The Poisoned Weed: Plants Toxic to Skin

Total Page:16

File Type:pdf, Size:1020Kb

The Poisoned Weed: Plants Toxic to Skin The Poisoned Weed: Plants Toxic to Skin DONALD G. CROSBY OXFORD UNIVERSITY PRESS THE POISONED WEED DONALD G. CROSBY The poisoned weed PLANTS TOXIC TO SKIN 1 2004 1 Oxford New York Auckland Bangkok Buenos Aires Cape Town Chennai Dar es Salaam Delhi Hong Kong Istanbul Karachi Kolkata Kuala Lumpur Madrid Melbourne Mexico City Mumbai Nairobi Sa˜o Paulo Shanghai Taipei Tokyo Toronto Copyright # 2004 by Oxford University Press Published by Oxford University Press, Inc., 198 Madison Avenue, New York, New York 10016 www.oup.com Oxford is a registered trademark of Oxford University Press All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Oxford University Press. Library of Congress Cataloging-in-Publication Data Crosby, Donald G. The Poisoned Weed: Plants toxic to skin / Donald G. Crosby. p. cm. Includes bibliographical references and index. ISBN 0-19-515548-3 1. Dermatotoxicology. 2. Poisonous plants. 3. Plant toxins. I. Title. RL803.C76 2003 616.5007—dc21 2003046272 987654321 Printed in the United States of America on acid-free paper To Nancy, whose struggles with T. diversilobum, T. radicans, M. indica, S. terebinthefolius, E. maculata, U. dioica, and sundry other plants inspired this book. This page intentionally left blank PREFACE Human dermatitis from plants is almost universal. In the United States alone, more than two-thirds of the population reacts to poison oak, poison ivy, and their relatives—more than 160 million people, including me. Many familiar plants in our homes, fields, and gardens produce substances toxic to skin, and allergenic and irritant species are found on every continent except Antarctica. Considering the misery they cause, I was surprised at how few guides to them were available. The idea for this project developed over a period of years as I watched my wife, Nancy, react to a series of toxic plants until, at age 60, I too became sensitized to poison oak. Then, in preparing a classroom lecture in the late 1980s, I discovered that the only existing book on poison oak and poison ivy (by James B. McNair) had been published in 1923—before the toxic con- stituents were identified, before a mechanism was proposed for their toxic action, and before the name Toxicodendron was established for their genus—even before I was born. An update seemed long overdue, but as reference material accumulated, so many other species with similar aller- gens and effects emerged that the scope had to expand. As plans proceeded, I became aware of several recent books on poison oak and poison ivy for the lay reader, in particular those by Edward Frankel (1991) and Susan Hauser (1996). However, none was sufficiently technical for my purposes, and the classic Botanical Dermatology by John Mitchell and Arthur Rook (1979) and Dermatologic Botany edited by Javier Avalos and Howard Maibach (2000) were too detailed. Unfortunately, I did not discover the especially helpful 1986 Clinics in Dermatology volume on plant dermatitis, edited by Jere Guin and John Beaman, until my manu- script was almost complete. My sincere appreciation for the efforts of all these writers. Other key references are listed in appendix G. The present book reviews the history, occurrence, classification, toxic constituents, and health aspects of allergenic and irritant plants that people contact in everyday life. Because the reaction of human skin to the poison ivy (cashew) family is especially severe and widespread, those species re- ceive the most attention, but other familiar weeds, crop plants, ornamentals, and wild species are discussed also. Coverage is not intended to be en- cyclopedic, and references are provided for further exploration. Because chemistry defines a plant’s dermatotoxic activity, species whose active constituents are still unidentified generally have been excluded. The writing is intended to inform a broad cross section of chemical, medical, and biological scientists and students about common plant species and products that are toxic to human skin. However, parts of this book also may interest people involved with forestry, firefighting, utilities, parks, gardening, agriculture, outdoor recreation, and anyone else who has fre- quent contact with plants. The reaction of an individual’s skin to any par- ticular plant is unpredictable and recognizes no geographical boundary, so the coverage is international. Almost all previous books on the subject have been