Classification of the Animal Kingdom

Total Page:16

File Type:pdf, Size:1020Kb

Classification of the Animal Kingdom Classification of the — ANIMAL KINGDOM Richard E. Blackwelder Classification of the Animal Kingdom CLASSIFICATION OF THE ANIMAL KINGDOM Richard E. Blackwelder SOUTHERN ILLINOIS UNIVERSITY PRESS Carbondale, Illinois COPYRIGHT © 1963 by Southern Illinois University Press All rights reserved LIBRARY OF CONGRESS CATALOG CARD NUMBER 62-17618 PRINTED IN THE UNITED STATES OF AMERICA DESIGNED BY ANDOR BRAUN CONTENTS INTRODUCTION 1 Simplified List of Recent Phyla 6 Simplified List of Recent Classes and Orders, with Common Names 9 Notes on the Taxa 26 Complete List of Phyla 36 Complete List of Classes and Orders, with Synonyms, Subgroups, and Geologic Range 39 BIBLIOGRAPHY 72 INDEX TO COMMON NAMES 75 INDEX TO LATIN NAMES 80 INTRODUCTION THE CLASSIFICATION OF ANIMALS is Still Very much a field in which dis- covery and revision are continuing, even after two hundred years of study. The importance of classification in biology increases every year, because the experimental and practical fields find increasing need for accurate identification of animals and for understanding of compara- tive relationships. At least one outstanding biologist has opposed pubUcation of this new classification on the ground that it would be accepted as final, the classification, and would tend to make students think that all higher classification is finished. The intention of the compiler is just the op- posite. Just as this classification is different in detail from all previous ones, so will future editions be still different, as we learn more about the comparative features of animals. It is anticipated that every new edition will spur students of the individual groups to propose improvements. It is therefore planned to issue corrected editions whenever appropriate. The very appearance of these subsequent editions will emphasize the growth of understanding of animal groups. Only one ostensibly complete classification of animals, living and fossil, has been published in recent years. That classification, by A. S. Pearse of Duke University, is a good one, based on the views of many specialists. Certain mechanical faults make it less usable than it should be, and the need for revision gave the original impetus to preparation of the present classification. Because Pearse did not usually indicate the source of his arrangements, he is not here cited as an authority. Never- theless, the two classifications are basically very similar. No other single classification has been found that agrees so closely with the conclusions of the present study. It should be emphasized that, within certain limits, this classifica- tion is not a simple compilation of the views of specific workers. In nearly all details, choices have been made between conflicting schemes CLASSIFICATION OF THE ANIMAL KINGDOM 2 of various authors, not on the basis of the reputation of those authors but on my judgment of the soundness of their supporting arguments or on my analysis of the data they present. In none of the larger groups has the work of any single author been accepted without modification. Several considerations have influenced the decisions embodied in this classification. First, a false picture is given by a simplified classification, because the existing diversity is one of the principal features of the animal kingdom. Therefore, no groups should be combined merely for the sake of sim- plicity. Second, although the previous item would seem to require coverage of the groupings at all possible levels, to show the extreme range of division and subdivision, this is not in fact possible. Not only are there many conflicting groupings at certain levels, such as of phyla or orders, but there is no practical way to show these groupings in a general classifica- tion. It is a compromise that is believed to be effective to subdivide the phyla only into classes, subclasses, and orders. Other possible groupings, such as subphyla and superorders are referred to in the notes. Third, two groups which are so distinct at any level that they cannot be described in common terms must be separated at that level. (For example, Pterobranchia and Enteropneusta; see the Notes on the Taxa.) Fourth, groups which cannot be distinguished at any particular level by the type of characters used for their neighbors must be combined at that level. (For example, the sometime classes of Nematoda.) Fifth, the discovery of groupings within a class, for example, does not justify the creation of new classes for each of the subgroups. The proper level for the new groups can only be determined by comparison with neighboring parts of the classification. Sixth, although uniformity in the form (endings) of names at each level would unquestionably be helpful, it cannot now be attained with- out adding greatly to the total of name forms and synonyms. The sys- tems so far proposed are so diverse as to introduce further confusion of their own. None of the systems has been widely enough accepted to be entitled to adoption throughout the Animal Kingdom. None has been so widely accepted on a world basis, even in one group, as to indicate Introduction 3 universal acceptance in the near future. Indeed, even the ordinal endings in -iformes adopted by American ichthyologists and ornithologists are almost entirely unused in the rest of the world. The resulting names are unnecessarily long and cumbersome. The system does not relieve any- one from learning the shorter forms also. The