1 Taxonomy and Systematics

Total Page:16

File Type:pdf, Size:1020Kb

1 Taxonomy and Systematics 1 Taxonomy and Systematics BYRON J. ADAMS AND KHUONG B. NGUYEN Entomology and Nematology Department, University of Florida, PO Box 110620, Gainesville, Florida, USA 1.1. Introduction 1 1.2. General Biology 2 1.3. Origins 2 1.4. Molecular Systematics 4 1.4.1. Species identification 4 1.4.2. Phylogenetic analysis 6 1.5. Taxonomy and Systematics of Family Steinernematidae (Chitwood & Chitwood, 1937) 7 1.5.1. Morphological review 7 1.5.2. Taxonomy 10 1.5.3. Phylogenetic relationships 13 1.6. Taxonomy and Systematics of Family Heterorhabditidae (Poinar, 1976) 21 1.6.1. Morphological review 21 1.6.2. Taxonomy 23 1.6.3. Phylogenetic relationships 24 1.7. Conclusions and future prospects 25 Acknowledgements 28 References 28 1.1. Introduction The discovery of entomopathogenic nematode species and the rate at which they have been described is correlated with the historical need for biological alternatives to man- age insect pests.After the initial discovery and subsequent development of Steinernema glaseri as a biological control agent in the early 20th century, research on entomo- pathogenic nematodes remained somewhat dormant as chemical-based pest control measures remained cheap, effective and relatively unregulated.Upon recognition of their negative environmental effects in the 1960s, pesticides gradually became more CAB International 2002. Entomopathogenic Nematology (ed. R. Gaugler) 1 2 B.J. Adams and K.B. Nguyen restricted, less effective, and much more costly.Consequently, the search for biological alternatives to chemical-based pest management programmes received renewed atten- tion from scientists.By the 1980s, fuelled by an enormous infusion of resources from government and industry, research on entomopathogenic nematodes rapidly expanded.The search for new species of nematodes that could provide effective control of a persistent pest – and be marketed as such – was on. 1.2. General Biology The invasive stage (= infective juveniles) of Steinernema carries cells of a symbiotic bacterium in the anterior part of the intestine (genus Xenorhabdus).When infective juveniles enter the haemocoel of a host, they release the bacterium.The bacterium multiplies rapidly in the insect blood and kills the insect by septicaemia, usually within 24–48 h.The nematodes then change to feeding third-stage juveniles, feed on the bacteria, and moult in succession to the fourth stage where they become adult females and males of the first generation.After mating, the females lay eggs that hatch as first-stage juveniles and moult successively to the second, third and fourth stages. The fourth-stage juveniles develop into adult females and males of the second genera- tion.The adults mate and the eggs produced by the second-generation females hatch as first-stage juveniles that moult to the second stage.Nematode reproduction continues until resources in the cadaver are depleted, usually allowing for two to three genera- tions (long cycle, Fig.1.1).Ifthe food supply is limited, the eggs produced by the first-generation females develop directly into infective juveniles (short cycle, Fig.1.1). As resources in the cadaver are extinguished, late second-stage juveniles cease to feed and incorporate a pellet of bacteria in the bacterial chamber, or vesicle.They then moult to pre-infective and infective stages, retaining the cuticle of the second stage as a sheath.The infective juveniles then typically leave the cadaver in search of a new host. Infective juveniles do not feed and can survive in the soil for several months. The life cycle of Neosteinernema is similar to that of Steinernema, except that Neosteinernema has only one generation, females move out into the environment and the offspring become infective juveniles in the female body before emerging from it.A bacterial endosymbiont of Neosteinernema has been observed, but remains uncharacterized. Little is known of this nematode beyond its taxonomic description. The life cycle of Heterorhabditis is also similar to that of Steinernema, but the her- maphroditic female in Heterorhabditis replaces the first generation in Steinernema, and the symbiotic bacterium is Photorhabdus instead of Xenorhabdus. 