written or edited by dermatologists, so one of my aims is to provide the viewpoint of a chemist and toxicologist. Consequently, the contents are heavily slanted toward the toxic species, their constituents, and people’s exposure to them, and many biological and medical aspects are left to others more knowledgable. Because the information cuts across so many fields of activity, a glossary has been provided. The choice of illustrations was difficult. Given the limited number agreed upon with the publisher, I chose those I thought would be especially in- teresting and representative of my own experience. Also, I wanted plants that were widely accessible, so most of the photos were taken near my home in Davis, California. Except where noted, the photographs and line drawings are my own, but I acknowledge, with thanks, permission to publish others, as indicated in their captions. I am indebted to many friends and colleagues for their help. John Hylin, Howard Maibach, Bob McCandliss, Bob Rice, Warren Roberts, and Ellen Zagory provided helpful reviews of the various sections; Rick Crosby, Jere Guin, and Sandy Ogletree assisted with some of the photos, and I appreciate the help and advice of Senior Editor Kirk Jensen and Production Editor Lisa Stallings; any errors are mine, not theirs. I am especially grateful to my wife, Nancy, for her continued input, encouragement, and knowledge of plants. viii PREFACE CONTENTS ONE THE SETTING 3 1.1 History 3 1.2 The Plants 6 1.3 The Poisons 9 1.4 Skin 12 1.5 Exposure 15 1.6 Adverse Effects 16 1.7 Prevention and Treatment 19 1.8 Conclusions 20 TWO POISON OAKS, POISON IVIES, AND RELATIVES 22 2.1 Family Ties: The Anacardiaceae 22 2.2 Toxicodendrons 22 2.3 What to Look For 32 2.4 Habitats and Geographical Distribution 33 2.5 Propagation 36 2.6 Conclusions 37 THREE OTHER ALLERGENIC PLANTS 39 3.1 Dermatotoxic Plants 39 3.2 More Anacardiaceae 39 3.3 Quinone-Containing Plants 47 3.4 Asteraceae (Compositae) 51 3.5 Other Flowering Plants 58 3.6 Lower Plants 63 3.7 Photoallergenic Plants 64 3.8 Conclusions 65 FOUR PHOTOTOXIC AND IRRITANT PLANTS 66 4.1 Phototoxic Plants 66 4.2 Irritant Plants 73 4.3 Conclusions 86 FIVE ALLERGENS RELATED TO URUSHIOL 87 5.1 Urushioid Allergens 87 5.2 Urushiols and Laccols 87 5.3 Isolation, Identification, and Analysis 92 5.4 Physical and Environmental Properties 97 5.5 Reactions with Proteins 101 5.6 Synthetic Urushioids 102 5.7 Natural Urushioids 103 5.8 Conclusions 106 SIX OTHER PLANT ALLERGENS 108 6.1 Other Kinds of Allergens 108 6.2 Quinones and Hydroquinones 108 6.3 Lactones 113 6.4 Acetylenic Alcohols 119 6.5 Essential Oils 120 6.6 Lichen Substances 124 6.7 Rubber Latex 126 6.8 Conclusions 126 Seven PHOTOTOXIC AND IRRITANT CONSTITUENTS 128 7.1 More Dermatotoxicity 128 7.2 Photodynamic Agents 128 7.3 Irritant Esters 135 7.4 Organosulfur Compounds 140 7.5 Irritant Amines and Amides 147 7.6 Calcium Oxalate 149 7.7 Conclusions 149 EIGHT EXPOSURE 151 8.1 Forms of Exposure 151 8.2 Direct (Primary) Exposure 152 8.3 Casual (Nonoccupational) Exposure 157 8.4 Indirect (Secondary) Exposure 163 8.5 Individual Characteristics 165 8.6 Cross–reactions 165 8.7 Economic Significance 167 8.8 Limiting Exposure 168 8.9 Conclusions 171 NINE ADVERSE EFFECTS 172 9.1 Intoxication 172 9.2 Penetration 172 9.3 ‘‘Toxicity’’ 175 x CONTENTS 9.4 Symptoms of Contact Dermatitis 176 9.5 Mechanisms 181 9.6 Tumorigenesis 186 9.7 Sensitivity Differences 187 9.8 Relation of Structure to Activity 188 9.9 Conclusions 191 TEN PREVENTION AND TREATMENT 193 10.1 Prevention and Treatment 193 10.2 Patch Tests 193 10.3 Prevention 195 10.4 Treatment: What Works, What Doesn’t 199 10.5 ‘‘Rational’’ Treatment 201 10.6 Future Possibilities 203 10.7 Conclusions 205 Appendices 207 References 215 Glossary 247 Index of Plant Names 251 Index of Chemical Common Names 259 General Index 263 CONTENTS xi This page intentionally left blank THE POISONED WEED This page intentionally left blank ONE THE SETTING ‘‘The poysoned weede is much in shape like our English Ivie, but being but touched, causeth rednesse, itchinge, and lastly blysters, the which howsoever after a while they passe away of themselves without further harme...’’ —Captain John Smith, 1609 Captain Smith’s ‘‘Ivie’’ was well known to his Powhatan Indian neighbors. For centuries, they and other Native Americans had used it for medicine. Navajos made arrow poison from this native plant, and California’s Miwoks made the Western version, it-tum in their language, into black dye for baskets (Balls, 1962). They were very aware of its harmful character—in Mexico, it was called mala mujer, the wicked woman—but to unwary European settlers, the attractive weeds became familiar as ‘‘poison ivy’’ and ‘‘poison oak.’’ With the latter blanketing the Pacific Coast and the former growing rampant over much of the rest of the continent, the two species were to become our nation’s best-known toxic plants. Contrary to popular belief, Native Americans were just as susceptible to the poisons, and as fearful of them, as those whose skins were white or brown.
