Laste Ned Registeret

Total Page:16

File Type:pdf, Size:1020Kb

Laste Ned Registeret Register og glossar Hvis du ikke vet betydningen av et ord kan det skyldes at ordet er forklart et annet sted i boken (dette gjelder evolusjonære og systematiske fagord som bare forklares første gang de nevnes), eller at det ikke er forklart i det hele tatt (dette gjelder særlig anatomiske fagord fra kapittel 5). For at du skal slippe å slå opp både i et stikkordregister og en liste med ordforklaringer, er registeret og glossaret slått sammen her. I tillegg til fagord finner du sidehenvisninger til navnene på alle dyregrupper som er omtalt i kapittel 5. Halvfeite sidetall angir siden der ordet blir definert eller får bred omtale. Asterisk (*) bak sidetallet betyr at ordet nevnes i en fotnote på den angitte siden. Hevete tall bak personnavn angir ikke sidetall, men referanser. Tall etterfulgt av «f» betyr «... og den følgende siden». 4d-celle 70 agamer 95 analogi 44, 45f, 62, 129, 133, 9·2+2-mønster → "ni · to + to" agamospecies 17, 23 141, 152, 157, 183 Agathiphaga 125 "Anamnia" 150 A ——— Aglossata 125 "Anamorpha" 114 abdomen 114f, 121 "Agnatha" 77 Anapsida 93, 173 aboral: på motsatt side av mun- akvatisk: i vann, vannlevende anatomi 43f, 54 nen Albulidae 86 ancestral state 139 Acanthobdella 108 Aleyrodina 121 Ancyropoda 106 Acanthocephala 96, 131 allantois 88, 92 andefugler 94 Acanthochitonidae 103 allel 12 Andrias 89 Acari 116 alligatorer 94 Anguilliformes 86 Acariformes 116 Alligatoridae 94 anhydrobiose 111 Acercaria 120 "Allogastropoda" 105 Animalia 61 acicula 107 allopatrisk 25, 26, 32, 146 anisogami 21 Acipenseridae 85 Amblypygi 116 Anisoptera 120 Acipenseriformes 85 ambolt 91 Anisozygoptera 120 Acoela 65 "Ambulacralia" 73 "Annelida" 100, 107–9, 155 "Acoelomata" 65 ambulakralsystem 73 Annulipalpia 126 Acoelomorpha 65, 71 amfibier 45f, 88f, 133, 159 "Anopla" 98 Acrania 76, 155 amfimixis 20 Anoplura 120 Acrodonta 95 Amia 86 Anostraca 115 acron 101, 110 ammocoetes 82 Anseriformes 94 acrosom 64 amnion 88 antenne 110, 113 Acrosomata 64 amniondyr 88 Anthozoa 67 "Actinaria" 67 Amniota 46, 88, 90f, 133, 159, Antliophora 127 Actinistia 90 171, 174 antroposentrisme 148 Actinopteri 82, 84 Amphibia 88, 170 Anura 89 Actinopterygii 84 Amphiesmenoptera 125 anus: endetarmsåpning Actinotrichida 116 Amphioxus 76 aortarot 75f, 88 adap(ta)sjon 9, 11, 21 Amphipoda 115 Aphanoneura 107 adaptasjonisme 9, 10, 11 ampulle 73 Aphidina 121 adaptiv 9, 11, 14, 144 "Anactinotrichida" 116 apikal: på spissen, fremst på adduktor 106 anadrom (om fisk): som vandrer kroppen adelphotaxon 34* til havet på næringssøk og til- apikalorgan 73, 99 Adephaga 122 bake til ferskvann for å gyte Aplacophora 100, 102 Aeolosomatidae 107 anagenese 7, 14, 25, 155, 157 "Aplotegmentaria" 102 205 Apocrita 124 "Asterozoa" 74 blastula: stadium i ontogenesen Apoda 90 Asymmetron 76 der ett cellelag danner en Apogastropoda 105 