Bacteria of the Genus Xenorhabdus, a Novel Source of Bioactive Compounds

Total Page:16

File Type:pdf, Size:1020Kb

Bacteria of the Genus Xenorhabdus, a Novel Source of Bioactive Compounds fmicb-09-03177 December 17, 2018 Time: 17:4 # 1 REVIEW published: 19 December 2018 doi: 10.3389/fmicb.2018.03177 Bacteria of the Genus Xenorhabdus, a Novel Source of Bioactive Compounds Jönike Dreyer1, Antoinette P. Malan2 and Leon M. T. Dicks1* 1 Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa, 2 Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa The genus Xenorhabdus of the family Enterobacteriaceae, are mutualistically associated with entomopathogenic nematodes of the genus Steinernema. Although most of the associations are species-specific, a specific Xenorhabdus sp. may infect more than one Steinernema sp. During the Xenorhabdus–Steinernema life cycle, insect larvae are infected and killed, while both mutualists produce bioactive compounds. These compounds act synergistically to ensure reproduction and proliferation of the nematodes and bacteria. A single strain of Xenorhabdus may produce a variety of antibacterial and antifungal compounds, some of which are also active against Edited by: insects, nematodes, protozoa, and cancer cells. Antimicrobial compounds produced by Santi M. Mandal, Indian Institute of Technology Xenorhabdus spp. have not been researched to the same extent as other soil bacteria Kharagpur, India and they may hold the answer to novel antibacterial and antifungal compounds. This Reviewed by: review summarizes the bioactive secondary metabolites produced by Xenorhabdus spp. Prabuddha Dey, and their application in disease control. Gene regulation and increasing the production Rutgers University – The State University of New Jersey, of a few of these antimicrobial compounds are discussed. Aspects limiting future United States development of these novel bioactive compounds are also pointed out. Ekramul Islam, University of Kalyani, India Keywords: Xenorhabdus, bioactive compounds, secondary metabolites, antimicrobial properties, antimicrobial peptides *Correspondence: Leon M. T. Dicks [email protected] INTRODUCTION Specialty section: This article was submitted to Since the discovery of penicillin in 1928 and the introduction of sulphonamides in 1935, more than Antimicrobials, Resistance 20 classes of antibiotics entered the market (Coates et al., 2002; Powers, 2004). The majority of and Chemotherapy, these antibiotics were developed between 1940 and 1962 (Coates et al., 2011). No novel classes of a section of the journal antibiotics were developed between 1968 and 1998. Antibiotics developed up to 1960 protected Frontiers in Microbiology humans from infections for approximately 50 years (Coates et al., 2011). Within 2 years of Received: 18 June 2018 marketing, resistance is usually observed, even to new classes of compounds (Bax et al., 1998). Accepted: 07 December 2018 With the current rate at which bacteria develop resistance, we may need more than 20 new classes Published: 19 December 2018 of antibiotics to last us for the next 50 years (thus up to 2060). Citation: Infections caused by Gram-negative bacteria are difficult to treat and many produce metallo- Dreyer J, Malan AP and b-lactamase that neutralize carbapenems (Kumarasamy et al., 2010). Strains of Staphylococcus Dicks LMT (2018) Bacteria of the Genus Xenorhabdus, a Novel Source aureus developed resistance to penicillin in the early 1940s, shortly after its introduction into the of Bioactive Compounds. market (Chambers and Deleo, 2009). Resistance to methicillin was recorded just 1 year after its Front. Microbiol. 