1.3. Origins Poinar (Poinar, 1983, 1993) proposed a mid-Palaeozoic origin (375 million years ago) for Steinernema and Heterorhabditis.He also postulated that independent, convergent evolution produced their similar morphology and life history traits.Based on similarities of the buccal capsule and male tail morphology, Poinar suggested that Heterorhabditis evolved from a ‘Pellioditis-like’ ancestor in a sandy, marine environ- ment, while Steinernema arose from terrestrial ‘proto-Rhabditonema’ ancestors (Poinar, 1993). A preliminary evolutionary tree of the Nematoda based on 18S ribosomal DNA (Blaxter et al., 1998) bolsters Poinar’s ideas concerning the origins of Heterorhabditis Taxonomy and Systematics 3 Short cycle (Food scarce) J2 (~2–3 days) J1 PI (~1 day) Penetration to production of G1 males and females (~ 3 days) Food scarce J3 to J4 G1 males & females IJ Penetration stages feed produce eggs J1 Food plentiful G1 Male spicule morphology J1 From eggs to PI J2 PI (~2–3 days) G2 male spicule morphology J2 J3 J1 G2 males & females J4 produce eggs Long cycle (Food plentiful) Fig. 1.1. Diagram of the life cycle of Steinernema with illustrations of different stages that are important for identification (based on S. scapterisci). G1 = first generation, G2 = second generation, J1 = first-stage juvenile, J2 = second-stage juvenile, J3 = third-stage non-infective juvenile, PI = pre-infective stage juvenile, IJ = third-stage infective juvenile, J4 = fourth-stage juvenile. Morphological differences between long and short cycles of Heterorhabditis have also been observed (Wouts, 1979). and Steinernema.The tree depicts Heterorhabditis as being most closely related to an order of vertebrate parasites, the Strongylida. Heterorhabditis and Strongylida share a most recent common ancestor with Pellioditis (Rhabditoidea, a superfamily of order Rhabditida).The same tree depicts Steinernema as being most closely related to the Panagrolaimoidea and Strongyloidae (both superfamilies of Rhabditida), and as a member of a larger clade that includes plant parasitic, fungivorous, and bactivorous species of the orders Aphelenchida, Tylenchida and the Cephalobidae (Order of the Rhabditida).Thus, preliminary molecular data suggest that Heterorhabditis arose from a free-living bactivorous ancestor, while reconstruction of the trophic habits of Steinernematid ancestors remains ambiguous. Poinar’s hypothesis that Heterorhabditis and Steinernema do not share an exclusive common ancestry is upheld by Blaxter et al. (1998) and is consistent with other analy- ses (Sudhaus, 1993; Liu et al., 1997; Adams et al., 1998).All suggest that Heterorhabditis and Steinernema independently evolved relationships with bacteria and insects from disparate, unrelated ancestors.However, Burnell and Stock (2000) hint that these 4 B.J. Adams and K.B. Nguyen findings may be premature, and offer an astonishing scenario – that the genus Steinernema is paraphyletic, with Heterorhabditis arising from within the Steinernematidae. 1.4. Molecular Systematics Hampering efforts to describe new species of entomopathogenic nematodes is a rapidly diminishing pool of taxonomists.To a non-specialist, different species of Steinernema, and especially Heterorhabditis, look similar.Although excellent morphol - ogy-based taxonomic keys exist (Hominick et al., 1997), the task of sorting through numerous field-collected nematode samples and making species level taxonomic iden- tifications can be frustrating.Recent advances in molecular biology and evolutionary theory, while no substitute for the expertise of a taxonomist, can provide nematol- ogists with additional tools for identifying, delimiting and representing species of entomopathogenic nematodes (Liu et al., 2000).Several recent species descriptions integrate morphological and molecular genetic data (Gardner et al., 1994; Liu and Berry, 1996a; Stock et al., 1996; Stock, 1997; Stock et al., 1998; Van Luc et al., 2000). Molecular characters can be used to identify, diagnose and delimit species in the same way as morphological characters.The allure of molecular data is their clear genetic basis, a compelling advantage given the significant amount of environmental and host-induced morphological variation displayed by entomopathogenic nema- todes.Potentially sensitive, objective and powerful, molecular characters can also be dangerous when wielded carelessly.Below we discuss the utility of some common molecular markers used to identify and diagnose species of entomopathogenic nematodes. 