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Cunninghamia Date of Publication: February 2020 a Journal of Plant Ecology for Eastern Australia
    Cunninghamia Date of Publication: February 2020 A journal of plant ecology for eastern Australia ISSN 0727- 9620 (print) • ISSN 2200 - 405X (Online) The Australian paintings of Marianne North, 1880–1881: landscapes ‘doomed shortly to disappear’ John Leslie Dowe Australian Tropical Herbarium, James Cook University, Smithfield, Qld 4878 AUSTRALIA. [email protected] Abstract: The 80 paintings of Australian flora, fauna and landscapes by English artist Marianne North (1830-1890), completed during her travels in 1880–1881, provide a record of the Australian environment rarely presented by artists at that time. In the words of her mentor Sir Joseph Dalton Hooker, director of Kew Gardens, North’s objective was to capture landscapes that were ‘doomed shortly to disappear before the axe and the forest fires, the plough and the flock, or the ever advancing settler or colonist’. In addition to her paintings, North wrote books recollecting her travels, in which she presented her observations and explained the relevance of her paintings, within the principles of a ‘Darwinian vision,’ and inevitable and rapid environmental change. By examining her paintings and writings together, North’s works provide a documented narrative of the state of the Australian environment in the late nineteenth- century, filtered through the themes of personal botanical discovery, colonial expansion and British imperialism. Cunninghamia (2020) 20: 001–033 doi: 10.7751/cunninghamia.2020.20.001 Cunninghamia: a journal of plant ecology for eastern Australia © 2020 Royal Botanic Gardens and Domain Trust www.rbgsyd.nsw.gov.au/science/Scientific_publications/cunninghamia 2 Cunninghamia 20: 2020 John Dowe, Australian paintings of Marianne North, 1880–1881 Introduction The Marianne North Gallery in the Royal Botanic Gardens Kew houses 832 oil paintings which Marianne North (b.
    [Show full text]
  • Monocyclic Phenolic Acids; Hydroxy- and Polyhydroxybenzoic Acids: Occurrence and Recent Bioactivity Studies
    Molecules 2010, 15, 7985-8005; doi:10.3390/molecules15117985 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Monocyclic Phenolic Acids; Hydroxy- and Polyhydroxybenzoic Acids: Occurrence and Recent Bioactivity Studies Shahriar Khadem * and Robin J. Marles Natural Health Products Directorate, Health Products and Food Branch, Health Canada, 2936 Baseline Road, Ottawa, Ontario K1A 0K9, Canada * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-613-954-7526; Fax: +1-613-954-1617. Received: 19 October 2010; in revised form: 3 November 2010 / Accepted: 4 November 2010 / Published: 8 November 2010 Abstract: Among the wide diversity of naturally occurring phenolic acids, at least 30 hydroxy- and polyhydroxybenzoic acids have been reported in the last 10 years to have biological activities. The chemical structures, natural occurrence throughout the plant, algal, bacterial, fungal and animal kingdoms, and recently described bioactivities of these phenolic and polyphenolic acids are reviewed to illustrate their wide distribution, biological and ecological importance, and potential as new leads for the development of pharmaceutical and agricultural products to improve human health and nutrition. Keywords: polyphenols; phenolic acids; hydroxybenzoic acids; natural occurrence; bioactivities 1. Introduction Phenolic compounds exist in most plant tissues as secondary metabolites, i.e. they are not essential for growth, development or reproduction but may play roles as antioxidants and in interactions between the plant and its biological environment. Phenolics are also important components of the human diet due to their potential antioxidant activity [1], their capacity to diminish oxidative stress- induced tissue damage resulted from chronic diseases [2], and their potentially important properties such as anticancer activities [3-5].
