytic fungi support their hosts by fighting off pathogens through the production of antimicrobial compounds. These bioactive compounds are secondary metabolites which are often produced as waste- or by-products. Besides, endophytic fungi also help the host plant in adapting to (extreme) environments, for example by removing harmful heavy metals. In Malaysia, mangrove forests continue to be threatened by heavy metal pollution, resulting from industrial waste water pollution and urbanization.The presence of heavy metals can lead to severe damage as they are bioaccumulative and toxic. In the present study, endophytic fungi isolated frommangrove plants were characterized and assessed for their antimicrobial, cytotoxicity activity and heavy metal biosorption potential. Twelve endophytic fungi were isolated and identified (using molecular methods) to belong to 7 families: Penicillium, Curvularia, Diaporthe, Aspergillus, Guignardia, Neosartorya and Eupenicillium. Antimicrobial activities of these 12 fungal endophytes were tested against gram positive bacteria (Bacillus subtilis and Staphylococcus aureus among others), gram negative bacteria (Escherichia coli among others), yeast (Saccharomyces cerevisiae) and fungi (Candida albicans and Aspergillus niger). Two strains; Isolate 7 and Isolate 13 (related to Guignardia sp. and Neosartoya sp., respectively) showed strong antimicrobial (and antifungal) activity which was indicated by the formation of clear zone of inhibition, whereas the rest showed no activity. Compounds were isolated from the extracts of both isolates and screened using HPLC. Whereas for cytotoxicity assay, two strains; Isolate 3 and Isolate 9 (related to Diaporthe sp. and Eupenicillium sp., respectively) displayed toxicity against the matured brine shrimps at concentrations of 500 ppm after 24 hours incubation. For heavy metal biosorption, Isolate 2, which is closely related to Curvularia sp., is the most efficient in removing Cu, up to 25mg Cu/g biomass (using dead biomass). On the other hand, Isolate 8 and Isolate 13 (both related to Neosartorya sp.) are the most efficient in removing zinc (also using dead biomass), with a removal of up to 24 mg Zn/g biomass.The findings clearly indicate the potential of mangrove endophytic fungi to be used for drug development and also in wastewater bioremediation. ACKNOWLEDGEMENT I would like to express the deepest appreciation to my supervisor, Dr. Moritz Mueller, who has the attitude and substance of a genius: he continually and convincingly conveyed a spirit of adventure in regard to research, and an excitement in regard to teaching his students. Without his guidance and persistent help, this research as well as dissertation would not have been possible. I would also like to thank my co-supervisors, Dr. Lim Po Teen and Dr. Aazani Mujahid, whose work demonstrated that science and technology should always transcend academia. In addition, a thank you to my senior lab mate, Noreha Mahidi, who gave the permission to use her required equipment and the necessary materials to complete the benchwork. Besides, her stimulating suggestions and encouragement definitely has helped me to coordinate my project. I would also like to thank my fellow colleagues of the lab, Felicity Kuek, Chua Jia Ni, Nurul and Fika for the guidance and help throughout my benchwork period. Deepest appreciation for the time spent helping me out with some equipments as well as other tasks. Lastly, I would like to thank Professor Peter Proksch from the Institut für Pharmazeutische Biologie und Biotechnologie, University of Düsseldorf,Germany for the HPLC analysis conducted on my research samples. DECLARATION I, Miss Onn May Ling, Masters of Science (By Research), Faculty of Engineering, Computing and Science, hereby declare that my project work titled “Screening of Mangrove Endophytic Fungi For Bioactive Compounds” is original and contains no material which has been accepted for the award to the candidate of any other degree or diploma, except where due reference is made in the text of the examinable outcome; to the best of candidate’s knowledge contains no material previously published or written by another person except where due reference is made in the text of the examinable outcome; and