1.4.1. Species identification In theory, a nematode’s entire genome can be drawn upon for molecular genetic mark- ers to discriminate a particular taxonomic rank.Nevertheless, for ease of comparison, markers that have the greatest representation in genetic databases are the most convenient starting points for thoroughly investigating the taxonomic status of an unidentified entomopathogenic nematode.Consequently, markers that are not easily databased or cannot produce consistently replicable results among comparable taxa and investigators are falling out of favour.Often overlooked are those that give an indication of population structure (subspecific variation), vital information for deter- mining the extent of species boundaries. Based on representation in genetic databases, the most popular marker for identi- fying unknown nematodes is the DNA sequence
Recommended publications
  • Comparison of Xenorhabdus Bovienii Bacterial Strain Genomes Reveals Diversity in Symbiotic Functions Kristen E
    Murfin et al. BMC Genomics (2015) 16:889 DOI 10.1186/s12864-015-2000-8 RESEARCH ARTICLE Open Access Comparison of Xenorhabdus bovienii bacterial strain genomes reveals diversity in symbiotic functions Kristen E. Murfin1, Amy C. Whooley1, Jonathan L. Klassen2 and Heidi Goodrich-Blair1* Abstract Background: Xenorhabdus bacteria engage in a beneficial symbiosis with Steinernema nematodes, in part by providing activities that help kill and degrade insect hosts for nutrition. Xenorhabdus strains (members of a single species) can display wide variation in host-interaction phenotypes and genetic potential indicating that strains may differ in their encoded symbiosis factors, including secreted metabolites. Methods: To discern strain-level variation among symbiosis factors, and facilitate the identification of novel compounds, we performed a comparative analysis of the genomes of 10 Xenorhabdus bovienii bacterial strains. Results: The analyzed X. bovienii draft genomes are broadly similar in structure (e.g. size, GC content, number of coding sequences). Genome content analysis revealed that general classes of putative host-microbe interaction functions, such as secretion systems and toxin classes, were identified in all bacterial strains. In contrast, we observed diversity of individual genes within families (e.g. non-ribosomal peptide synthetase clusters and insecticidal toxin components), indicating the specific molecules secreted by each strain can vary. Additionally, phenotypic analysis indicates that regulation of activities (e.g. enzymes and motility) differs among strains. Conclusions: The analyses presented here demonstrate that while general mechanisms by which X. bovienii bacterial strains interact with their invertebrate hosts are similar, the specific molecules mediating these interactions differ. Our data support that adaptation of individual bacterial strains to distinct hosts or niches has occurred.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Comparative Phenotypic and Genomics Approaches
    Comparative Phenotypic and Genomics Approaches Provide Insight into the Tripartite Symbiosis of Xenorhabdus bovienii with Steinernema Nematode and Lepidopteran Insect Hosts Item Type text; Electronic Thesis Authors McMullen, John George II Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 25/09/2021 05:58:01 Link to Item http://hdl.handle.net/10150/596124 COMPARATIVE PHENOTYPIC AND GENOMICS APPROACHES PROVIDE INSIGHT INTO THE TRIPARTITE SYMBIOSIS OF XENORHABDUS BOVIENII WITH STEINERNEMA NEMATODE AND LEPIDOPTERAN INSECT HOSTS by John George McMullen II ____________________________ A Thesis Submitted to the Faculty of the SCHOOL OF ANIMAL AND COMPARATIVE BIOMEDICAL SCIENCES In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 2015 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that an accurate acknowledgement of the source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship.