9:3177. introduction. Nowadays, most of the deaths caused by S. aureus are due to MRSA (Klein et al., doi: 10.3389/fmicb.2018.03177 2007). Other pathogens in the so-called ESKAPE group for which new antibiotics are urgently Frontiers in Microbiology| www.frontiersin.org 1 December 2018| Volume 9| Article 3177 fmicb-09-03177 December 17, 2018 Time: 17:4 # 2 Dreyer et al. Xenorhabdus, a Novel Source of Bioactive Compounds needed are Enterococcus faecium, Acinetobacter baumanii, synthetases (NRPS) are responsible for the production of a Klebsiella pneumoniae, Pseudomonas aeruginosa, and diverse group of peptides, e.g., depsipeptides (Lang et al., 2008; Enterobacter species (Rice, 2010). Zhou et al., 2013; Kronenwerth et al., 2014), xenocoumacins Another emerging pathogen is Clostridium difficile. Infections (Reimer, 2013), and PAX (peptide-antimicrobial-Xenorhabdus) caused by C. difficile increased dramatically over the last peptides (Fuchs et al., 2011). Other Xenorhabdus antimicrobial decade, especially in patients with irritable bowel disease (IBD) compounds include benzylideneacetone (Ji et al., 2004), indole (Nguyen et al., 2008). Severe cases of CDI are treated with oral derivatives (Sundar and Chang, 1993), and ribosomal-encoded metronidazole (250–500 mg four times a day for 10–14 days), or bacteriocins (Thaler et al., 1995; Singh and Banerjee, 2008). oral vancomycin (125–500 mg four times a day for 10–14 days). The Steinernema life cycle is shown in Figure 1. Phase I cells Metronidazole is often administered intravenously, in doses of of Xenorhabdus are associated with reproducing nematodes, but 500 mg four times daily (Persky and Brandt, 2000). Although changes to phase II when nematodes infect the insect cadaver metronidazole is the antibiotic of choice, failure rates of 22 to 38% (Akhurst, 1980). Phase I cells are larger than phase II cells, have been reported and many strains have developed resistance have crystalline inclusion bodies, are mobile (by swarming), and (Miller et al., 2010, 2011). produce proteases, lipases, and bioactive compounds (Akhurst, The rate at which bacteria develop resistance to antibiotics 1982; Boemare and Akhurst, 1988). The two phases are depends on the genetic characteristics of the pathogen and the clearly distinguished by staining with bromothymol blue and mode of action of the antibiotic. For instance, resistance to triphenyltetrazolium chloride (Kaya and Stock, 1997). Phase rifampicin, which inhibits DNA-dependent RNA polymerase, I cells streaked onto growth media supplemented with a develops much faster than resistance to antibiotics that target cell combination of the two dyes form dark blue colonies with a membranes (Lambert, 2005; Zhanel et al., 2008). Bacteria have red core and are surrounded by a clear zone. Exceptions to several mechanisms to protect themselves against antibiotics, e.g., the rule have been reported, i.e., phase I cells not absorbing (i) inactivation of the antibiotic (e.g., production of b-lactamase bromothymol blue (Koppenhöfer, 2007). Nematodes infected degrading the b-lactam ring in penicillins and cephalosporins), with Xenorhabdus enter the insect host through natural openings, (ii) changing membrane permeability to reduce the uptake of an such as the mouth, anus and respiratory spiracles, and migrates antibiotic, (iii) changing efflux pumps to increase the excretion of to the hemocoel. Once in the hemocoel, the nematodes enter an antibiotic from the cell, (iv) increasing production of the target a feeding phase, whereupon the bacteria are released (by enzyme, (v) finding alternative mechanisms to bypass damaged defecation) and start to produce compounds to repress the cell components, and (vi) altering the target site to render the insect’s immune system (Webster et al., 2002). The protein antibiotic ineffective. Some antibiotics, such as fluoroquinolones, UnA, produced by some strains of Xenorhabdus nematophila, induce the SOS response in cells, which increases the level of prevents the hemocytes of the insect to aggregate and form errors in DNA replication and by doing so, increases resistance (Da Re et al., 2009). It is evident that we need novel antibiotics to treat bacterial