where the work is based on joint research or publications, discloses the relative contributions of the respective workers or authors. All the given information is true to best of my knowledge. …………………………… (ONN MAY LING) DATE: 1.7.2013 I Table of Contents List of Figures ...................................................................................................................... VI List of Tables......................................................................................................................VIII 1. Introduction................................................................................................................ 1 1.1 Infectious diseases, drug resistance, and bioactive compounds................................... 1 1.2 Sources of bioactive compounds.................................................................................. 4 1.3 Fungi ............................................................................................................................ 6 1.3.1 Fungi as sources of bioactive compounds............................................................. 7 1.4Endophytic fungi........................................................................................................... 7 1.4.1 Endophytic fungi as sources of bioactive compounds .......................................... 9 1.5 Mangroves.................................................................................................................. 17 1.5.1 Mangrove endophytic fungi ................................................................................ 19 1.5.2Threats to mangroves ........................................................................................... 21 1.5.3 Heavy metal pollution......................................................................................... 21 1.5.4 Heavy metal uptake and removal........................................................................ 23 1.5.5Biosorption by Marine Fungi............................................................................... 24 1.6Aim of the project and scope of study ........................................................................ 25 2. Materials and methods ............................................................................................. 26 2.1 Sampling .................................................................................................................... 26 2.1.1 Field site sampling .............................................................................................. 26 2.2 Isolation of mangrove endophytic fungi .................................................................... 27 2.2.1 Plant samples....................................................................................................... 27 2.2.2 Soil samples ........................................................................................................ 28 2.3 Fungal Cultivation...................................................................................................... 31 2.3.1 Fungal Culture for Short Term Storage .............................................................. 31 2.3.2 Fungal Culture for Long Term Storage............................................................... 31 2.3.3 Fungal Culture for Extraction of Bioactive Compounds .................................... 31 2.4 Endophytic fungi identification.................................................................................. 33 2.5 Extraction of bioactive compounds............................................................................ 36 2.5.1 Solvent-solvent extraction................................................................................... 36 II 2.6 Biological Assays....................................................................................................... 40 2.6.1 Primary Screening of antimicrobial activity ....................................................... 40 2.6.2 Secondary screening of antimicrobial activity.................................................... 41 2.6.3 General Cytotoxicity assay ................................................................................. 41 2.7 Heavy Metal Analysis................................................................................................ 45 2.7.1 Determination of heavy metal-resistant fungi..................................................... 45 2.7.2 Heavy metal biosorption by dead fungal cells .................................................... 45 3. Results and Discussion............................................................................................. 48 3.1 Fungi identification .................................................................................................... 48 3.2 Biological assays.......................................................................................................