    [Show full text]
  • Nematicidal Activity of Nematode-Symbiotic Bacteria Xenorhabdus Bovienii and X
    ПАРАЗИТОЛОГИЯ, 2020, том 54, № 5, с. 413–422. УДК 579.64:632.651 NEMATICIDAL ACTIVITY OF NEMATODE-SYMBIOTIC BACTERIA XENORHABDUS BOVIENII AND X. NEMATOPHILA AGAINST ROOT-KNOT NEMATODE MELOIDOGYNE INCOGNITA © 2020 L. G. Danilov, V. G. Kaplin* All-Russia Institute of Plant Protection, Pushkin, Saint Petersburg, 196608 Russia * e-mail: [email protected] Received 21.06.2020 Received in revised form 18.07.2020 Accepted 30.07.2020 The lethal effects of metabolic products produced by the symbiotic bacteria Xenorhabdus bovienii from Steinernema feltiae and X. nematophila from S. carpocapsae were tested on M. incognita infec- tive juveniles (J2). Treatments had cell titers of 2.5 × 109, 1.25 × 109 and 0.63 × 109 per ml at 20 °C, 23 °C and 26 °C. Exposure periods were 15 hr, 41 hr, 65 hr and 90 hr immediately after autoclaving and at 23°C, and exposure periods of 5 hr, 26 hr, 50 hr and 74 hr after storage for 21 days at 4 °C. The effectiveness of bacterial metabolic products immediately after preparation against M. incognita (J2) depended on the titer of bacterial cells, the temperature of the culture liquid, and the duration of its exposure to nematodes. Nematicidal activity of X. bovienii metabolic products was higher than that of X. nematophila. Mortality of M. incognita J2 was 92–93 % after 90-hr exposure to X. bovienii at 20 °C and cell titers of 2.5 × 109 and 1.25 × 109; also after 65 hr exposure at 23 °C, titer of 2.5 × 109 and 95–99 % at 26 °C and all tested titers.
    [Show full text]
  • (Hemiptera: Aphrophoridae) Nymphs
    insects Article Insecticidal Effect of Entomopathogenic Nematodes and the Cell-Free Supernatant from Their Symbiotic Bacteria against Philaenus spumarius (Hemiptera: Aphrophoridae) Nymphs Ignacio Vicente-Díez, Rubén Blanco-Pérez, María del Mar González-Trujillo, Alicia Pou and Raquel Campos-Herrera * Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), 26007 Logroño, Spain; [email protected] (I.V.-D.); [email protected] (R.B.-P.); [email protected] (M.d.M.G.-T.); [email protected] (A.P.) * Correspondence: [email protected]; Tel.: +34-941-894980 (ext. 410102) Simple Summary: The disease caused by Xylella fastidiosa affects economically relevant crops such as olives, almonds, and grapevine. Since curative means are not available, its current management principally consists of broad-spectrum pesticide applications to control vectors like the meadow spittlebug Philaenus spumarius, the most important one in Europe. Exploring environmentally sound alternatives is a primary challenge for sustainable agriculture. Entomopathogenic nematodes (EPNs) are well-known biocontrol agents of soil-dwelling arthropods. Recent technological advances for Citation: Vicente-Díez, I.; field applications, including improvements in obtaining cell-free supernatants from EPN symbiotic Blanco-Pérez, R.; González-Trujillo, bacteria, allow their successful implementation against aerial pests. Here, we investigated the impact M.d.M.; Pou, A.; Campos-Herrera, R. of four EPN species and their cell-free supernatants on nymphs of the meadow spittlebug. First, Insecticidal Effect of we observed that the exposure to the foam produced by this insect does not affect the nematode Entomopathogenic Nematodes and virulence. Indeed, direct applications of certain EPN species reached up to 90–78% nymphal mortality the Cell-Free Supernatant from Their rates after five days of exposure, while specific cell-free supernatants produced 64% mortality rates.