    [Show full text]
  • State of Colorado 2016 Wetland Plant List
    5/12/16 State of Colorado 2016 Wetland Plant List Lichvar, R.W., D.L. Banks, W.N. Kirchner, and N.C. Melvin. 2016. The National Wetland Plant List: 2016 wetland ratings. Phytoneuron 2016-30: 1-17. Published 28 April 2016. ISSN 2153 733X http://wetland-plants.usace.army.mil/ Aquilegia caerulea James (Colorado Blue Columbine) Photo: William Gray List Counts: Wetland AW GP WMVC Total UPL 83 120 101 304 FACU 440 393 430 1263 FAC 333 292 355 980 FACW 342 329 333 1004 OBL 279 285 285 849 Rating 1477 1419 1504 1511 User Notes: 1) Plant species not listed are considered UPL for wetland delineation purposes. 2) A few UPL species are listed because they are rated FACU or wetter in at least one Corps Region. 3) Some state boundaries lie within two or more Corps Regions. If a species occurs in one region but not the other, its rating will be shown in one column and the other column will be BLANK. Approved for public release; distribution is unlimited. 1/22 5/12/16 Scientific Name Authorship AW GP WMVC Common Name Abies bifolia A. Murr. FACU FACU Rocky Mountain Alpine Fir Abutilon theophrasti Medik. UPL UPL FACU Velvetleaf Acalypha rhomboidea Raf. FACU FACU Common Three-Seed-Mercury Acer glabrum Torr. FAC FAC FACU Rocky Mountain Maple Acer grandidentatum Nutt. FACU FAC FACU Canyon Maple Acer negundo L. FACW FAC FAC Ash-Leaf Maple Acer platanoides L. UPL UPL FACU Norw ay Maple Acer saccharinum L. FAC FAC FAC Silver Maple Achillea millefolium L. FACU FACU FACU Common Yarrow Achillea ptarmica L.
    [Show full text]
  • TRP Mediation
    molecules Review Remedia Sternutatoria over the Centuries: TRP Mediation Lujain Aloum 1 , Eman Alefishat 1,2,3 , Janah Shaya 4 and Georg A. Petroianu 1,* 1 Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; [email protected] (L.A.); Eman.alefi[email protected] (E.A.) 2 Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates 3 Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman 11941, Jordan 4 Pre-Medicine Bridge Program, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; [email protected] * Correspondence: [email protected]; Tel.: +971-50-413-4525 Abstract: Sneezing (sternutatio) is a poorly understood polysynaptic physiologic reflex phenomenon. Sneezing has exerted a strange fascination on humans throughout history, and induced sneezing was widely used by physicians for therapeutic purposes, on the assumption that sneezing eliminates noxious factors from the body, mainly from the head. The present contribution examines the various mixtures used for inducing sneezes (remedia sternutatoria) over the centuries. The majority of the constituents of the sneeze-inducing remedies are modulators of transient receptor potential (TRP) channels. The TRP channel superfamily consists of large heterogeneous groups of channels that play numerous physiological roles such as thermosensation, chemosensation, osmosensation and mechanosensation. Sneezing is associated with the activation of the wasabi receptor, (TRPA1), typical ligand is allyl isothiocyanate and the hot chili pepper receptor, (TRPV1), typical agonist is capsaicin, in the vagal sensory nerve terminals, activated by noxious stimulants.