Recommended publications
  • Oakland Sheriff's Dept Fee Schedule 02.09
    CLIENT SERVICE FEE SCHEDULE NAME: OAKLAND SHERIFF'S DEPT ACCT SETUP: 2/1/87 REP ID: GRP BILL #: 22857610 GRP CD: N DISC %: FS ID: 01 FS DESCR: 2003 CLIENT FEES PRICE TYPE: SERVICE CODE SERVICE NAME UPF PRICE TEST PRICE UPF DISC IND 0000018 PLT SODIUM CITRATE $12.86 $4.37 Y 0000022 APC RESISTANCE $101.62 $34.55 Y 0000201 ACETAMINOPHEN $110.24 $37.48 Y 0000202 ACETALDEHYDE (B) $73.00 $73.00 N 0000203 ARSENIC,TISSUE $302.00 $302.00 N 0000204 DHT $182.70 $62.12 Y 0000205 ACETONE (B) $102.20 $34.75 Y 0000206 ACETYLCHOLINE $165.00 $56.10 Y 0000208 ACID PHOS, PROS, IMM $35.60 $12.10 Y 0000210 ACID PHOS, TOTAL $37.22 $12.65 Y 0000211 ACTH $110.00 $37.40 Y 0000212 AMYLASE (U) $45.45 $15.45 Y 0000213 IMMUNOFIX, UR $67.39 $22.91 Y 0000214 ETHOSUXIMIDE $112.07 $38.10 Y 0000216 ANTITHROMBIN III ACT $170.46 $57.96 Y 0000219 ALA, QUANT $107.10 $36.41 Y 0000223 ALBUMIN $22.88 $22.88 N 0000224 ALBUMIN, CSF $36.25 $12.33 Y 0000225 CYCLIC AMP, UR $205.80 $69.97 Y 0000227 ALDOLASE $32.08 $10.91 Y 0000228 A-2-MACROGLOB. $78.75 $26.78 Y 0000229 ALDOSTERONE (U) $251.58 $85.54 Y 0000230 ALDOSTERONE $207.10 $70.41 Y 0000231 ALK PHOS ISOENZYMES $61.34 $20.86 Y 0000232 AFP, FLUID W/RFX $107.40 $36.52 Y 0000233 LEUKOCYTE ALK PHOS $34.60 $11.76 Y 0000234 ALKALINE PHOSPHATASE $22.88 $22.88 N 0000235 A-1-ANTITRYPSN $40.22 $13.67 Y 0000236 AMIKACIN $99.91 $33.97 Y 0000237 AFP,TUMOR (CHIRON) $53.86 $18.31 Y 0000238 AMINO ACID SCR $87.15 $29.63 Y 0000240 RAST PANEL #103 $62.00 $62.00 N 0000241 AMPHETAMINE GC/MS $111.70 $37.98 Y 0000242 CYCLIC AMP $205.80 $69.97 Y 0000243 AMYLASE $16.42 $5.58 Y 0000248 HACKBERRY IGE $35.40 $35.40 N 0000249 ANA W/RFX $55.00 $18.70 Y 0000250 *AMIKACIN,PEAK&TROUGH $199.83 $67.94 Y 0000251 ANDROSTENEDIONE $180.65 $61.42 Y 0000252 ANTI-DIUR.
    [Show full text]
  • ISOLATION, CHARACTERISATION AND/OR EVALUATION of PLANT EXTRACTS for ANTICANCER POTENTIAL KARUPPIAH PILLAI MANOHARAN (M.Sc., M.Ph
    ISOLATION, CHARACTERISATION AND/OR EVALUATION OF PLANT EXTRACTS FOR ANTICANCER POTENTIAL KARUPPIAH PILLAI MANOHARAN (M.Sc., M.Phil., B.Ed.,) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMISTRY NATIONAL UNIVERSITY OF SINGAPORE 2006 Acknowledgements I wish to express my sincere gratitude and appreciation to my supervisors, Associate Prof. Yang Dai Wen and Associate Prof. Tan, Benny Kwong Huat for their advice, suggestions, constructive criticisms, critical comments and constant guidance throughout the course my study. I am very thankful to Asst. Prof. Henry, Mok Yu-Keung; his supervisor-like role throughout my research work is greatly appreciated. I am very grateful to Prof. Sim Keng Yeow for his help, support and guidance at the beginning of this course of study. I would like to thank all the technical staffs of Departments of Chemistry and Pharmacology for their superb technical assistance. My sincere thanks are due to Ms. Annie Hsu for her technical assistance at the traditional medicine and natural product research laboratory, Department of Pharmacology, Faculty of Medicine. I would like to thank Dr. Fan Sing Jong, NMR Manager for his help in the structure elucidation. I would like to thank Associate Prof. Hugh Tan Tiang Wah and Chua Keng Soon, Senior Laboratory Officer (RMBR), Herbarium, for the identification of plant materials, Eugenia grandis and Fagraea fragrans. I am very grateful to the former head Prof. Lee Hian Kee and the present head Prof. Hor Tzi Sum, Andy, Department of Chemistry for facilitating requests and approvals during the period of my study. My appreciation also goes to all my friends.