infections. Oxazolidinone (linezolid by Pfizer) and cyclic lipopeptide (daptomycin by Cubist), with activity against Gram-positive bacteria, including MRSA, are two of the most recent antibiotics released into the market (Coates et al., 2011). There may be a number of yet to be published antibiotics that are currently in preclinical development, but the overall conclusion is that we are heading for a disaster if antibiotics with broader antimicrobial activity are not developed in the next few years. The rate at which novel antibiotics are being developed is just not sufficient to control bacterial infections. We need to focus our efforts in developing antibiotics that target complex bacterial systems, such as cell membranes. Xenorhabdus spp. produce various bioactive compounds throughout their life cycle and the genus is an underestimated and neglected source of novel bioactive compounds. All strains live in close association with entomopathogenic nematodes (EPNs) of the family Steinernematidae. Biologically active FIGURE 1 | The Steinernema life cycle. The infective juvenile (IJ) nematodes infect an insect host and recover to the feeding phase (J3). J3 nematodes compounds produced by Xenorhabdus spp. have a broad- molt into fourth phase (J4) juveniles, which in turn develop into male and spectrum of antimicrobial activity, inhibiting the growth of female adults. These adults reproduce and lay eggs. The eggs hatch as first bacteria, fungi and protozoa, the development of insects and phase juveniles (J1) which feed and molt to second, third, and fourth juvenile nematodes, and the formation of cancerous cells (Webster phases (J2–J4), and ultimately into adults. After one to three generations, et al., 2002). The variety of bioactive compounds produced when nutrients are depleted, second phase juveniles develop into IJs (special
Recommended publications
  • Comparison of Xenorhabdus Bovienii Bacterial Strain Genomes Reveals Diversity in Symbiotic Functions Kristen E
    Murfin et al. BMC Genomics (2015) 16:889 DOI 10.1186/s12864-015-2000-8 RESEARCH ARTICLE Open Access Comparison of Xenorhabdus bovienii bacterial strain genomes reveals diversity in symbiotic functions Kristen E. Murfin1, Amy C. Whooley1, Jonathan L. Klassen2 and Heidi Goodrich-Blair1* Abstract Background: Xenorhabdus bacteria engage in a beneficial symbiosis with Steinernema nematodes, in part by providing activities that help kill and degrade insect hosts for nutrition. Xenorhabdus strains (members of a single species) can display wide variation in host-interaction phenotypes and genetic potential indicating that strains may differ in their encoded symbiosis factors, including secreted metabolites. Methods: To discern strain-level variation among symbiosis factors, and facilitate the identification of novel compounds, we performed a comparative analysis of the genomes of 10 Xenorhabdus bovienii bacterial strains. Results: The analyzed X. bovienii draft genomes are broadly similar in structure (e.g. size, GC content, number of coding sequences). Genome content analysis revealed that general classes of putative host-microbe interaction functions, such as secretion systems and toxin classes, were identified in all bacterial strains. In contrast, we observed diversity of individual genes within families (e.g. non-ribosomal peptide synthetase clusters and insecticidal toxin components), indicating the specific molecules secreted by each strain can vary. Additionally, phenotypic analysis indicates that regulation of activities (e.g. enzymes and motility) differs among strains. Conclusions: The analyses presented here demonstrate that while general mechanisms by which X. bovienii bacterial strains interact with their invertebrate hosts are similar, the specific molecules mediating these interactions differ. Our data support that adaptation of individual bacterial strains to distinct hosts or niches has occurred.