    [Show full text]
  • ISOLATION, CHARACTERISATION AND/OR EVALUATION of PLANT EXTRACTS for ANTICANCER POTENTIAL KARUPPIAH PILLAI MANOHARAN (M.Sc., M.Ph
    ISOLATION, CHARACTERISATION AND/OR EVALUATION OF PLANT EXTRACTS FOR ANTICANCER POTENTIAL KARUPPIAH PILLAI MANOHARAN (M.Sc., M.Phil., B.Ed.,) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMISTRY NATIONAL UNIVERSITY OF SINGAPORE 2006 Acknowledgements I wish to express my sincere gratitude and appreciation to my supervisors, Associate Prof. Yang Dai Wen and Associate Prof. Tan, Benny Kwong Huat for their advice, suggestions, constructive criticisms, critical comments and constant guidance throughout the course my study. I am very thankful to Asst. Prof. Henry, Mok Yu-Keung; his supervisor-like role throughout my research work is greatly appreciated. I am very grateful to Prof. Sim Keng Yeow for his help, support and guidance at the beginning of this course of study. I would like to thank all the technical staffs of Departments of Chemistry and Pharmacology for their superb technical assistance. My sincere thanks are due to Ms. Annie Hsu for her technical assistance at the traditional medicine and natural product research laboratory, Department of Pharmacology, Faculty of Medicine. I would like to thank Dr. Fan Sing Jong, NMR Manager for his help in the structure elucidation. I would like to thank Associate Prof. Hugh Tan Tiang Wah and Chua Keng Soon, Senior Laboratory Officer (RMBR), Herbarium, for the identification of plant materials, Eugenia grandis and Fagraea fragrans. I am very grateful to the former head Prof. Lee Hian Kee and the present head Prof. Hor Tzi Sum, Andy, Department of Chemistry for facilitating requests and approvals during the period of my study. My appreciation also goes to all my friends.
    [Show full text]
  • Gluta Laosensis (Anacardiaceae), a New Species from Vientiane, Laos
    Phytotaxa 415 (3): 153–156 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2019 Magnolia Press Correspondence ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.415.3.6 Gluta laosensis (Anacardiaceae), a new species from Vientiane, Laos SHUICHIRO TAGANE1,*, CHIKA KAMEDA2, SOUPHACHAY PHOUPHASOUK3 & PHETLASY SOULADETH2 1The Kagoshima University Museum, Kagoshima University, 1-21-30 Korimoto, Kagoshima, 819-0065, Japan. 2Faculty of Forest Science, National University of Laos, Dongdok campus, Vientiane, Lao PDR. 3Faculty of Agriculture, National University of Laos, Nabong campus, Vientiane, Lao PDR *Authors for correspondence: [email protected] A new species of Gluta (Anacardiaceae), Gluta laosensis Tagane & Kameda, from Vientiane, Central Laos, is described and illustrated. A new species is easily distinguished from the other species of the genus in Indo-China in having short petioles less than 4 mm long, obovate-oblong or oblong-elliptic leaf blade with rounded to slightly cordate base, and 18–24 pairs of secondary veins. Keywords: flora, Indochina, Sapindales, taxonomy Introduction The genus Gluta Linnaeus (1771: 293) is trees or rarely shrubs of Aacardiaceae distributed from Madagascar, India, Myanmar, Indo-China, Thailand, to throughout Malesia (Kochummen 1996, Chayamarit 2010). It consists of about 30 species, among which four species have been known from Laos: G. cambodiana Pierre (1897: 368), G. laccifera (Pierre 1885: 538) Ding Hou (1978a: 14), G. tavoyana Wallich ex Hooker (1879: 22) and G. usitata (Wallich 1829: 29) Ding Hou (1978a: 21) (Tardieu-Blot, 1962, Newman et al. 2007, Chayamarit 2010, Gardner et al. 2015). Whilst conducting botanical exploration of Vientiane Capital, Central Laos by the second and third authors, an interesting Gluta species was discovered in mixed deciduous forest.