atavisme 52 væskefylt kule apomixis 21 Atentaculata 66 "Blattodea" 121 apomorfi 46, 47f, 50–3, 60–9, atlas 87 Blattopteroida 121 71–9, 82f, 85–93, 95f, 98f, Atractosteus 86 blekkspruter 63, 105 101–4, 106–10, 113–5, 118– atrium 77, 105 blodkarsystem 37, 69, 73, 98, 21, 123–5, 130, 132, 144f, Atubaria 75 108; → sirkulasjonssystem 152, 159, 164, 167–70, 173, autapomorfi 46, 47f, 50, 58, blodlegemer, røde 91 175 115, 159, 172 blæremaneter 68 apomorfibasert taxonnavn 169, Autobranchia 106 bløtdyr 67, 70–2, 99–101, 103 170, 174 autotomi 95 blåfisken 84, 90, 143, 146, 161 Appendicularia 77 Aves 94, 156, 171 body plan 38* "Apterygota" 115 avledet 46, 66, 78, 80, 98, 110 brachiolaria 78 Apteryx 94 axialkompleks 73 Brachiopoda 70 "Apulmonata" 115 axocoel 73, 79 Brachycera 127 Arachnata 170 branch length 10, 139 Arachnida 112, 116 B ——— Branchiopoda 115 Arachnomorpha 116 bakgjellesnegler 105 Branchiostoma 76 Araneae 117 balansert (stamtre) 127, 143f, "Branchiotremata" 74 Araneomorphae 117 150 Branchiura 115 "Archaeogastropoda" 105 basallamina 65 brankialbue 76, 82 Archaeognatha 119 bastardisering 26 broøgle 95, 156, 171 Archaeopteryx 171f, 174 "Batrachia" 88 bruskfisker 82 "Archiannelida" 107 Bauplan 38 bruskganoider 84 archimeri 69 Bdelloidea 23, 96 Bryozoa 70 Archosauria 88, 93, 173 Bdellonemertini 99 bryststykke 114 "Archosauromorpha" 93 begermaneter 68 Buddenbrockia 63 Archostemata 122 begrensning 11, 14f, 38, 146, 176 bukkalapparat 95 arcualia 81f, 85 beinfisker 83–5, 150, 155, 159, byggeplan 38, 42 Argentiniformes 85 164, 175 byssuskjertel 106 armføttinger 70 beinganoider 84 børsteføtter 101 armsalamandere 89 beintungefisker 86 børstehaler 119 art, beitedyr 80, 130 børsteigle 108 som enhet i naturen 14, 16– belteormer 108 32, 33, 35f, 38, 40f, 43, bendelormer 72 C ——— 46, 51f, 62, 80, 86, 90f, bentisk: som del av benton (ben- Caeciliidae 90, 164 96, 130, 135, 139–41, tos), dvs. i eller på bunnen av Caeciloidei 90 145f, 148f, 152, 159–61, hav eller innsjøer Caelifera 121 162f, 166f, 170, 172 Beroida 66 Caenogastropoda 105 som kategori 159, 162f bestemmelse 166, 167 calamistrum 117 som taxon 62, 80, 86, 91, 96, bevaringsbiologi 129, 145 Calamoichthys 86 161, 162f, 164 bifurcation 28* Calcarea 59, 61, 63 Arthropoda 97, 110, 115, 160f, bikirer 84, 86 Calcarimorpha 61, 63 169, 177 bilateralsymmetri 64 Callorhinchus 83 "Arthrotardigrada" 111 Bilateria 62, 64 Camelidae 92 Articulata (Brachiopoda) 70, 164 biller 122 captaculum 106 "Articulata" (= leddyr + ledd- binomen 163 caput 110 ormer) 71, 100f, 104, 107f, biogenetiske grunnlov, den 52 carapax 115 164 biogeografi 44 "Carcharhiniformes" 83 artropodium 110 bipedi 38, 93 Carinoma 99 artsbegrep 16, 17, 18–32, 154 bipinnaria 78 Casuarius 94 artsdannelse 7, 14, 17, 24, 25– biradialsymmetri 66 Catenulida 71 30, 32, 34–6, 40f, 48, 53, 55, biram 110, 113, 115 Caudacaecilia 90 57f, 141, 143f, 147, 160, Bivalvia 106 Caudata 