    [Show full text]
  • Novel Anti-Microbial Peptides of Xenorhabdus Origin Against Multidrug Resistant Plant Pathogens
    9 Novel Anti-Microbial Peptides of Xenorhabdus Origin Against Multidrug Resistant Plant Pathogens András Fodor1, Ildikó Varga1, Mária Hevesi2, Andrea Máthé-Fodor3, Jozsef Racsko4,5 and Joseph A. Hogan5 1Plant Protection Institute, Georgikon Faculty, University of Pannonia, Keszthely, 2Department of Pomology, Faculty of Horticultural Science, Corvinus University of Budapest Villányi út Budapest, 3Molecular and Cellular Imaging Center, Ohio State University (OARDC/OSU), OH, 4Department of Horticulture and Crop Science, Ohio State University (OARDC/OSU), OH, 5Valent Biosciences Corporation, 870 Technology Way, Libertyville, IL, 6Department of Animal Sciences, Ohio State University (OARDC/OSU) OH, 1,2Hungary 3,4,5,6USA 1. Introduction The discovery and introduction of antibiotics revolutionized the human therapy, the veterinary and plant medicines. Despite the spectacular results, several problems have occurred later on. Emergence of antibiotic resistance is an enormous clinical and public health concern. Spread of methicillin-resistant Staphylococcus aureus (MRSA) (Ellington et al., 2010), emergence of extended spectrum beta-lactamase (ESBL) producing Enterobacteriaceae (Pitout, 2008), carbapenem resistant Klebsiella pneumoniae (Schechner et al., 2009) and poly- resistant Pseudomonas (Strateva and Yordanov, 2009) and Acinetobacter (Vila et al., 2007) causes serious difficulties in the treatment of severe infections (Vila et al., 2007; Rossolini et al., 2007). A comprehensive strategy, a multidisciplinary effort is required to combat these infections. The new strategy includes compliance with infection control principles: antimicrobial stewardship and the development of new antimicrobial agents effective against multi-resistant gram-negative and gram-positive pathogens (Slama, 2008). During the last few decades, only a few new antibiotic classes reached the market (Fotinos et al., 2008). These facts highlight the need to develop new therapeutic strategies.
    [Show full text]
  • Comparative Phenotypic and Genomics Approaches
    Comparative Phenotypic and Genomics Approaches Provide Insight into the Tripartite Symbiosis of Xenorhabdus bovienii with Steinernema Nematode and Lepidopteran Insect Hosts Item Type text; Electronic Thesis Authors McMullen, John George II Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 25/09/2021 05:58:01 Link to Item http://hdl.handle.net/10150/596124 COMPARATIVE PHENOTYPIC AND GENOMICS APPROACHES PROVIDE INSIGHT INTO THE TRIPARTITE SYMBIOSIS OF XENORHABDUS BOVIENII WITH STEINERNEMA NEMATODE AND LEPIDOPTERAN INSECT HOSTS by John George McMullen II ____________________________ A Thesis Submitted to the Faculty of the SCHOOL OF ANIMAL AND COMPARATIVE BIOMEDICAL SCIENCES In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 2015 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that an accurate acknowledgement of the source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship.
    [Show full text]
  • Novel Anti-Microbial Peptides of Xenorhabdus Origin Against Multidrug Resistant Plant Pathogens
    9 Novel Anti-Microbial Peptides of Xenorhabdus Origin Against Multidrug Resistant Plant Pathogens András Fodor1, Ildikó Varga1, Mária Hevesi2, Andrea Máthé-Fodor3, Jozsef Racsko4,5 and Joseph A. Hogan5 1Plant Protection Institute, Georgikon Faculty, University of Pannonia, Keszthely, 2Department of Pomology, Faculty of Horticultural Science, Corvinus University of Budapest Villányi út Budapest, 3Molecular and Cellular Imaging Center, Ohio State University (OARDC/OSU), OH, 4Department of Horticulture and Crop Science, Ohio State University (OARDC/OSU), OH, 5Valent Biosciences Corporation, 870 Technology Way, Libertyville, IL, 6Department of Animal Sciences, Ohio State University (OARDC/OSU) OH, 1,2Hungary 3,4,5,6USA 1. Introduction The discovery and introduction of antibiotics revolutionized the human therapy, the veterinary and plant medicines. Despite the spectacular results, several problems have occurred later on. Emergence of antibiotic resistance is an enormous clinical and public health concern. Spread of methicillin-resistant Staphylococcus aureus (MRSA) (Ellington et al., 2010), emergence of extended spectrum beta-lactamase (ESBL) producing Enterobacteriaceae (Pitout, 2008), carbapenem resistant Klebsiella pneumoniae (Schechner et al., 2009) and poly- resistant Pseudomonas (Strateva and Yordanov, 2009) and Acinetobacter (Vila et al., 2007) causes serious difficulties in the treatment of severe infections (Vila et al., 2007; Rossolini et al., 2007). A comprehensive strategy, a multidisciplinary effort is required to combat these infections. The new strategy includes compliance with infection control principles: antimicrobial stewardship and the development of new antimicrobial agents effective against multi-resistant gram-negative and gram-positive pathogens (Slama, 2008). During the last few decades, only a few new antibiotic classes reached the market (Fotinos et al., 2008). These facts highlight the need to develop new therapeutic strategies.