    [Show full text]
  • JOURNAL of NEMATOLOGY Article | DOI: 10.21307/Jofnem-2020-089 E2020-89 | Vol
    JOURNAL OF NEMATOLOGY Article | DOI: 10.21307/jofnem-2020-089 e2020-89 | Vol. 52 Isolation, identification, and pathogenicity of Steinernema carpocapsae and its bacterial symbiont in Cauca-Colombia Esteban Neira-Monsalve1, Natalia Carolina Wilches-Ramírez1, Wilson Terán1, María del Pilar Abstract 1 Márquez , Ana Teresa In Colombia, identification of entomopathogenic nematodes (EPN’s) 2 Mosquera-Espinosa and native species is of great importance for pest management 1, Adriana Sáenz-Aponte * programs. The aim of this study was to isolate and identify EPNs 1Biología de Plantas y Sistemas and their bacterial symbiont in the department of Cauca-Colombia Productivos, Departamento de and then evaluate the susceptibility of two Hass avocado (Persea Biología, Pontificia Universidad americana) pests to the EPNs isolated. EPNs were isolated from soil Javeriana, Bogotá, Colombia. samples by the insect baiting technique. Their bacterial symbiont was isolated from hemolymph of infected Galleria mellonella larvae. 2 Departamento de Ciencias Both organisms were molecularly identified. Morphological, and Naturales y Matemáticas, biochemical cha racterization was done for the bacteria. Susceptibility Pontificia Universidad Javeriana, of Epitrix cucumeris and Pandeleteius cinereus adults was evaluated Cali, Colombia. by individually exposing adults to 50 infective juveniles. EPNs were *E-mail: adriana.saenz@javeriana. allegedly detected at two sampled sites (natural forest and coffee edu.co cultivation) in 5.8% of the samples analyzed. However, only natural forest EPN’s could be isolated and multiplied. The isolate was identified This paper was edited by as Steinernema carpocapsae BPS and its bacterial symbiont as Raquel Campos-Herrera. Xenorhabus nematophila BPS. Adults of both pests were susceptible Received for publication to S.
    [Show full text]
  • Symbiont-Mediated Competition: Xenorhabdus Bovienii Confer an Advantage to Their Nematode Host Steinernema Affine by Killing Competitor Steinernema Feltiae
    Environmental Microbiology (2018) doi:10.1111emi.14278 Symbiont-mediated competition: Xenorhabdus bovienii confer an advantage to their nematode host Steinernema affine by killing competitor Steinernema feltiae Kristen E. Murfin,1† Daren R. Ginete,1,2 Farrah Bashey related to S. affine, although the underlying killing 3 and Heidi Goodrich-Blair1,2* mechanisms may vary. Together, these data demon- 1Department of Bacteriology, University of Wisconsin- strate that bacterial symbionts can modulate compe- Madison, Madison, WI, 53706, USA. tition between their hosts, and reinforce specificity in 2Department of Microbiology, University of Tennessee- mutualistic interactions. Knoxville, Knoxville, TN, 37996, USA. 3 Department of Biology, Indiana University, Introduction Bloomington, IN, 47405–3700, USA. The defensive role of symbionts in the context of host disease is becoming increasingly recognized. For Summary instance, microbial symbionts within hosts can interfere Bacterial symbionts can affect several biotic interac- with invading parasites (Dillon et al., 2005; Koch and tions of their hosts, including their competition with Schmid-Hempel, 2011). Symbionts can preempt infection other species. Nematodes in the genus Steinernema by forming a protective physical barrier, drawing down utilize Xenorhabdus bacterial symbionts for insect available host resources (Donskey et al., 2000; de Roode ’ host killing and nutritional bioconversion. Here, we et al., 2005; Caragata et al., 2013), modulating the host s establish that the Xenorhabdus bovienii bacterial immune system (Lysenko et al., 2010; Hooper et al., symbiont (Xb-Sa-78) of Steinernema affine nema- 2012; Abt and Artis, 2013) or directly attacking invaders todes can impact competition between S. affine and (Jaenike et al., 2010; Hamilton et al., 2014).