89 177, 181 bjørnedyr 33, 111, 132 Caudofoveata 100, 102 artsseleksjon 40–2, 177 bladfotinger 115 cellulose 44, 77 artssortering 41, 177 bladlus 121, 141 Cephalochordata 76 "Aschelminthes" 71, 95 blastoporus 65, 69 cephalon 110 "Ascidiacea" 77 blastozooid 77 Cephalopoda 105 Ascon 63 Cephalorhyncha 98 Asteroidea 78 cerci 49, 115, 119f, 122 206 cerebralganglion 75f, 97f, 101 "Condylognatha" 120 Deuterostomia 65, 69, 73f, 97 Cestoda 71 constraint 11, 38 diagnostisk egenskap 167 Cestoidea 72 Copelata 77 "Diapsida" 93, 173 Cetacea 92 Copepoda 115 Diasoma 106 Cetartiodactyla 92 cornea 111 Dibranchiata 105 cetera/ae/i 60, 68, 77f, 113 Coronata 68 Dicondylia 119, 121, 161 Chaetodermomorpha 102 Corvus 20, 163 Dictyoptera 121 Chaetognatha 97 Corydalidae 124 Didelphimorphia 92 Characiformes 86 coxa 113, 117, 119, 123 diencephalon 76 character displacement 146 Craniata 76 digene ikter 20, 72 Chelicerata 112, 161, 168 Craniota 76, 81 Digenea 72 chelicere 112 "Cribellata" 117 dikopatrisk 25 Chelonia 93, 173 cribellum 117 dikotomi 28, 43, 53, 167 chilepungrotte 92 Crocodylia 94, 173, 175 Dimetrodon 169, 172 Chilopoda 114 Crossopterygii 90, 161 "Dinosauria" 171 Chimaeroidea 83 "Crustacea" 115, 161 dipleurula 73 Chitonida 103 Cryptobranchoidea 89 "Diploblastica" 62, 150 Chlamydoselachus 83 Cryptobranchus 89 diploid: med et dobbelt kromo- "Choanata" 84, 87 Cryptodira 93 somsett (f.eks. menneskelige Choanatae 84 "Cryptosyringida" 79 kroppsceller) choanocytt 63 Ctenophora 66 Diplopoda 114 Choanoflagellata 63 Cubozoa 68 Diplura 115, 121 Chondreichthyes 82 Cycliophora 96 Dipneusti 87 "Chondrostei" 84 Cycloganoidea 86 Dipnoi 87 chorda dorsalis 75 Cyclomyaria 77 Diptera 127 Chordata 74 "Cycloneuralia" 97 diskoidal: meroblatisk furing bare chorion 88, 92 "Cyclostomata" (= "Agnatha") i en skive øverst på egget chromatophor 106 77 disparitet 37, 38, 145 Cicadomorpha 121 Cyclostomata (=Stenolaemata) dissepiment 101 Cidaroida 80 70 Ditrysia 125 Cirripedia 115 Cynocephalus 92 diversitet 31, 37, 146, 150 clade 33* Cyrtosoma 104 divertikkel: utposning av et hul- Cladistia 86 cytologi 44 organ, f.eks. tarmen "Cladocera" 115 cytoplasma: cellens substans bort- DNA 8, 10, 13, 21, 54, 68 Clitellata 107f sett fra cellekjernen DNA–DNA-hybrisiering 93 clitellum 108 Dobzhansky, T. 129, 138,139 Clupeiformes 86 D ——— dogmatisme 180 Clupeocephala 85 dagsommerfugler 126 dogme 179, 180, 184 Clypeorrhyncha 121 Darwin, C.R. 6–10, 13f, 148, Doliolida 77 Cnidaria 67 154, 184, 104-106 dolkhaler 112, 134 cnide 67 Dasyuridae 92 dorsal: på ryggsiden Coccidina 121 datering 142, 144, 176 dorsoventral: fra rygg- til buk- cochlea 91 datterart 24, 25, 29f, 32, 34, 40, siden (f.eks. muskler) Coelacanthiformes 90, 161 43, 58, 142, 144, 147, 170 Dromaius 94 "Coelenterata" 62 Decabrachia 106 Dromiciops 92 coelom 65, 88, 97f, 100f, 109 Decapoda 115 drøvtyggere 92 "Coelomata" 65 definisjon 6, 18, 21f, 30–3, 47, duer 94 "Coelomopora" 73 130, 141, 149, 153, 160, Dugong 92 coelotel 65, 70 163, 169f, 179, 184 dvergfotinger 114 Coleoida 105 dekkvinge 122 dynnfisk 84, 86 Coleolepida 126 "Demospongea" 59, 61, 64 døgnfluer 119 Coleoptera 122 Dentaliida 106 "Coleopteroida" 121 dermalskjelett 81 E ——— Coliidae 94 Dermaptera 121 ecdyson 114 Collembola 121, 176 Dermoptera 92 "Ecdysozoa" 71, 97, 101 collocytt 66 Desmomyaria 77 "Echiniscoidea" 111 Coloniales 100 desmosom: celleorganell som Echinodermata 73 Columbidae 94 sørger for kontakt og forbin- Echinoidea 80 columella 87 delse mellom celler Echinozoa 80 Comatulida 74 detritofagi 101, 119, 121, 130 Echiurida 108 Conchifera 100, 103 deuterencephalon 76 "Ecribellata" 117 "Conchostraca" 115 deuterostomi 69 Ectatosticta 117 207 Ectognatha 115, 118f, 161, epitet 163 Filibranchia 106 164, 176 Epitheliozoa 61 filtrerere 104, 130 Ectoprocta 70 epizoisk: om sessile eller hemi- filum terminale 118, 120 edderkoppdyr 112, 131, 133, sessile
Recommended publications
  • Towards a Management Hierarchy (Classification) for the Catalogue of Life
    TOWARDS A MANAGEMENT HIERARCHY (CLASSIFICATION) FOR THE CATALOGUE OF LIFE Draft Discussion Document Rationale The Catalogue of Life partnership, comprising Species 2000 and ITIS (Integrated Taxonomic Information System), has the goal of achieving a comprehensive catalogue of all known species on Earth by the year 2011. The actual number of described species (after correction for synonyms) is not presently known but estimates suggest about 1.8 million species. The collaborative teams behind the Catalogue of Life need an agreed standard classification for these 1.8 million species, i.e. a working hierarchy for management purposes. This discussion document is intended to highlight some of the issues that need clarifying in order to achieve this goal beyond what we presently have. Concerning Classification Life’s diversity is classified into a hierarchy of categories. The best-known of these is the Kingdom. When Carl Linnaeus introduced his new “system of nature” in the 1750s ― Systema Naturae per Regna tria naturae, secundum Classes, Ordines, Genera, Species …) ― he recognised three kingdoms, viz Plantae, Animalia, and a third kingdom for minerals that has long since been abandoned. As is evident from the title of his work, he introduced lower-level taxonomic categories, each successively nested in the other, named Class, Order, Genus, and Species. The most useful and innovative aspect of his system (which gave rise to the scientific discipline of Systematics) was the use of the binominal, comprising genus and species, that uniquely identified each species of organism. Linnaeus’s system has proven to be robust for some 250 years. The starting point for botanical names is his Species Plantarum, published in 1753, and that for zoological names is the tenth edition of the Systema Naturae published in 1758.