    [Show full text]
  • Table of Contents Below) with Family Name Provided
    1 Australian Plants Society Plant Table Profiles – Sutherland Group (updated August 2021) Below is a progressive list of all cultivated plants from members’ gardens and Joseph Banks Native Plants Reserve that have made an appearance on the Plant Table at Sutherland Group meetings. Links to websites are provided for the plants so that further research can be done. Plants are grouped in the categories of: Trees and large shrubs (woody plants generally taller than 4 m) Medium to small shrubs (woody plants from 0.1 to 4 m) Ground covers or ground-dwelling (Grasses, orchids, herbaceous and soft-wooded plants, ferns etc), as well as epiphytes (eg: Platycerium) Vines and scramblers Plants are in alphabetical order by botanic names within plants categories (see table of contents below) with family name provided. Common names are included where there is a known common name for the plant: Table of Contents Trees and Large shrubs........................................................................................................................... 2 Medium to small shrubs ...................................................................................................................... 23 Groundcovers and other ground‐dwelling plants as well as epiphytes. ............................................ 64 Vines and Scramblers ........................................................................................................................... 86 Sutherland Group http://sutherland.austplants.com.au 2 Trees and Large shrubs Acacia decurrens
    [Show full text]
  • Lyonia Preserve Plant Checklist
    Lyonia Preserve Plant Checklist Volusia County, Florida Aceraceae (Maple) Asteraceae (Aster) Red Maple Acer rubrum Bitterweed Helenium amarum Blackroot Pterocaulon virgatum Agavaceae (Yucca) Blazing Star Liatris sp. Adam's Needle Yucca filamentosa Blazing Star Liatris tenuifolia Nolina Nolina brittoniana Camphorweed Heterotheca subaxillaris Spanish Bayonet Yucca aloifolia Cudweed Gnaphalium falcatum Dog Fennel Eupatorium capillifolium Amaranthaceae (Amaranth) Dwarf Horseweed Conyza candensis Cottonweed Froelichia floridana False Dandelion Pyrrhopappus carolinianus Fireweed Erechtites hieracifolia Anacardiaceae (Cashew) Garberia Garberia heterophylla Winged Sumac Rhus copallina Goldenaster Pityopsis graminifolia Goldenrod Solidago chapmanii Annonaceae (Custard Apple) Goldenrod Solidago fistulosa Flag Paw paw Asimina obovata Goldenrod Solidago spp. Mohr's Throughwort Eupatorium mohrii Apiaceae (Celery) Ragweed Ambrosia artemisiifolia Dollarweed Hydrocotyle sp. Saltbush Baccharis halimifolia Spanish Needles Bidens alba Apocynaceae (Dogbane) Wild Lettuce Lactuca graminifolia Periwinkle Catharathus roseus Brassicaceae (Mustard) Aquifoliaceae (Holly) Poorman's Pepper Lepidium virginicum Gallberry Ilex glabra Sand Holly Ilex ambigua Bromeliaceae (Airplant) Scrub Holly Ilex opaca var. arenicola Ball Moss Tillandsia recurvata Spanish Moss Tillandsia usneoides Arecaceae (Palm) Saw Palmetto Serenoa repens Cactaceae (Cactus) Scrub Palmetto Sabal etonia Prickly Pear Opuntia humifusa Asclepiadaceae (Milkweed) Caesalpinceae Butterfly Weed Asclepias
    [Show full text]
  • Discogenic Back Pain : the Induction and Prevention of a Pro-Inflammatory Cascade in Intervertebral Disc Cells in Vitro
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2013 Discogenic back pain : the induction and prevention of a pro-inflammatory cascade in intervertebral disc cells in vitro Quero, Lilian Abstract: Low back pain (LBP) is a prevalent symptom that more than 80% of the population experience once in their lifetime. This can lead to severe impairment of the workaday life and cause enormous costs in the society. Because LBP mostly appears as a non-specific back pain symptom, provoked by the spine or its environment, the evaluation of the source is bearing some challenge. Whereas the pathomorphological source of pain is well defined in the specific spinal pathology, such as in the caseofa scoliosis or sciatica, finding a correlation between the source of pain and a certain abnormality isdifficult in non-specific LPB symptoms. This is accompanied by the disadvantage of finding a suitable treatment. One possible source of LPB represents the intervertebral disc (IVD), which can alter from a pain free (asymptomatic) to a painful (symptomatic) IVD during degeneration, leading to so called discogenic back pain. Provocative discography is to date the only means to assign LBP to a degenerated disc, with its usage being under dispute. The IVD has an important function as a shock absorber, as there is a high load on the spine. During a lifetime, our IVD becomes degenerated which means its matrix is more catabolized then anabolized, leading to an overall matrix breakdown and decreased quality of the IVD. The matrix consists of long protein chains and sugars, responsible for the ability to attract water, comparable to a sponge.