    [Show full text]
  • Endophytic Fungi: Treasure for Anti-Cancerous Compounds
    International Journal of Pharmacy and Pharmaceutical Sciences ISSN- 0975-1491 Vol 8, Issue 8, 2016 Review Article ENDOPHYTIC FUNGI: TREASURE FOR ANTI-CANCEROUS COMPOUNDS ANAND DILIP FIRODIYAa*, RAJESH KUMAR TENGURIAb aCSRD, Peoples University, Bhopal 462037, Madhya Pradesh, India, bDepartment of Botany, Govt. PG College, Rajgarh 496551, Madhya Pradesh, India Email: [email protected] Received: 22 Apr 2016 Revised and Accepted: 20 June 2016 ABSTRACT Endophytic fungi that live asymptomatically inside the plant tissues have novel bioactive metabolites exhibiting a variety of biological activities, especially against cancer. This review highlights the research progress on the production of anticancer compounds by endophytic fungi from 1990- 2015. Anticancer activity is generally associated with the cytotoxicity of the compounds present in the endophytic fungi. The ubiquitous nature of endophytic fungi synthesise diverse chemicals with promising anticancer activity from either their original host or related species. Modification in fermentation parameters and genetic insight of endophytes may produce novel anti-cancerous compounds. Keywords: Cancer, Medicinal plants, Secondary metabolites © 2016 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) INTRODUCTION endophytic fungi detectable by high-performance liquid chromate- graphy, nuclear magnetic resonance, mass spectrophotometer and The interest in the biogenic medicines has revived throughout the X-ray crystallography and its cytotoxicity of the bioactive world, as the increase in awareness of the health hazards and compounds against cancer cell lines. The compounds with potential toxicity associated with the random use of synthetic drugs and application were also considered in the selection of antitumor antibiotics [1].
    [Show full text]
  • Discogenic Back Pain : the Induction and Prevention of a Pro-Inflammatory Cascade in Intervertebral Disc Cells in Vitro
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2013 Discogenic back pain : the induction and prevention of a pro-inflammatory cascade in intervertebral disc cells in vitro Quero, Lilian Abstract: Low back pain (LBP) is a prevalent symptom that more than 80% of the population experience once in their lifetime. This can lead to severe impairment of the workaday life and cause enormous costs in the society. Because LBP mostly appears as a non-specific back pain symptom, provoked by the spine or its environment, the evaluation of the source is bearing some challenge. Whereas the pathomorphological source of pain is well defined in the specific spinal pathology, such as in the caseofa scoliosis or sciatica, finding a correlation between the source of pain and a certain abnormality isdifficult in non-specific LPB symptoms. This is accompanied by the disadvantage of finding a suitable treatment. One possible source of LPB represents the intervertebral disc (IVD), which can alter from a pain free (asymptomatic) to a painful (symptomatic) IVD during degeneration, leading to so called discogenic back pain. Provocative discography is to date the only means to assign LBP to a degenerated disc, with its usage being under dispute. The IVD has an important function as a shock absorber, as there is a high load on the spine. During a lifetime, our IVD becomes degenerated which means its matrix is more catabolized then anabolized, leading to an overall matrix breakdown and decreased quality of the IVD. The matrix consists of long protein chains and sugars, responsible for the ability to attract water, comparable to a sponge.
    [Show full text]
  • And Mushroom-Associated Alkaloids from Two Behavior Modifying
    bioRxiv preprint doi: https://doi.org/10.1101/375105; this version posted December 18, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Psychoactive plant- and mushroom-associated alkaloids from two behavior modifying 2 cicada pathogens 3 4 Greg R. Boyce1, Emile Gluck-Thaler2, Jason C. Slot2, Jason E. Stajich3, William J. Davis4, Tim 5 Y. James4, John R. Cooley5, Daniel G. Panaccione1, Jørgen Eilenberg6, Henrik H. De Fine Licht6, 6 Angie M. Macias1, Matthew C. Berger1, Kristen L. Wickert1, Cameron M. Stauder1, Ellie J. 7 Spahr1, Matthew D. Maust1, Amy M. Metheny1, Chris Simon5, Gene Kritsky7, Kathie T. Hodge8, 8 Richard A. Humber8,9, Terry Gullion10, Dylan P. G. Short11, Teiya Kijimoto1, Dan Mozgai12, 9 Nidia Arguedas13, Matt T. Kasson1,* 10 11 1Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, 12 26506, USA. 13 2Department of Plant Pathology, The Ohio State University, Columbus, Ohio 43210, USA. 14 3Department of Microbiology and Plant Pathology and Institute for Integrative Genome Biology, 15 University of California, Riverside, California 92521, USA. 16 4Department of Ecology and Evolution, University of Michigan, Ann Arbor, Michigan 48109, 17 USA. 18 5Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, 19 Connecticut 06269, USA. 20 6Department of Plant and Environmental Science, University of Copenhagen, Denmark. 21 7Department of Biology, Mount St. Joseph University, Cincinnati, Ohio 45233, USA. 22 8Plant Pathology & Plant-Microbe Biology, School of Integrative Plant Science, Cornell 23 University, Ithaca, New York 14853, USA.