    [Show full text]
  • Recerca I Territori V12 B (002)(1).Pdf
    Butterfly and moths in l’Empordà and their response to global change Recerca i territori Volume 12 NUMBER 12 / SEPTEMBER 2020 Edition Graphic design Càtedra d’Ecosistemes Litorals Mediterranis Mostra Comunicació Parc Natural del Montgrí, les Illes Medes i el Baix Ter Museu de la Mediterrània Printing Gràfiques Agustí Coordinadors of the volume Constantí Stefanescu, Tristan Lafranchis ISSN: 2013-5939 Dipòsit legal: GI 896-2020 “Recerca i Territori” Collection Coordinator Printed on recycled paper Cyclus print Xavier Quintana With the support of: Summary Foreword ......................................................................................................................................................................................................... 7 Xavier Quintana Butterflies of the Montgrí-Baix Ter region ................................................................................................................. 11 Tristan Lafranchis Moths of the Montgrí-Baix Ter region ............................................................................................................................31 Tristan Lafranchis The dispersion of Lepidoptera in the Montgrí-Baix Ter region ...........................................................51 Tristan Lafranchis Three decades of butterfly monitoring at El Cortalet ...................................................................................69 (Aiguamolls de l’Empordà Natural Park) Constantí Stefanescu Effects of abandonment and restoration in Mediterranean meadows .......................................87
    [Show full text]
  • Size and Complexity Among Multicellular Organisms
    BWl~gicalJoumalofk Linncan So&& (1997), 60: 345-363. With 5 figures Size and complexity among multicellular Downloaded from https://academic.oup.com/biolinnean/article-abstract/60/3/345/2705808 by guest on 26 August 2019 organisms GRAHAM BELL Redpath Museum, McGill UniversiQ, 859 Sherbrooke Street West, Montreal, @ebec, Canada H3A 2K6 AND ARNE 0. MOOERS Department of<oology, UniversiQ of British Columbia, Thncouvq British Columbia, Canada Receiwd I9 januaty 1996; acceptedfw publicah 3 June 1996 The diversity of specialized cell types (‘complexity’) is estimated for a wide range of multicellular organisms. Complexity increases with siize, independently of phylogeny. This is interpreted in economic terms as the consequence of a greater degree of cooperative division of labour within larger entities. The rate of increase of complexity with size is less in the case of a cooperative division of labour (cell types withii bodies) than in the analogous case of a competitive division of labour (species within communities).This is atttributed to the inutility of single specialized cells whose goods must be shared among all the many cells of a large organism. Major groups of organisms differ in complexity at given size: animals are more complex than plants, and phaeophytes are simpler than either. Q 1997 The Linnean Society of London ADDITIONAL KEY WORDS:--development - differentiation - histology - complexity - evolution - economic biology - division of labour - allometry. CONTENTS Introduction .......................... 346 Material and Methods ....................... 346 Rawdata ......................... 346 Standardization ....................... 347 Analytical methods ...................... 350 Results ............................ 352 Discussion ........................... 354 Cell diversity increases with individual size .............. 354 Cooperation and competitive division of labour ............. 354 The rules for cooperative and competitive division in labour are quantitatively different .........................
    [Show full text]
  • Systema Naturae. the Classification of Living Organisms
    Systema Naturae. The classification of living organisms. c Alexey B. Shipunov v. 5.601 (June 26, 2007) Preface Most of researches agree that kingdom-level classification of living things needs the special rules and principles. Two approaches are possible: (a) tree- based, Hennigian approach will look for main dichotomies inside so-called “Tree of Life”; and (b) space-based, Linnaean approach will look for the key differences inside “Natural System” multidimensional “cloud”. Despite of clear advantages of tree-like approach (easy to develop rules and algorithms; trees are self-explaining), in many cases the space-based approach is still prefer- able, because it let us to summarize any kinds of taxonomically related da- ta and to compare different classifications quite easily. This approach also lead us to four-kingdom classification, but with different groups: Monera, Protista, Vegetabilia and Animalia, which represent different steps of in- creased complexity of living things, from simple prokaryotic cell to compound Nature Precedings : doi:10.1038/npre.2007.241.2 Posted 16 Aug 2007 eukaryotic cell and further to tissue/organ cell systems. The classification Only recent taxa. Viruses are not included. Abbreviations: incertae sedis (i.s.); pro parte (p.p.); sensu lato (s.l.); sedis mutabilis (sed.m.); sedis possi- bilis (sed.poss.); sensu stricto (s.str.); status mutabilis (stat.m.); quotes for “environmental” groups; asterisk for paraphyletic* taxa. 1 Regnum Monera Superphylum Archebacteria Phylum 1. Archebacteria Classis 1(1). Euryarcheota 1 2(2). Nanoarchaeota 3(3). Crenarchaeota 2 Superphylum Bacteria 3 Phylum 2. Firmicutes 4 Classis 1(4). Thermotogae sed.m. 2(5).