    [Show full text]
  • International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/Ijsem.0.001485
    International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/ijsem.0.001485 Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Mobolaji Adeolu,† Seema Alnajar,† Sohail Naushad and Radhey S. Gupta Correspondence Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Radhey S. Gupta L8N 3Z5, Canada [email protected] Understanding of the phylogeny and interrelationships of the genera within the order ‘Enterobacteriales’ has proven difficult using the 16S rRNA gene and other single-gene or limited multi-gene approaches. In this work, we have completed comprehensive comparative genomic analyses of the members of the order ‘Enterobacteriales’ which includes phylogenetic reconstructions based on 1548 core proteins, 53 ribosomal proteins and four multilocus sequence analysis proteins, as well as examining the overall genome similarity amongst the members of this order. The results of these analyses all support the existence of seven distinct monophyletic groups of genera within the order ‘Enterobacteriales’. In parallel, our analyses of protein sequences from the ‘Enterobacteriales’ genomes have identified numerous molecular characteristics in the forms of conserved signature insertions/deletions, which are specifically shared by the members of the identified clades and independently support their monophyly and distinctness. Many of these groupings, either in part or in whole, have been recognized in previous evolutionary studies, but have not been consistently resolved as monophyletic entities in 16S rRNA gene trees. The work presented here represents the first comprehensive, genome- scale taxonomic analysis of the entirety of the order ‘Enterobacteriales’.
    [Show full text]
  • Characterization of Novel Xenorhabdus- Steinernema Associations and Identification of Novel Antimicrobial Compounds Produced by Xenorhabdus Khoisanae
    Characterization of Novel Xenorhabdus- Steinernema Associations and Identification of Novel Antimicrobial Compounds Produced by Xenorhabdus khoisanae by Jonike Dreyer Thesis presented in partial fulfilment of the requirements for the degree of Master of Science in the Faculty of Science at Stellenbosch University Supervisor: Prof. L.M.T. Dicks Co-supervisor: Dr. A.P. Malan March 2018 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. March 2018 Copyright © 2018 Stellenbosch University All rights reserved ii Stellenbosch University https://scholar.sun.ac.za Abstract Xenorhabdus bacteria are closely associated with Steinernema nematodes. This is a species- specific association. Therefore, a specific Steinernema species is associated with a specific Xenorhabdus species. During the Xenorhabdus-Steinernema life cycle the nematodes infect insect larvae and release the bacteria into the hemocoel of the insect by defecation. The bacteria and nematodes produce several exoenzymes and toxins that lead to septicemia, death and bioconversion of the insect. This results in the proliferation of both the nematodes and bacteria. When nutrients are depleted, nematodes take up Xenorhabdus cells and leave the cadaver in search of their next prey. Xenorhabdus produces various broad-spectrum bioactive compounds during their life cycle to create a semi-exclusive environment for the growth of the bacteria and their symbionts.