    [Show full text]
  • Nematicidal Activity of Nematode-Symbiotic Bacteria Xenorhabdus Bovienii and X
    ПАРАЗИТОЛОГИЯ, 2020, том 54, № 5, с. 413–422. УДК 579.64:632.651 NEMATICIDAL ACTIVITY OF NEMATODE-SYMBIOTIC BACTERIA XENORHABDUS BOVIENII AND X. NEMATOPHILA AGAINST ROOT-KNOT NEMATODE MELOIDOGYNE INCOGNITA © 2020 L. G. Danilov, V. G. Kaplin* All-Russia Institute of Plant Protection, Pushkin, Saint Petersburg, 196608 Russia * e-mail: [email protected] Received 21.06.2020 Received in revised form 18.07.2020 Accepted 30.07.2020 The lethal effects of metabolic products produced by the symbiotic bacteria Xenorhabdus bovienii from Steinernema feltiae and X. nematophila from S. carpocapsae were tested on M. incognita infec- tive juveniles (J2). Treatments had cell titers of 2.5 × 109, 1.25 × 109 and 0.63 × 109 per ml at 20 °C, 23 °C and 26 °C. Exposure periods were 15 hr, 41 hr, 65 hr and 90 hr immediately after autoclaving and at 23°C, and exposure periods of 5 hr, 26 hr, 50 hr and 74 hr after storage for 21 days at 4 °C. The effectiveness of bacterial metabolic products immediately after preparation against M. incognita (J2) depended on the titer of bacterial cells, the temperature of the culture liquid, and the duration of its exposure to nematodes. Nematicidal activity of X. bovienii metabolic products was higher than that of X. nematophila. Mortality of M. incognita J2 was 92–93 % after 90-hr exposure to X. bovienii at 20 °C and cell titers of 2.5 × 109 and 1.25 × 109; also after 65 hr exposure at 23 °C, titer of 2.5 × 109 and 95–99 % at 26 °C and all tested titers.
    [Show full text]
  • (Hemiptera: Aphrophoridae) Nymphs
    insects Article Insecticidal Effect of Entomopathogenic Nematodes and the Cell-Free Supernatant from Their Symbiotic Bacteria against Philaenus spumarius (Hemiptera: Aphrophoridae) Nymphs Ignacio Vicente-Díez, Rubén Blanco-Pérez, María del Mar González-Trujillo, Alicia Pou and Raquel Campos-Herrera * Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), 26007 Logroño, Spain; [email protected] (I.V.-D.); [email protected] (R.B.-P.); [email protected] (M.d.M.G.-T.); [email protected] (A.P.) * Correspondence: [email protected]; Tel.: +34-941-894980 (ext. 410102) Simple Summary: The disease caused by Xylella fastidiosa affects economically relevant crops such as olives, almonds, and grapevine. Since curative means are not available, its current management principally consists of broad-spectrum pesticide applications to control vectors like the meadow spittlebug Philaenus spumarius, the most important one in Europe. Exploring environmentally sound alternatives is a primary challenge for sustainable agriculture. Entomopathogenic nematodes (EPNs) are well-known biocontrol agents of soil-dwelling arthropods. Recent technological advances for Citation: Vicente-Díez, I.; field applications, including improvements in obtaining cell-free supernatants from EPN symbiotic Blanco-Pérez, R.; González-Trujillo, bacteria, allow their successful implementation against aerial pests. Here, we investigated the impact M.d.M.; Pou, A.; Campos-Herrera, R. of four EPN species and their cell-free supernatants on nymphs of the meadow spittlebug. First, Insecticidal Effect of we observed that the exposure to the foam produced by this insect does not affect the nematode Entomopathogenic Nematodes and virulence. Indeed, direct applications of certain EPN species reached up to 90–78% nymphal mortality the Cell-Free Supernatant from Their rates after five days of exposure, while specific cell-free supernatants produced 64% mortality rates.