    [Show full text]
  • Vilasktomploomade (Dicyemida) Fülogenees
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DSpace at Tartu University Library TARTU ÜLIKOOL ÖKOLOOGIA JA MAATEADUSTE INSTITUUT ZOOLOOGIA OSAKOND ZOOLOOGIA ÕPPETOOL Martin Pent VILASKTOMPLOOMADE (DICYEMIDA) FÜLOGENEES Magistritöö Juhendaja: Ph.D. Marko Prous TARTU 2014 Sisukord 1. Sissejuhatus ................................................................................................................... 3 2. Kirjanduse ülevaade .................................................................................................... 4 2.1. Vaheloomad (Mesozoa) ......................................................................................... 4 2.2. Klass vööttomploomad (Orthonectida) ................................................................ 7 2.3. Klass vilasktomploomad (Dicyemida) ................................................................. 8 2.4. Senised fülogeneetilised hüpoteesid ................................................................... 11 2.5. Töö eesmärgid ..................................................................................................... 14 3. Materjalid ja metoodika ............................................................................................ 15 3.1. Andmestiku kogumine ........................................................................................ 15 3.2. Joonduste koostamine ja puude konstrueerimine ........................................... 17 3.3. Fülogeneetiliste analüüside mudelid ................................................................
    [Show full text]
  • Diapositiva 1
    Rhopalura Orthonectido Lección 21.- Los Diciémidos y Ortonéctidos. Descripción anatómica y de su ciclo biológico. Posición filogenética. Evolución histórica del concepto de Mesozoos. Mesozoos: ortonéctidos y rombozoos 1. Originalmente el filo Mesozoa fue creado para los Dicyemidos (Rombozoos), a los cuales se otorgó una posición intermedia entre protozoos y metazoos. 2. Posteriormente se incluyeron los Ortonéctidos y otros animales de difícil ubicación sistemática, generalmente organismos paucicelulares de estructura muy sencilla. 3. DELAGE los dividió en 4 grupos: mesogonia (dicyemidos y ortonéctidos), mesogastria (Salinella), mesocelia (Penmatodiscus) y mesenquimia (Trichoplax). 4. En la actualidad solamente los Dicyemidos y Ortonéctidos se consideran bajo el término mesozoos. Saliniella salve LOS MESOZOOS Phylum Mesozoa (van Beneden, 1876) Cl. Mesogonia o Moruloidea Or. Rombozoos (diciémidos) Or. Ortonéctidos Phylum Mesozoa Cl. Rombozoos Cl. Ortonéctidos Phylum Rhombozoa “mesozoos” Phylum Orthonectida Biología de Mesozoos: http://www.cephbase.utmb.edu/refdb/pdf/7851.pdf ORTONECTIDOS • Son parásitos de invertebrados (equinodermos, anélidos, …) • Los adultos llevan vida libre, nadan en línea recta por el batido de los cilios • Son de sexos separados, excepcionalmente los hay hermafroditas • Las ♀ son aplanadas, cuerpo cubierto por cilios • Los ♂ y ♀ cuando están maduros salen del hospedador y se juntan • Los espermatozoides pasan dentro del cuerpo de la ♀ para fecundarla • La segmentación lleva a una pequeña larva llamada a veces MORULOIDE
    [Show full text]
  • Series 6 LXVIII.—Critical Observations on Frenzel's Mesozoon Salinella
    This article was downloaded by: [New York University] On: 12 February 2015, At: 20:44 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Annals and Magazine of Natural History: Series 6 Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tnah12 LXVIII.—Critical observations on Frenzel's Mesozoon Salinella: a biological sketch Prof. Stefan Apáthy Published online: 02 Oct 2009. To cite this article: Prof. Stefan Apáthy (1892) LXVIII.—Critical observations on Frenzel's Mesozoon Salinella: a biological sketch , Annals and Magazine of Natural History: Series 6, 9:54, 465-481, DOI: 10.1080/00222939208677361 To link to this article: http://dx.doi.org/10.1080/00222939208677361 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.
