Gyrb and Rpob Genes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genetics and Physiology of Motility by Photorhabdus Spp Brandye A
University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2006 Genetics and physiology of motility by Photorhabdus spp Brandye A. Michaels University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Michaels, Brandye A., "Genetics and physiology of motility by Photorhabdus spp" (2006). Doctoral Dissertations. 324. https://scholars.unh.edu/dissertation/324 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. GENETICS AND PHYSIOLOGY OF MOTILITY BYPHOTORHABDUS SPP. BY BRANDYE A. MICHAELS BS, Armstrong Atlantic State University, 1999 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Microbiology May, 2006 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3217433 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. ® UMI UMI Microform 3217433 Copyright 2006 by ProQuest Information and Learning Company. -
Evolutionary Patchwork of an Insecticidal Toxin
Ruffner et al. BMC Genomics (2015) 16:609 DOI 10.1186/s12864-015-1763-2 RESEARCH ARTICLE Open Access Evolutionary patchwork of an insecticidal toxin shared between plant-associated pseudomonads and the insect pathogens Photorhabdus and Xenorhabdus Beat Ruffner1, Maria Péchy-Tarr2, Monica Höfte3, Guido Bloemberg4, Jürg Grunder5, Christoph Keel2* and Monika Maurhofer1* Abstract Background: Root-colonizing fluorescent pseudomonads are known for their excellent abilities to protect plants against soil-borne fungal pathogens. Some of these bacteria produce an insecticidal toxin (Fit) suggesting that they may exploit insect hosts as a secondary niche. However, the ecological relevance of insect toxicity and the mechanisms driving the evolution of toxin production remain puzzling. Results: Screening a large collection of plant-associated pseudomonads for insecticidal activity and presence of the Fit toxin revealed that Fit is highly indicative of insecticidal activity and predicts that Pseudomonas protegens and P. chlororaphis are exclusive Fit producers. A comparative evolutionary analysis of Fit toxin-producing Pseudomonas including the insect-pathogenic bacteria Photorhabdus and Xenorhadus, which produce the Fit related Mcf toxin, showed that fit genes are part of a dynamic genomic region with substantial presence/absence polymorphism and local variation in GC base composition. The patchy distribution and phylogenetic incongruence of fit genes indicate that the Fit cluster evolved via horizontal transfer, followed by functional integration of vertically transmitted genes, generating a unique Pseudomonas-specific insect toxin cluster. Conclusions: Our findings suggest that multiple independent evolutionary events led to formation of at least three versions of the Mcf/Fit toxin highlighting the dynamic nature of insect toxin evolution. -
The Louse Fly-Arsenophonus Arthropodicus Association
THE LOUSE FLY-ARSENOPHONUS ARTHROPODICUS ASSOCIATION: DEVELOPMENT OF A NEW MODEL SYSTEM FOR THE STUDY OF INSECT-BACTERIAL ENDOSYMBIOSES by Kari Lyn Smith A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Biology The University of Utah August 2012 Copyright © Kari Lyn Smith 2012 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of Kari Lyn Smith has been approved by the following supervisory committee members: Colin Dale Chair June 18, 2012 Date Approved Dale Clayton Member June 18, 2012 Date Approved Maria-Denise Dearing Member June 18, 2012 Date Approved Jon Seger Member June 18, 2012 Date Approved Robert Weiss Member June 18, 2012 Date Approved and by Neil Vickers Chair of the Department of __________________________Biology and by Charles A. Wight, Dean of The Graduate School. ABSTRACT There are many bacteria that associate with insects in a mutualistic manner and offer their hosts distinct fitness advantages, and thus have likely played an important role in shaping the ecology and evolution of insects. Therefore, there is much interest in understanding how these relationships are initiated and maintained and the molecular mechanisms involved in this process, as well as interest in developing symbionts as platforms for paratransgenesis to combat disease transmission by insect hosts. However, this research has been hampered by having only a limited number of systems to work with, due to the difficulties in isolating and modifying bacterial symbionts in the lab. In this dissertation, I present my work in developing a recently described insect-bacterial symbiosis, that of the louse fly, Pseudolynchia canariensis, and its bacterial symbiont, Candidatus Arsenophonus arthropodicus, into a new model system with which to investigate the mechanisms and evolution of symbiosis. -
Comparison of Xenorhabdus Bovienii Bacterial Strain Genomes Reveals Diversity in Symbiotic Functions Kristen E