    [Show full text]
  • JOURNAL of NEMATOLOGY Article | DOI: 10.21307/Jofnem-2020-089 E2020-89 | Vol
    JOURNAL OF NEMATOLOGY Article | DOI: 10.21307/jofnem-2020-089 e2020-89 | Vol. 52 Isolation, identification, and pathogenicity of Steinernema carpocapsae and its bacterial symbiont in Cauca-Colombia Esteban Neira-Monsalve1, Natalia Carolina Wilches-Ramírez1, Wilson Terán1, María del Pilar Abstract 1 Márquez , Ana Teresa In Colombia, identification of entomopathogenic nematodes (EPN’s) 2 Mosquera-Espinosa and native species is of great importance for pest management 1, Adriana Sáenz-Aponte * programs. The aim of this study was to isolate and identify EPNs 1Biología de Plantas y Sistemas and their bacterial symbiont in the department of Cauca-Colombia Productivos, Departamento de and then evaluate the susceptibility of two Hass avocado (Persea Biología, Pontificia Universidad americana) pests to the EPNs isolated. EPNs were isolated from soil Javeriana, Bogotá, Colombia. samples by the insect baiting technique. Their bacterial symbiont was isolated from hemolymph of infected Galleria mellonella larvae. 2 Departamento de Ciencias Both organisms were molecularly identified. Morphological, and Naturales y Matemáticas, biochemical cha racterization was done for the bacteria. Susceptibility Pontificia Universidad Javeriana, of Epitrix cucumeris and Pandeleteius cinereus adults was evaluated Cali, Colombia. by individually exposing adults to 50 infective juveniles. EPNs were *E-mail: adriana.saenz@javeriana. allegedly detected at two sampled sites (natural forest and coffee edu.co cultivation) in 5.8% of the samples analyzed. However, only natural forest EPN’s could be isolated and multiplied. The isolate was identified This paper was edited by as Steinernema carpocapsae BPS and its bacterial symbiont as Raquel Campos-Herrera. Xenorhabus nematophila BPS. Adults of both pests were susceptible Received for publication to S.
    [Show full text]
  • Symbiont-Mediated Competition: Xenorhabdus Bovienii Confer an Advantage to Their Nematode Host Steinernema Affine by Killing Competitor Steinernema Feltiae
    Environmental Microbiology (2018) doi:10.1111emi.14278 Symbiont-mediated competition: Xenorhabdus bovienii confer an advantage to their nematode host Steinernema affine by killing competitor Steinernema feltiae Kristen E. Murfin,1† Daren R. Ginete,1,2 Farrah Bashey related to S. affine, although the underlying killing 3 and Heidi Goodrich-Blair1,2* mechanisms may vary. Together, these data demon- 1Department of Bacteriology, University of Wisconsin- strate that bacterial symbionts can modulate compe- Madison, Madison, WI, 53706, USA. tition between their hosts, and reinforce specificity in 2Department of Microbiology, University of Tennessee- mutualistic interactions. Knoxville, Knoxville, TN, 37996, USA. 3 Department of Biology, Indiana University, Introduction Bloomington, IN, 47405–3700, USA. The defensive role of symbionts in the context of host disease is becoming increasingly recognized. For Summary instance, microbial symbionts within hosts can interfere Bacterial symbionts can affect several biotic interac- with invading parasites (Dillon et al., 2005; Koch and tions of their hosts, including their competition with Schmid-Hempel, 2011). Symbionts can preempt infection other species. Nematodes in the genus Steinernema by forming a protective physical barrier, drawing down utilize Xenorhabdus bacterial symbionts for insect available host resources (Donskey et al., 2000; de Roode ’ host killing and nutritional bioconversion. Here, we et al., 2005; Caragata et al., 2013), modulating the host s establish that the Xenorhabdus bovienii bacterial immune system (Lysenko et al., 2010; Hooper et al., symbiont (Xb-Sa-78) of Steinernema affine nema- 2012; Abt and Artis, 2013) or directly attacking invaders todes can impact competition between S. affine and (Jaenike et al., 2010; Hamilton et al., 2014).