    [Show full text]
  • Sea Wall Biodiversity Handbook by Tim Gardiner, Rob Pilcher and Max Wade
    Sea Wall Biodiversity Handbook Sea Wall Tim Gardiner, Biodiversity Officer at the Environment Agency, Rob Pilcher, Ecology Team Leader for North West England at AECOM and Max Wade, Technical Director (Ecology) at AECOM, have a long standing interest in the ecology and management of sea wall habitats. Their handbook on sea wall biodiversity brings together a wealth of knowledge about this Cinderella habitat based on the authors’ experience of practical management and the flora and fauna of sea walls. The handbook highlights the breadth of plant and animal species living and relying on sea walls and provides practical guidance for managers of sea defences to ensure that their biodiversity value is by conserved and enhanced. Tim Gardiner, Rob Pilcher and Max Wade Rob Pilcher Gardiner, Tim Sea Wall Biodiversity Handbook by Tim Gardiner, Rob Pilcher and Max Wade SeaWall Layout Cvr v1.indd 1 02/09/2015 15:09 SeaWall Layout Txt.indd 4 20/08/2015 15:57 Sea Wall Biodiversity Handbook Sea Wall Biodiversity Handbook by Tim Gardiner, Rob Pilcher & Max Wade © Copyright First published in 2015 by RPS Images are the authors unless labelled. Designed and Printed by Mimeo Limited Units 1-3, The Ermine Centre, Hurricane Close, Huntingdon, Cambridgeshire PE29 6XX. A CIP record is available from the British Lending Library in London. ISBN: 978-0-9546600-4-8 Citation; Gardiner, T., Pilcher, R. & Wade, M. (2015) Sea Wall Biodiversity Handbook. RPS. SeaWall Layout Txt.indd 3 20/08/2015 15:57 SeaWall Layout Txt.indd 4 20/08/2015 15:57 Sea Wall Biodiversity Handbook Acknowledgements Thanks go to those involved with preparation of the case studies, to site managers and their respective organisations for allowing data to be used and for reviewing draft text of the case studies.
    [Show full text]
  • Size and Complexity Among Multicellular Organisms
    Biological Journal of the Linnean Society (1997), 60: 345±363. With 5 ®gures Size and complexity among multicellular organisms GRAHAM BELL Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada H3A 2K6 AND ARNE O. MOOERS Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada Received 19 January 1996; accepted for publication 3 June 1996 The diversity of specialized cell types (`complexity') is estimated for a wide range of multicellular organisms. Complexity increases with size, independently of phylogeny. This is interpreted in economic terms as the consequence of a greater degree of cooperative division of labour within larger entities. The rate of increase of complexity with size is less in the case of a cooperative division of labour (cell types within bodies) than in the analogous case of a competitive division of labour (species within communities). This is atttributed to the inutility of single specialized cells whose goods must be shared among all the many cells of a large organism. Major groups of organisms diVer in complexity at given size: animals are more complex than plants, and phaeophytes are simpler than either. 1997 The Linnean Society of London ADDITIONAL KEY WORDS:Ðdevelopment ± diVerentiation ± histology ± complexity ± evolution ± economic biology ± division of labour ± allometry. CONTENTS Introduction .......................... 346 Material and Methods ....................... 346 Raw data ......................... 346 Standardization ....................... 347 Analytical methods ...................... 350 Results ............................ 352 Discussion ........................... 354 Cell diversity increases with individual size .............. 354 Cooperation and competitive division of labour ............. 354 The rules for cooperative and competitive division in labour are quantitatively diVerent .......................... 355 Why cell diversity is low in large organisms .............
    [Show full text]
  • PNAS-1922-Pearl-212-9.Pdf
    212 BIOLOGY: PEARL AND PARKER PROC. N. A. S_ * . m) are constants. Then as in the above case we show that the linear- element can be put in the form ds2 = (dX')2 + .. + (dXm)! + gij dxi dX' (i, = m+, .. n) where gij are independent of xl, ...., xm. When m = n-1, equation (6.7) is reducible to the euclidean form. 7. If A' are the contravariant components of a vector in a Rieman-- nian geometry, its covariant components Ai, are given by A' = gia Aa. (7.1) When this expression is substituted in (3.1), we obtain aA_ri -A A,A; lo 0. (7.2) When we are dealing with a non-Riemannian geometry we say that a field. of parallel covariant vectors is one which satisfies (7.2). The conditions of integrability of (7.2) are Aa BMk = 0. (7.3) In order that the A's given by (7.3) shall satisfy (7.2) it is necessary that- Aa Btikl = 0. (7.4) As in the case of contravariant vectors, it can be shown that when there are m (< n) independent sets of solutions of (7.3) which satisfy (7.4) there exist m fields of parallel, covariant vectors. The methods of §§ 4, 5 cannot be applied to the case of covariant fields. ON THE INFLUENCE OF DENSITY OF POPULATION UPON THE RATE OF REPRODUCTION IN DROSOPHILA By RAYMOND PEARL AND SYIviA L. PARKER ScHooL or HYGIENE AND PuBLic HEALTH, JOHNS HoPmrs UNIVERSITY Communicated, May 5, 1922 It has long been known that degree of crowding of organisms in a given: space, or the density of the population, has an influence upon various.