Murfin et al. BMC Genomics (2015) 16:889 DOI 10.1186/s12864-015-2000-8 RESEARCH ARTICLE Open Access Comparison of Xenorhabdus bovienii bacterial strain genomes reveals diversity in symbiotic functions Kristen E. Murfin1, Amy C. Whooley1, Jonathan L. Klassen2 and Heidi Goodrich-Blair1* Abstract Background: Xenorhabdus bacteria engage in a beneficial symbiosis with Steinernema nematodes, in part by providing activities that help kill and degrade insect hosts for nutrition. Xenorhabdus strains (members of a single species) can display wide variation in host-interaction phenotypes and genetic potential indicating that strains may differ in their encoded symbiosis factors, including secreted metabolites. Methods: To discern strain-level variation among symbiosis factors, and facilitate the identification of novel compounds, we performed a comparative analysis of the genomes of 10 Xenorhabdus bovienii bacterial strains. Results: The analyzed X. bovienii draft genomes are broadly similar in structure (e.g. size, GC content, number of coding sequences). Genome content analysis revealed that general classes of putative host-microbe interaction functions, such as secretion systems and toxin classes, were identified in all bacterial strains. In contrast, we observed diversity of individual genes within families (e.g. non-ribosomal peptide synthetase clusters and insecticidal toxin components), indicating the specific molecules secreted by each strain can vary. Additionally, phenotypic analysis indicates that regulation of activities (e.g. enzymes and motility) differs among strains. Conclusions: The analyses presented here demonstrate that while general mechanisms by which X. bovienii bacterial strains interact with their invertebrate hosts are similar, the specific molecules mediating these interactions differ. Our data support that adaptation of individual bacterial strains to distinct hosts or niches has occurred. -
Assessing the Pathogenicity of Two Bacteria Isolated from the Entomopathogenic Nematode Heterorhabditis Indica Against Galleria Mellonella and Some Pest Insects
insects Article Assessing the Pathogenicity of Two Bacteria Isolated from the Entomopathogenic Nematode Heterorhabditis indica against Galleria mellonella and Some Pest Insects Rosalba Salgado-Morales 1,2 , Fernando Martínez-Ocampo 2 , Verónica Obregón-Barboza 2, Kathia Vilchis-Martínez 3, Alfredo Jiménez-Pérez 3 and Edgar Dantán-González 2,* 1 Doctorado en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, 62209 Cuernavaca, Morelos, Mexico; [email protected] 2 Laboratorio de Estudios Ecogenómicos, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, 62209 Cuernavaca, Morelos, Mexico; [email protected] (F.M.-O.); [email protected] (V.O.-B.) 3 Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Calle Ceprobi No. 8, San Isidro, Yautepec, 62739 Morelos, Mexico; [email protected] (K.V.-M.); [email protected] (A.J.-P.) * Correspondence: [email protected]; Tel.: +52-777-329-7000 Received: 20 December 2018; Accepted: 15 March 2019; Published: 26 March 2019 Abstract: The entomopathogenic nematodes Heterorhabditis are parasites of insects and are associated with mutualist symbiosis enterobacteria of the genus Photorhabdus; these bacteria are lethal to their host insects. Heterorhabditis indica MOR03 was isolated from sugarcane soil in Morelos state, Mexico. The molecular identification of the nematode was confirmed using sequences of the ITS1-5.8S-ITS2 region and the D2/D3 expansion segment of the 28S rRNA gene. In addition, two bacteria HIM3 and NA04 strains were isolated from the entomopathogenic nematode. The genomes of both bacteria were sequenced and assembled de novo. -
Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341 -
Novel Anti-Microbial Peptides of Xenorhabdus Origin Against Multidrug Resistant Plant Pathogens
9 Novel Anti-Microbial Peptides of Xenorhabdus Origin Against Multidrug Resistant Plant Pathogens András Fodor1, Ildikó Varga1, Mária Hevesi2, Andrea Máthé-Fodor3, Jozsef Racsko4,5 and Joseph A. Hogan5 1Plant Protection Institute, Georgikon Faculty, University of Pannonia, Keszthely, 2Department of Pomology, Faculty of Horticultural Science, Corvinus University of Budapest Villányi út Budapest, 3Molecular and Cellular Imaging Center, Ohio State University (OARDC/OSU), OH, 4Department of Horticulture and Crop Science, Ohio State University (OARDC/OSU), OH, 5Valent Biosciences Corporation, 870 Technology Way, Libertyville, IL, 6Department of Animal Sciences, Ohio State University (OARDC/OSU) OH, 1,2Hungary 3,4,5,6USA 1. Introduction The discovery and introduction of antibiotics revolutionized the human therapy, the veterinary and plant medicines. Despite the spectacular results, several problems have occurred later