    [Show full text]
  • Regulating Alternative Lifestyles in Entomopathogenic Bacteria
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology 20, 69–74, January 12, 2010 ª2010 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2009.10.059 Report Regulating Alternative Lifestyles in Entomopathogenic Bacteria Jason M. Crawford,1,2 Renee Kontnik,1,2 and Jon Clardy1,* important suite of antibacterial and antifungal small molecules 1Department of Biological Chemistry and Molecular that have so far eluded characterization (Figure 1) [4]. Pharmacology, Harvard Medical School, 240 Longwood Photorhabdus luminescens TT01, the best studied of these Avenue, Boston, MA 02115, USA bacterial symbionts, has a sequenced genome containing a wide array of antibiotic synthesizing genes with at least 33 genes in 20 loci similar to those used to make nonribosomal Summary peptides and polyketides—two large families of biologically active small molecules [5]. The genome of Xenorhabdus nem- Bacteria belonging to the genera Photorhabdus and Xeno- atophila ATCC19061 has recently been sequenced, and it rhabdus participate in a trilateral symbiosis in which they appears to have a similar size and comparable number of enable their nematode hosts to parasitize insect larvae [1]. small-molecule biosynthetic genes (www.genoscope.cns.fr/ The bacteria switch from persisting peacefully in a nema- agc/mage/). The majority of these encoded molecules are tode’s digestive tract to a lifestyle in which pathways to cryptic, meaning that their existence can be inferred from the produce insecticidal toxins, degrading enzymes to digest genome but not yet confirmed in the laboratory, and analyses the insect for consumption, and antibiotics to ward off of sequenced bacterial genomes indicate that cryptic metabo- bacterial and fungal competitors are activated.
    [Show full text]
  • Redacted for Privacy Abstract Approved Lalph E
    AN ABSTRACT OF THE DISSERTATION OF Christine Andrea Armer for the degree of Doctor of Philosophy in Entomology presented on August 28, 2002. Title: Entornopathogenic Nematodes for Biological Control of the Colorado Potato Beetle, Leptinotarsa decemlineata (Say) Redacted for privacy Abstract approved lalph E. Berry Suj7aRzto The Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say), is the most devastating foliage-feeding pest of potatoes in the United States. Potential biological control agents include the nematodes Heterorhabditis marelatus Liu & Berry and Steinernema riobrave Cabanillas, Poinar & Raulston, which provided nearly 100% CPB control in previous laboratory trials, In the present study, laboratory assays tested survival and infection by the two species under the soil temperatures CPB are exposed to, from 4-37°C. H. marelatus survived from 4-31°C, and S. riobrave from 4-37°C. Both species infected and developed in waxworm hosts from 13-31°C, but H. marelatus rarely infected hosts above 25°C, and S. riobrave rarely infected hosts below 19°C. H. marelatus infected an average of 5.8% of hosts from 13- 31°C, whereas S. riobrave infected 1.4%. Although H. marelatus could not survive at temperatures as high as S. riobrave, H. marelatus infected more hosts so is preferable for use in CPB control. Heterorhabditis marelatus rarely reproduced in CPB. Preliminary laboratory trials suggested the addition of nitrogen to CPB host plants improved nematode reproduction. Field studies testing nitrogen fertilizer effects on nematode reproduction in CPB indicated that increasing nitrogen from 226 kg/ha to 678 kg/ha produced 25% higher foliar levels of the alkaloids solanine and chacomne.