    [Show full text]
  • Phylum Porifera Introduction
    Phylum Porifera Introduction • Grade Parazoa Without tissues Without embryonic layer Without localized gonads Totipotent Introduction • Definition Porifera are sessile, suspension feeding , multicellular animals that utilize flagellated cells called choanocytes to circulates water throught a unique system of water canals (Aquferous system) Characters Bauplan Bauplan Bauplan Bauplan Bauplan Bauplan Bauplan Bauplan Bauplan Bauplan Bauplan Bauplan Bauplan Bauplan Support • Spicule calcareous silica spongin Reproduction • Sexual reproduction • Asexual reproduction Gemmule in Spongilidae Reduction body in marine Budding Asexual larvae Asexual reproduction Asexual reproduction Asexual reproduction Asexual reproduction Sexual reproduction Hermaphoditic = Monoecious Protandric Protogyny Gametogeesis Sperm form from choanocyte Ovum form from archaeocyte or choanocyte Fertilization in mesohyl Transfer choanoyte Sexual reproduction Embryology Cleavage is unequal holoblastic Stomoblastult Olynthus Rhagon Embryology Embryology Larval form Amphiblastula =Calcareous Coeloblastula-Stereoblastula=some Calcareous Paranchymula Embryology Embryology Taxonomy Phylum Porifera Subphylum Cellularia ( All member possess distinct choanocyte) Class Demospongia 95% all existing sponge All freshwater Support element silica, spongin or both All leuconoid Class Calcarea All species are marine Spicules composed of calcium carbonat Have three form of complexity Subphylum Symplasma ( Epithelial and choanocyte tissue are syncytial) Class Hexactinellida ( The glass sponge) All have 6- sided spicules of silica Taxonomy Grade Mesozoa Grade Mesozoa • Have some tissue • Have localized gonad • Have some embryonic layer Phylum Placozoa Phylum Monoblastozoa Phylum Rhombozoa Phylum Orthonectida Grade Mesozoa Placozoa Trichoplax adherens Grade Mesozoa Monoblastozoa Salinella Grade Mesozoa Rhombozoa Grade Mesozoa Grade Mesozoa Grade Mesozoa Grade Mesozoa Grade Mesozoa Orthonectida Grade Mesozoa .
    [Show full text]
  • Animal Architecture and the Bauplan Concept 43 Uncorrected Page Proofs
    UNCORRECTED PAGE PROOFS Animal Architecture 3 and the Bauplan Concept The business of animals is to stay alive until they reproduce themselves, and . the business of zoologists is to try to understand how they do it. E. J. W. Barrington, Invertebrate Structure and Function, 1967 he German language includes a wonderful word that expresses the essence of animal architecture: Bauplan (pl. Baupläne); we will use the Anglicized spelling, bauplan (pl. bauplans). The word means, literally, “a Tstructural plan or design,” but a direct translation is not entirely adequate. An an- imal’s bauplan is, in part, its “body plan,” but it is more than that. The concept of a bauplan captures in a single word the essence of structural range and architec- tural limits, as well as the functional aspects of a design (Box 3A). If an organism is to “work,” all of its body components must be both structurally and functional- ly compatible. The entire organism encompasses a definable bauplan, and the specific organ systems themselves also encompass describable bauplans; in both cases the structural and functional components of the particular plan establish both capabilities and limits. Thus, the bauplan determines the major constraints that operate at both the organismic and the organ system levels. The diversity of form in the biological world is dazzling, yet there are real lim- its to what may be successfully molded by evolutionary processes. All animals must accomplish certain basic tasks in order to survive and reproduce. They must acquire, digest, and metabolize food and distribute its usable products through- out their bodies.
    [Show full text]