    [Show full text]
  • Fungal Endophytes As Efficient Sources of Plant-Derived Bioactive
    microorganisms Review Fungal Endophytes as Efficient Sources of Plant-Derived Bioactive Compounds and Their Prospective Applications in Natural Product Drug Discovery: Insights, Avenues, and Challenges Archana Singh 1,2, Dheeraj K. Singh 3,* , Ravindra N. Kharwar 2,* , James F. White 4,* and Surendra K. Gond 1,* 1 Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India; [email protected] 2 Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India 3 Department of Botany, Harish Chandra Post Graduate College, Varanasi 221001, India 4 Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA * Correspondence: [email protected] (D.K.S.); [email protected] (R.N.K.); [email protected] (J.F.W.); [email protected] (S.K.G.) Abstract: Fungal endophytes are well-established sources of biologically active natural compounds with many producing pharmacologically valuable specific plant-derived products. This review details typical plant-derived medicinal compounds of several classes, including alkaloids, coumarins, flavonoids, glycosides, lignans, phenylpropanoids, quinones, saponins, terpenoids, and xanthones that are produced by endophytic fungi. This review covers the studies carried out since the first report of taxol biosynthesis by endophytic Taxomyces andreanae in 1993 up to mid-2020. The article also highlights the prospects of endophyte-dependent biosynthesis of such plant-derived pharma- cologically active compounds and the bottlenecks in the commercialization of this novel approach Citation: Singh, A.; Singh, D.K.; Kharwar, R.N.; White, J.F.; Gond, S.K. in the area of drug discovery. After recent updates in the field of ‘omics’ and ‘one strain many Fungal Endophytes as Efficient compounds’ (OSMAC) approach, fungal endophytes have emerged as strong unconventional source Sources of Plant-Derived Bioactive of such prized products.
    [Show full text]
  • High-Throughput Screen of Natural Product Libraries for Hsp90 Inhibitors
    Biology 2014, 3, 101-138; doi:10.3390/biology3010101 OPEN ACCESS biology ISSN 2079-7737 www.mdpi.com/journal/biology Article High-Throughput Screen of Natural Product Libraries for Hsp90 Inhibitors 1,† Jason Davenport 1, Maurie Balch 1, Lakshmi Galam , Antwan Girgis 2, Jessica Hall 2, Brian S. J. Blagg 2 and Robert L. Matts 1,* 1 Department of Biochemistry and Molecular Biology, 246 Noble Research Center, Oklahoma State University, Stillwater, OK 74078, USA; E-Mails: [email protected] (J.D.); [email protected] (M.B.); [email protected] (L.G.) 2 Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Malott 4070, Lawrence, KS 66045, USA; E-Mails: [email protected] (A.G.); [email protected] (J.H.); [email protected] (B.S.J.B.) † Current address: Department of Internal Medicine, University of South Florida School of Medicine, 12901 Bruce B. Downs Blvd. MDC 19, Tampa, FL 33612, USA. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-405-744-6200; Fax: +1-405-744-7799. Received: 7 January 2014; in revised form: 22 January 2014 / Accepted: 22 January 2014 / Published: 10 February 2014 Abstract: Hsp90 has become the target of intensive investigation, as inhibition of its function has the ability to simultaneously incapacitate proteins that function in pathways that represent the six hallmarks of cancer. While a number of Hsp90 inhibitors have made it into clinical trials, a number of short-comings have been noted, such that the search continues for novel Hsp90 inhibitors with superior pharmacological properties.