    [Show full text]
  • Bioactivity and Potential Therapeutic Benefits of Some Medicinal Plants from the Caatinga (Semi-Arid) Vegetation of Northeast Brazil: a Review of the Maria I
    Revista Brasileira de Farmacognosia Brazilian Journal of Pharmacognosy Bioactivity and potential therapeutic benefi ts 22(1): 193-207, Jan./Feb. 2012 of some medicinal plants from the Caatinga (semi-arid) vegetation of Northeast Brazil: a review of the literature Maria I. G. Silva, Carla T. V. de Melo, Leonardo F. Vasconcelos, Alyne M. R. de Carvalho, Francisca C. F. Sousa* Review Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Brazil. Received 14 Mar 2011 Accepted 22 Jun 2011 Available online 16 Sep 2011 Abstract: Medicinal plants have been used in traditional medicine for several thousand years all over the world. In this sense, information from Brazilian ethnic groups on folk medicine have contributed to the discovery of pharmacological activities from various plant-derived agents potentially leading to the innovative drugs. The Caatinga (semi-arid) vegetation is a highly threatened biome, covering Keywords: a vast area in northeastern Brazil and has suffered from strong human influence for caatinga many decades. Many plants species found in the Caatinga have been widely used medicinal plants in folk medicine and for commercial manufacturing of phytotherapeutic products. potential therapeutic Thus, the present review aims to disseminate to the scientific community some pharmacological assays known species of medicinal plants found in the Caatinga that have been studied and analyzed in pharmacological scientific assays. Among the species that stood out for their local importance and multiplicity of uses were: Amburana cearensis (umburana-de-cheiro), Anadenanthera colubrina (Vell.) Brenan (angico-branco), Anacardium occidentalis L. (cajueiro), Bauhinia forficata Link (mororó), Cissus sicyoides L. (insulina-vegetal), Myracrodruon urundeuva Allemão (aroeira-do- sertão) and Zingiber officinalis L.
    [Show full text]
  • The Following PLANTS Are Representative of the Many Species Found in the Woods
    The following PLANTS are representative of the many species found in the Woods: Trees Muscadine (Vitis rotundifolia) Poison Ivy (Rhus radicans) Black Gum (Nyssa sylvatica) Wisteria* (Wisteria sinensis) Black Jack Oak (Q. marilandica) Yellow Jessamine (Gelsimium sempervirens) Blue Jack Oak (Q. incana) Dogwood (Cornus florida) Herbs Loblolly Pine (P. taeda) Longleaf Pine (Pinus palustris) Blazing Star (Liatris spp.) Magnolia (Magnolia grandiflora) Bloodroot (Sanguinaria canadensis) Red Bay (Persea borbonia) Blue‐Eyed Grass (Sisyrinchium arenicola) Red Cedar (Juniperus virginiana) Blue Star (Amsonia spp.) Red Maple (Acer Rubrum) Butterfly Weed (Asclepias tuberosa) Redbud (Cercis canadensis) Crane‐Fly Orchid (Tipularia discolor) Short‐Leaf Pine (P. echinata) Dwarf Iris (Iris verna) Scrub Pine (P. virginiana) Green‐and‐Gold (Chrysogonum virginianum) Sourwood (Oxydendrum arboreum) Henbit (Lamium amplexicaule) Sweet Bay (M. virginiana) Hepatica (Hepatica americana) Tulip Tree (Liriodendron tulipifera) Jack‐In‐The‐Pulpit (Arisaema triphyllum) Turkey Oak (Q. laevis) Jointweed (Polygonum spp.) White Oak (Quercus alba) Lizard’s Tail (Saururus cernuus) Lupine (Lupinus spp.) Shrubs Mistletoe (Phoradendron serotinum) Partridge Berry (Mitchella repens) Blueberry (Vaccinium spp.) Pipsissewa (Chimaphila maculate) French Mulberry (Callicarpa americana) Pucoon (Lithospermum caroliniense) Hearts‐A’Burstin With Love (Euonymus americanus) Spanish Moss (Tillandsia usneoides) Holly (Ilex spp.) Spiderwort (Tradescantia spp.) Horse Sugar (Symplocos tinctoria) Sticky
    [Show full text]