on. Emergence of antibiotic resistance is an enormous clinical and public health concern. Spread of methicillin-resistant Staphylococcus aureus (MRSA) (Ellington et al., 2010), emergence of extended spectrum beta-lactamase (ESBL) producing Enterobacteriaceae (Pitout, 2008), carbapenem resistant Klebsiella pneumoniae (Schechner et al., 2009) and poly- resistant Pseudomonas (Strateva and Yordanov, 2009) and Acinetobacter (Vila et al., 2007) causes serious difficulties in the treatment of severe infections (Vila et al., 2007; Rossolini et al., 2007). A comprehensive strategy, a multidisciplinary effort is required to combat these infections. The new strategy includes compliance with infection control principles: antimicrobial stewardship and the development of new antimicrobial agents effective against multi-resistant gram-negative and gram-positive pathogens (Slama, 2008). During the last few decades, only a few new antibiotic classes reached the market (Fotinos et al., 2008). These facts highlight the need to develop new therapeutic strategies. -
Comparative Phenotypic and Genomics Approaches
Comparative Phenotypic and Genomics Approaches Provide Insight into the Tripartite Symbiosis of Xenorhabdus bovienii with Steinernema Nematode and Lepidopteran Insect Hosts Item Type text; Electronic Thesis Authors McMullen, John George II Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 25/09/2021 05:58:01 Link to Item http://hdl.handle.net/10150/596124 COMPARATIVE PHENOTYPIC AND GENOMICS APPROACHES PROVIDE INSIGHT INTO THE TRIPARTITE SYMBIOSIS OF XENORHABDUS BOVIENII WITH STEINERNEMA NEMATODE AND LEPIDOPTERAN INSECT HOSTS by John George McMullen II ____________________________ A Thesis Submitted to the Faculty of the SCHOOL OF ANIMAL AND COMPARATIVE BIOMEDICAL SCIENCES In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 2015 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that an accurate acknowledgement of the source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship. -
Novel Anti-Microbial Peptides of Xenorhabdus Origin Against Multidrug Resistant Plant Pathogens
9 Novel Anti-Microbial Peptides of Xenorhabdus Origin Against Multidrug Resistant Plant Pathogens András Fodor1, Ildikó Varga1, Mária Hevesi2, Andrea Máthé-Fodor3, Jozsef Racsko4,5 and Joseph A. Hogan5 1Plant Protection Institute, Georgikon Faculty, University of Pannonia, Keszthely, 2Department of Pomology, Faculty of Horticultural Science, Corvinus University of Budapest Villányi út Budapest, 3Molecular and Cellular Imaging Center, Ohio State University (OARDC/OSU), OH, 4Department of Horticulture and Crop Science, Ohio State University (OARDC/OSU), OH, 5Valent Biosciences Corporation, 870 Technology Way, Libertyville, IL, 6Department of Animal Sciences, Ohio State University (OARDC/OSU) OH, 1,2Hungary 3,4,5,6USA 1. Introduction The discovery and introduction of antibiotics revolutionized the human therapy, the veterinary and plant medicines. Despite the spectacular results, several problems have occurred later on. Emergence of antibiotic resistance is an enormous clinical and public health concern. Spread of methicillin-resistant Staphylococcus aureus (MRSA) (Ellington et al., 2010), emergence of extended spectrum beta-lactamase (ESBL) producing Enterobacteriaceae (Pitout, 2008), carbapenem resistant Klebsiella pneumoniae (Schechner et al., 2009) and poly- resistant Pseudomonas (Strateva and Yordanov, 2009) and Acinetobacter (Vila et al., 2007) causes serious difficulties in the treatment of severe infections (Vila et al., 2007; Rossolini et al., 2007). A comprehensive strategy, a multidisciplinary effort is required to combat these infections. The new strategy includes compliance with infection control principles: antimicrobial stewardship and the development of new antimicrobial agents effective against multi-resistant gram-negative and gram-positive pathogens (Slama, 2008). During the last few decades, only a few new antibiotic classes reached the market (Fotinos et al., 2008). These facts highlight the need to develop new therapeutic strategies. -
Nematicidal Activity of Nematode-Symbiotic Bacteria Xenorhabdus Bovienii and X