    [Show full text]
  • Fungal Endophytes: Promising Tools for Pharmaceutical Science
    Int. J. Pharm. Sci. Rev. Res., 25(2), Mar – Apr 2014; Article No. 25, Pages: 128-138 ISSN 0976 – 044X Research Article Fungal Endophytes: Promising Tools for Pharmaceutical Science Pramod Kumar Pandey1,2, Siddhartha Singh1, Raj Naraian Singh Yadav2, Amit Kumar Singh1*, M. Chandra Kumar Singh1 1Department of Basic Science and Humanities, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, India. 2Centre for Studies in Biotechnology, Dibrugarh University, Dibrugarh, Assam, India. *Corresponding author’s E-mail: [email protected] Accepted on: 27-01-2014; Finalized on: 31-03-2014. ABSTRACT Fungal endophytes are microorganisms that internally infect living plant tissues without causing any visible symptom of infection, and live in mutualistic relationship with plants for at least a part of their life cycle. Every plant in the world is reservoir of one or more number of endophytes. In recent year’s special attention have been made towards endophytic fungi because of their ability to synthesize several novel bioactive compounds not previously known to biological system which are important for pharmaceutical, agricultural and industrial sector. This review describes information on endophyte diversity, as well as production of secondary metabolites with special emphasis on anti cancerous, antimicrobial, antiviral, antibiotics along with huge number of other secondary metabolites for commercial exploitation in pharmaceutical and medical field. Furthermore, the chemical potential of endophytic fungi for drug discovery will be discussed with focus on the detection of pharmaceutically valuable plant constituents as products of fungal biosynthesis in recent years. At present a huge world population is suffering from the problem caused by drug resistant microbes (bacteria, parasitic protozoans and fungus) which decreases the efficiency of synthetic drugs.
    [Show full text]
  • COMPARATIVE BIOLOGICAL EVALUATION of SIX ENDOPHYTIC FUNGI ISOLATED from VINCA ROSEA LEAVES Ahmed M
    Az. J. Pharm Sci. Vol. 59, March, 2019. 137 COMPARATIVE BIOLOGICAL EVALUATION OF SIX ENDOPHYTIC FUNGI ISOLATED FROM VINCA ROSEA LEAVES Ahmed M. Metwaly*1, Mohamed A. Ashour1, Shabana Khan2, Guoyi Ma2, Hazem A. Kadry1, Atef A. El-Hela1, Abd-Elsalam I. Mohammad1, Stephen J. Cutler3 and Samir A. Ross2 1Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt 2 Department of Biomolecular Science, National Center for Natural Products Research, University of Mississippi, Oxford, MS 38677, USA 3Department of Medicinal Chemistry, School of Pharmacy, the University of Mississippi, Oxford, MS 38677, USA *Corresponding authors: [email protected] Abstract In this study, a total of six endophytic fungi have been isolated from Vinca rosea (Apocynaceae) leaves growing in Egypt. The isolated fungi were identified morphologically and microscopically up to species to be; Alternaria phragmospora, Aspergillus awamori, Penicillium duclauxii, Penicillium melinii, Nigrospora sphaerica and Mucor ramosissimus. The extracts of the all identified fungi were screened biologically for antileukemic, cytotoxic, antimalarial, antileishmanial, antimicrobial, antioxidant and anti-inflammatory activities as well as for cannabinoid and opioid receptor binding affinities. Out of the six examined fungal extracts four exhibited promising antimalarial activities, four showed modeate antileukemic activities and two of them exhibited cytotoxic activities, three showed antioxidant activities, three exhibited anti-inflammatory activities, and the only one showed an antifungal activity. Alternaria phragmospora was the most active antimalarial agent inhibiting Plasmodium falciparum D6 and W2 clones with IC50 values of 1.9 and 2.1 μg/mL, respectively. Alternaria phragmospora extract was subjected to liquid-liquid partition using 90% MeOH, hexane then BuOH and H2O.