latter are used here, with the uniform-ending forms listed as synonyms. In other groups, usage of the source of the classification is followed as to spelling, in most cases. There are a variety of systems in use and no obvious trend to- ward adoption of any single system. This classification attempts to show the various spellings as well as the various synonyms. Each zoologist will choose which one he wishes to use in each case. Seventh, no single rule will suffice for choice of names where several apply to a single taxon. Reasons for each decision are given in the text in many cases, but in general it has been the goal to retain the best known names, at the most appropriate level, regardless of homonymy. Priority is considered to be of secondary importance at these levels. Eighth, although considerable homonymy exists at all levels, even up to that of phylum names, there is almost no real confusion caused thereby. Until there are direct rules to govern the decisions, there seems to be nothing gained by replacing well known names, such as Decapoda (either in the Cephalopoda or in the Crustacea). This classification is in three parts, the purposes of which are quite different. In order of preparation, these are: 1] the complete classifica- tion, including lists of the phyla and of the classes and orders, of all ani- mals, living and fossil; 2] the justification for unusual features in this classification; and 3] a simplified classification of Recent animals for student use, with common names, again including lists of the phyla and of the classes and orders. The arrangement of these parts in the book is just the reverse of this. In both lists, the phyla are first arranged in four subkingdoms, and one of these is divided into four series. Many other groupings of these phyla are possible, and several are shown in the footnotes of the section Complete List of Phyla. It is not here believed that these supra-phylum groupings are of much significance at this phase of the knowledge of animals. In both lists of orders, these orders are arranged in the appropri- ate classes and subclasses. No other levels, such as superorder, are rec- CLASSIFICATION OF THE ANIMAL KINGDOM 4 ognized. They may be of use in some circumstances but seem to be of little value in showing the arrangement of the orders on a practical basis. Throughout, rejected synonyms are printed in itaUcs, the accepted class names are in capital letters, and the subclass names and the order names are both set in capitals and lower case letters. In the footnotes, names that also appear in the classification above are printed in small capitals. The other names in the footnotes are somewhat in the nature of rejected synonyms, but as most of them are really the names of non- accepted groupings, they appear in capitals and lower case roman letters. To the variety of spellings there is no end. No attempt is made to list all forms, but such spellings as would appear at a separate place in an alphabetical index are listed, along with those variations that are used for distinct levels; e.g., Echiuroidea (phylum), Echiurida (class), and Echiuroina (order). In the Complete List of Orders the geologic range of each group is shown by symbols at the right margin. The meaning of these symbols is shown in the following table. REC Recent JUR Jurassic QUA Quaternary mes Mesozoic PLE Pleistocene per Permian PLI Pliocene pen Pennsylvanian OLI Oligocene mis Mississippian Mio Miocene car Carboniferous EOC Eocene (+ Paleocene) dev Devonian ter Tertiary sil Silurian CEN Cenozoic ord Ordovician CRE Cretaceous cam Cambrian TRI Triassic pal Paleozoic There are a few points of discrepancy between the Simplified List and the Complete List. These are intentional, to make the simplified list more useful to students. The Complete List shows the definitive classification that is here being proposed. The names included under the footnote heading "Includes" may be suborders, synonyms, rejected groups, or names of questionable ap- plication. They are all names which have at some time been used for orders or more inclusive groups and are included merely to indicate their approximate position in the scheme. 5 Introduction Several recent schemes of classification in particular groups are known to the compiler but are not followed herein. Some were received too late for study (e.g., part W of the Treatise of Invertebrate Paleon- tology).
Recommended publications
  • Early Paleozoic Life & Extinctions (Part 1)
    NJU Course Extinctions: Past, Present & Future Prof. Norman MacLeod School of Earth Sciences & Engineering, Nanjing University Extinctions: Past, Present & Future Extinctions: Past, Present & Future Course Syllabus (Revised) Section Week Title Introduction 1 Course Introduction, Intro. To Extinction Introduction 2 History of Extinction Studies Introduction 3 Evolution, Fossils, Time & Extinction Precambrian Extinctions 4 Origin of Life & Precambrian Extionctions Paleozoic Extinctions 5 Early Paleozoic World & Extinctions Paleozoic Extinctions 6 Middle Paleozoic World & Extinctions Paleozoic Extinctions 7 Late Paleozoic World & Extinctions Assessment 8 Mid-Term Examination Mesozoic Extinctions 9 Triassic-Jurassic World & Extinctions Mesozoic Extinctions 10 Labor Day Holiday Cenozoic Extinctions 11 Cretaceous World & Extinctions Cenozoic Extinctions 12 Paleogene World & Extinctions Cenozoic Extinctions 13 Neogene World & Extinctions Modern Extinctions 14 Quaternary World & Extinctions Modern Extinctions 15 Modern World: Floras, Faunas & Environment Modern Extinctions 16 Modern World: Habitats & Organisms Assessment 17 Final Examination Early Paleozoic World, Life & Extinctions Norman MacLeod School of Earth Sciences & Engineering, Nanjing University Early Paleozoic World, Life & Extinctions Objectives Understand the structure of the early Paleozoic world in terms of timescales, geography, environ- ments, and organisms. Understand the structure of early Paleozoic extinction events. Understand the major Paleozoic extinction drivers. Understand