    [Show full text]
  • Downloaded from the NCBI Database; Escherichia Coli Bacteria Were Isolated from the Hemolymph of Larval (Genbank: U00096.3) Was Used As Out-Group
    Fukruksa et al. Parasites & Vectors (2017) 10:440 DOI 10.1186/s13071-017-2383-2 RESEARCH Open Access Isolation and identification of Xenorhabdus and Photorhabdus bacteria associated with entomopathogenic nematodes and their larvicidal activity against Aedes aegypti Chamaiporn Fukruksa1, Thatcha Yimthin1,2, Manawat Suwannaroj1, Paramaporn Muangpat1, Sarunporn Tandhavanant2, Aunchalee Thanwisai1,3,4 and Apichat Vitta1,3,4* Abstract Background: Aedes aegypti is a potential vector of West Nile, Japanese encephalitis, chikungunya, dengue and Zika viruses. Alternative control measurements of the vector are needed to overcome the problems of environmental contamination and chemical resistance. Xenorhabdus and Photorhabdus are symbionts in the intestine of entomopathogenic nematodes (EPNs) Steinernema spp. and Heterorhabditis spp. These bacteria are able to produce a broad range of bioactive compounds including antimicrobial, antiparasitic, cytotoxic and insecticidal compounds. The objectives of this study were to identify Xenorhabdus and Photorhabdus isolated from EPNs in upper northern Thailand and to study their larvicidal activity against Ae. aegypti larvae. Results: A total of 60 isolates of symbiotic bacteria isolated from EPNs consisted of Xenorhabdus (32 isolates) and Photorhabdus (28 isolates). Based on recA gene sequencing, BLASTN and phylogenetic analysis, 27 isolates of Xenorhabdus were identical and closely related to X. stockiae,4isolateswereidenticaltoX. miraniensis, and one isolate was identical to X. ehlersii. Twenty-seven isolates of Photorhabdus were closely related to P. luminescens akhurstii and P. luminescens hainanensis, and only one isolate was identical and closely related to P. luminescens laumondii. Xenorhabdus and Photorhabdus were lethal to Ae aegypti larvae. Xenorhabdus ehlersii bMH9.2_TH showed 100% efficiency for killing larvae of both fed and unfed conditions, the highest for control of Ae.
    [Show full text]
  • International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/Ijsem.0.001485
    International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/ijsem.0.001485 Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Mobolaji Adeolu,† Seema Alnajar,† Sohail Naushad and Radhey S. Gupta Correspondence Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Radhey S. Gupta L8N 3Z5, Canada [email protected] Understanding of the phylogeny and interrelationships of the genera within the order ‘Enterobacteriales’ has proven difficult using the 16S rRNA gene and other single-gene or limited multi-gene approaches. In this work, we have completed comprehensive comparative genomic analyses of the members of the order ‘Enterobacteriales’ which includes phylogenetic reconstructions based on 1548 core proteins, 53 ribosomal proteins and four multilocus sequence analysis proteins, as well as examining the overall genome similarity amongst the members of this order. The results of these analyses all support the existence of seven distinct monophyletic groups of genera within the order ‘Enterobacteriales’. In parallel, our analyses of protein sequences from the ‘Enterobacteriales’ genomes have identified numerous molecular characteristics in the forms of conserved signature insertions/deletions, which are specifically shared by the members of the identified clades and independently support their monophyly and distinctness. Many of these groupings, either in part or in whole, have been recognized in previous evolutionary studies, but have not been consistently resolved as monophyletic entities in 16S rRNA gene trees. The work presented here represents the first comprehensive, genome- scale taxonomic analysis of the entirety of the order ‘Enterobacteriales’.
    [Show full text]