    [Show full text]
  • Isolation and Characterization of Fungal Endophytes Isolated from Medicinal Plant Ephedra Pachyclada As Plant Growth-Promoting
    biomolecules Article Isolation and Characterization of Fungal Endophytes Isolated from Medicinal Plant Ephedra pachyclada as Plant Growth-Promoting Ahmed Mohamed Aly Khalil 1,2, Saad El-Din Hassan 1,* , Sultan M. Alsharif 3, Ahmed M. Eid 1 , Emad El-Din Ewais 1, Ehab Azab 4,5 , Adil A. Gobouri 6, Amr Elkelish 7 and Amr Fouda 1,* 1 Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; [email protected] (A.M.A.K.); [email protected] (A.M.E.); [email protected] (E.E.-D.E.) 2 Biology Department, College of Science, Taibah University, Yanbu 41911, Saudi Arabia 3 Biology Department, Faculty of Science, Taibah University, Al Madinah P.O. Box 887, Saudi Arabia; [email protected] 4 Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; [email protected] 5 Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Sharkia, Egypt 6 Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; [email protected] 7 Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; [email protected] * Correspondence: [email protected] (S.E.-D.H.); [email protected] (A.F.); Citation: Khalil, A.M.A.; Tel.: +20-102-3884804 (S.E.-D.H.); +20-111-3351244 (A.F.) Hassan, S.E.-D.; Alsharif, S.M.; Eid, A.M.; Ewais, E.E.-D.; Azab, E.; Abstract: Endophytic fungi are widely present in internal plant tissues and provide different ben- Gobouri, A.A.; Elkelish, A.; Fouda, A.
    [Show full text]
  • RSC COFI Prelims 1..4
    The Chemistry of Fungi James R. Hanson Department of Chemistry, University of Sussex, Brighton, UK ISBN: 978-0-85404-136-7 A catalogue record for this book is available from the British Library r James R. Hanson, 2008 All rights reserved Apart from fair dealing for the purposes of research for non-commercial purposes or for private study, criticism or review, as permitted under the Copyright, Designs and Patents Act 1988 and the Copyright and Related Rights Regulations 2003, this publication may not be reproduced, stored or transmitted, in any form or by any means, without the prior permission in writing of The Royal Society of Chemistry or the copyright owner, or in the case of reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of the licences issued by the appropriate Reproduction Rights Organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to The Royal Society of Chemistry at the address printed on this page. Published by The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0WF, UK Registered Charity Number 207890 For further information see our web site at www.rsc.org Preface The diverse structures, biosyntheses and biological activities of fungal meta- bolites have attracted chemists for many years. This book is an introduction to the chemistry of fungal metabolites. The aim is to illustrate, within the context of fungal metabolites, the historical progression from chemical to spectroscopic methods of structure elucidation, the development in biosynthetic studies from establishing sequences and mechanisms to chemical enzymology and genetics and the increasing understanding of the biological roles of natural products.
    [Show full text]
  • WHO Monographs on Selected Medicinal Plants. Volume 3
    WHO monographs on WHO monographs WHO monographs on WHO published Volume 1 of the WHO monographs on selected medicinal plants, containing 28 monographs, in 1999, and Volume 2 including 30 monographs in 2002. This third volume contains selected an additional collection of 32 monographs describing the quality control and use of selected medicinal plants. medicinal Each monograph contains two parts, the first of which provides plants selected medicinal plants pharmacopoeial summaries for quality assurance purposes, including botanical features, identity tests, purity requirements, Volume 3 chemical assays and major chemical constituents. The second part, drawing on an extensive review of scientific research, describes the clinical applications of the plant material, with detailed pharmacological information and sections on contraindications, warnings, precautions, adverse reactions and dosage. Also included are two cumulative indexes to the three volumes. The WHO monographs on selected medicinal plants aim to provide scientific information on the safety, efficacy, and quality control of widely used medicinal plants; provide models to assist Member States in developing their own monographs or formularies for these and other herbal medicines; and facilitate information exchange among Member States. WHO monographs, however, are Volume 3 Volume not pharmacopoeial monographs, rather they are comprehensive scientific references for drug regulatory authorities, physicians, traditional health practitioners, pharmacists, manufacturers, research scientists
    [Show full text]