    [Show full text]
  • Opportunities and Challenges of Entomopathogenic Nematodes As Biocontrol Agents in Their Tripartite Interactions Tarique H
    Askary and Abd-Elgawad Egyptian Journal of Biological Pest Control (2021) 31:42 Egyptian Journal of https://doi.org/10.1186/s41938-021-00391-9 Biological Pest Control REVIEW ARTICLE Open Access Opportunities and challenges of entomopathogenic nematodes as biocontrol agents in their tripartite interactions Tarique H. Askary1 and Mahfouz M. M. Abd-Elgawad2* Abstract Background: The complex including entomopathogenic nematodes (EPNs) of the genera Steinernema and Heterorhabditis and their mutualistic partner, i.e., Xenorhabdus and Photorhabdus bacteria, respectively possesses many attributes of ideal biological control agents against numerous insect pests as a third partner. Despite authenic opportunities for their practical use as biocontrol agents globally, they are challenged by major impediments especially their cost and reliability. Main body: This review article presents major attributes of EPNs to familiarize growers and stakeholders with their careful application. As relatively high EPN costs and frequently low efficacy are still hindering them from reaching broader biopesticide markets, this is to review the latest findings on EPN strain/species enhancement, improvement of production, formulation and application technology, and achieving biological control of insects from the standpoint of facing these challenges. The conditions and practices that affected the use of EPNs for integrated pest management (IPM) are identified. Besides, efforts have been made to address such practices in various ways that grasp their effective approaches, identify research priority areas, and allow refined techniques. Additionally, sampling factors responsible for obtaining more EPN isolates with differential pathogenicity and better adaptation to control specific pest(s) are discussed. Conclusion: Specific improvements of EPN production, formulation, and application technology are reviewed which may help in their broader use.
    [Show full text]
  • Entomopathocemc Nematodes
    NEMATICIDAL PROPERTIES OF XENOREMBDUS SPP. AND PHOTOiüX4BDUS SPP., BACTERIAL SYMBIONTS OF ENTOMOPATHOCEMC NEMATODES B.Sc., Northwestem College of Fonstry, Yangling, China, 1985 M.Sc., The Chinese Acaderny of Fonstry, Beijing, China, 1988 THESIS SUBMïlTED IN PARTIAL, FULFLMENT OF THE REQUlREMENTS FOR THE DEGREE OF DOCTOR OF PWSOPHY in the Department of Biological Sciences OKAIJI HU 1999 SIMON FRASER UNIVERSïïY Al1 rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author. National Library Bibliothèque nationale 1*1 of Canada du Canada Acquisitions and Acquisitions et Bibliographie Senrices seMces bibliographiques 395 Wdlington Sireet 395, rue Weltington OniwaôN KlAOW OttawaON KlAW Canada Canade The author has granted a non- L'auteur a accordé une licence non exclusive licence ailowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microfom, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/nlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fkom it Ni la thèse ni des extraits substantiels may be phted or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son pemission. autorisation. ABSTRACT Nematicidal properties of some secondary metabolites of Xenorhnbdus spp. and Photorhabdus spp. (Enterobacteriaceae), bacterial symbiunts of the entomopathogenic nematodes, Steinernema spp.
    [Show full text]
  • Steinernema Carpocapsae and S
    Aus dem Institut für Phytopathologie der Christian-Albrechts-Universität zu Kiel Life cycle and development of entomopathogenic nematodes Steinernema carpocapsae and S. feltiae in monoxenic liquid culture Lebenszyklus und Entwicklung der entomopathogenen Nematoden Steinernema carpocapsae und S. feltiae in monoxenischer Flüssigkultur Dissertation zur Erlangung des Doktorgrades der Agrar- und Ernährungswissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von M.Sc. Ayako Hirao aus Tokyo Kiel, 2009 Dekan: Prof. Dr. Uwe Latacz-Lohmann 1. Berichterstatter: Prof. Dr. Ralf-Udo Ehlers 2. Berichterstatter: Prof. Dr. Hinrich Schulenburg Tag der mündlichen Prüfung: 10. Juli 2009 Gedruckt mit der Genehmigung der Agrarwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel 1. Introduction ......................................................................................................................... 1 2. Results and discussion ....................................................................................................... 10 2.1. DJ recovery .................................................................................................................... 10 2.2. Offspring production ...................................................................................................... 12 2.2.1. Developmental period in parental generation ........................................................ 12 2.2.2. Sex ratio in adult population ..................................................................................
    [Show full text]