ПАРАЗИТОЛОГИЯ, 2020, том 54, № 5, с. 413–422. УДК 579.64:632.651 NEMATICIDAL ACTIVITY OF NEMATODE-SYMBIOTIC BACTERIA XENORHABDUS BOVIENII AND X. NEMATOPHILA AGAINST ROOT-KNOT NEMATODE MELOIDOGYNE INCOGNITA © 2020 L. G. Danilov, V. G. Kaplin* All-Russia Institute of Plant Protection, Pushkin, Saint Petersburg, 196608 Russia * e-mail: [email protected] Received 21.06.2020 Received in revised form 18.07.2020 Accepted 30.07.2020 The lethal effects of metabolic products produced by the symbiotic bacteria Xenorhabdus bovienii from Steinernema feltiae and X. nematophila from S. carpocapsae were tested on M. incognita infec- tive juveniles (J2). Treatments had cell titers of 2.5 × 109, 1.25 × 109 and 0.63 × 109 per ml at 20 °C, 23 °C and 26 °C. Exposure periods were 15 hr, 41 hr, 65 hr and 90 hr immediately after autoclaving and at 23°C, and exposure periods of 5 hr, 26 hr, 50 hr and 74 hr after storage for 21 days at 4 °C. The effectiveness of bacterial metabolic products immediately after preparation against M. incognita (J2) depended on the titer of bacterial cells, the temperature of the culture liquid, and the duration of its exposure to nematodes. Nematicidal activity of X. bovienii metabolic products was higher than that of X. nematophila. Mortality of M. incognita J2 was 92–93 % after 90-hr exposure to X. bovienii at 20 °C and cell titers of 2.5 × 109 and 1.25 × 109; also after 65 hr exposure at 23 °C, titer of 2.5 × 109 and 95–99 % at 26 °C and all tested titers. -
Haemocoel Injection of Pira1b1 to Galleria Mellonella Larvae Leads To
www.nature.com/scientificreports OPEN Haemocoel injection of PirA1B1 to Galleria mellonella larvae leads to disruption of the haemocyte Received: 05 July 2016 Accepted: 22 September 2016 immune functions Published: 13 October 2016 Gongqing Wu1,2 & Yunhong Yi1 The bacterium Photorhabdus luminescens produces a number of insecticidal proteins to kill its larval prey. In this study, we cloned the gene coding for a binary toxin PirA1B1 and purified the recombinant protein using affinity chromatography combined with desalination technology. Furthermore, the cytotoxicity of the recombinant protein against the haemocytes of Galleria mellonella larvae was investigated. We found that the protein had haemocoel insecticidal activity against G. mellonella with an LD50 of 131.5 ng/larva. Intrahaemocoelic injection of PirA1B1 into G. mellonella resulted in significant decreases in haemocyte number and phagocytic ability. In in vitro experiments, PirA1B1 inhibited the spreading behaviour of the haemocytes of G. mellonella larvae and even caused haemocyte degeneration. Fluorescence microscope analysis and visualization of haemocyte F-actin stained with phalloidin-FITC showed that the PirA1B1 toxin disrupted the organization of the haemocyte cytoskeleton. Our results demonstrated that the PirA1B1 toxin disarmed the insect cellular immune system. Photorhabdus luminescens, a Gram-negative bacterium, resides as a symbiont in the gut of entomopathogenic nematodes (EPNs) of the genus Heterorhabditis1. Upon entering an insect host, EPNs release the symbiotic bacte- ria directly into the insect haemocoel. To infect its host and survive, bacteria must be capable of producing a wide range of proteins, including toxins2. To date, four primary classes of toxins are characterized in P. luminescens. The first class, toxin complexes (Tcs), shows both oral and injectable activity against the Colorado potato beetle3. -
(Hemiptera: Aphrophoridae) Nymphs
insects Article Insecticidal Effect of Entomopathogenic Nematodes and the Cell-Free Supernatant from Their Symbiotic Bacteria against Philaenus spumarius (Hemiptera: Aphrophoridae) Nymphs Ignacio Vicente-Díez, Rubén Blanco-Pérez, María del Mar González-Trujillo, Alicia Pou and Raquel Campos-Herrera * Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), 26007 Logroño, Spain; [email protected] (I.V.-D.); [email protected] (R.B.-P.); [email protected] (M.d.M.G.-T.); [email protected] (A.P.) * Correspondence: [email protected]; Tel.: +34-941-894980 (ext. 410102) Simple Summary: The disease caused by Xylella fastidiosa affects economically relevant crops such as olives, almonds, and grapevine. Since curative means are not available, its current management principally consists of broad-spectrum pesticide applications to control vectors like the meadow spittlebug Philaenus spumarius, the most important one in Europe. Exploring environmentally sound alternatives is a primary challenge for sustainable agriculture. Entomopathogenic nematodes (EPNs) are well-known biocontrol agents of soil-dwelling arthropods. Recent technological advances for Citation: Vicente-Díez, I.; field applications, including improvements in obtaining cell-free supernatants from EPN symbiotic Blanco-Pérez, R.; González-Trujillo, bacteria, allow their successful implementation against aerial pests. Here, we investigated the impact M.d.M.; Pou, A.; Campos-Herrera, R. of four EPN species and their cell-free supernatants on nymphs of the meadow spittlebug. First, Insecticidal Effect of we observed that the exposure to the foam produced by this insect does not affect the nematode Entomopathogenic Nematodes and virulence. Indeed, direct applications of certain EPN species reached up to 90–78% nymphal mortality the Cell-Free Supernatant from Their rates after five days of exposure, while specific cell-free supernatants produced 64% mortality rates.