    [Show full text]
  • BIO 475 - Parasitology Spring 2009 Stephen M
    BIO 475 - Parasitology Spring 2009 Stephen M. Shuster Northern Arizona University http://www4.nau.edu/isopod Lecture 12 Platyhelminth Systematics-New Euplatyhelminthes Superclass Acoelomorpha a. Simple pharynx, no gut. b. Usually free-living in marine sands. 3. Also parasitic/commensal on echinoderms. 1 Euplatyhelminthes 2. Superclass Rhabditophora - with rhabdites Euplatyhelminthes 2. Superclass Rhabditophora - with rhabdites a. Class Rhabdocoela 1. Rod shaped gut (hence the name) 2. Often endosymbiotic with Crustacea or other invertebrates. Euplatyhelminthes 3. Example: Syndesmis a. Lives in gut of sea urchins, entirely on protozoa. 2 Euplatyhelminthes Class Temnocephalida a. Temnocephala 1. Ectoparasitic on crayfish 5. Class Tricladida a. like planarians b. Bdelloura 1. live in gills of Limulus Class Temnocephalida 4. Life cycles are poorly known. a. Seem to have slightly increased reproductive capacity. b. Retain many morphological characters that permit free-living existence. Euplatyhelminth Systematics 3 Parasitic Platyhelminthes Old Scheme Characters: 1. Tegumental cell extensions 2. Prohaptor 3. Opisthaptor Superclass Neodermata a. Loss of characters associated with free-living existence. 1. Ciliated larval epidermis, adult epidermis is syncitial. Superclass Neodermata b. Major Classes - will consider each in detail: 1. Class Trematoda a. Subclass Aspidobothrea b. Subclass Digenea 2. Class Monogenea 3. Class Cestoidea 4 Euplatyhelminth Systematics Euplatyhelminth Systematics Class Cestoidea Two Subclasses: a. Subclass Cestodaria 1. Order Gyrocotylidea 2. Order Amphilinidea b. Subclass Eucestoda 5 Euplatyhelminth Systematics Parasitic Flatworms a. Relative abundance related to variety of parasitic habitats. b. Evidence that such characters lead to great speciation c. isolated populations, unique selective environments. Parasitic Flatworms d. Also, very good organisms for examination of: 1. Complex life cycles; selection favoring them 2.
    [Show full text]
  • Platyhelminthes: Amphilinidea)
    Ahead of print online version FOLIA PARASITOLOGICA 60 [1]: 43–50, 2013 © Institute of Parasitology, Biology Centre ASCR ISSN 0015-5683 (print), ISSN 1803-6465 (online) http://folia.paru.cas.cz/ A reinvestigation of spermiogenesis in Amphilina foliacea (Platyhelminthes: Amphilinidea) Magdaléna Bruňanská1, Larisa G. Poddubnaya2 and Willi E. R. Xylander3 1 Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovak Republic; 2 I.D. Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Yaroslavl Province, Russia; 3 Senckenberg Museum für Naturkunde Görlitz, Postfach 300 154, 02806 Görlitz, Germany Abstract: Spermiogenesis in the amphilinidean cestode Amphilina foliacea (Rudolphi, 1819) was examined using transmission electron microscopy. The orthogonal development of the two flagella is followed by a flagellar rotation and their proximodistal fu- sion with the median cytoplasmic process. This process is accompanied by extension of both the mitochondrion and nucleus into the median cytoplasmic process. The two pairs of electron-dense attachment zones mark the lines where the proximodistal fusion of the median cytoplasmic process with the two flagella takes place. The intercentriolar body, previously undetermined inA. foliacea, is composed of three electron-dense and two electron-lucent plates. Also new for this species is the finding of electron-dense material in the apical region of the differentiation zone at the early stage of spermiogenesis, and the fact that two arching membranes appear at the base of the differentiation zone only when the two flagella rotate towards the median cytoplasmic process. The present data add more evidence for a close relationship between the Amphilinidea and the Eucestoda.
    [Show full text]
  • From Ghost and Mud Shrimp
    Zootaxa 4365 (3): 251–301 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4365.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:C5AC71E8-2F60-448E-B50D-22B61AC11E6A Parasites (Isopoda: Epicaridea and Nematoda) from ghost and mud shrimp (Decapoda: Axiidea and Gebiidea) with descriptions of a new genus and a new species of bopyrid isopod and clarification of Pseudione Kossmann, 1881 CHRISTOPHER B. BOYKO1,4, JASON D. WILLIAMS2 & JEFFREY D. SHIELDS3 1Division of Invertebrate Zoology, American Museum of Natural History, Central Park West @ 79th St., New York, New York 10024, U.S.A. E-mail: [email protected] 2Department of Biology, Hofstra University, Hempstead, New York 11549, U.S.A. E-mail: [email protected] 3Department of Aquatic Health Sciences, Virginia Institute of Marine Science, College of William & Mary, P.O. Box 1346, Gloucester Point, Virginia 23062, U.S.A. E-mail: [email protected] 4Corresponding author Table of contents Abstract . 252 Introduction . 252 Methods and materials . 253 Taxonomy . 253 Isopoda Latreille, 1817 . 253 Bopyroidea Rafinesque, 1815 . 253 Ionidae H. Milne Edwards, 1840. 253 Ione Latreille, 1818 . 253 Ione cornuta Bate, 1864 . 254 Ione thompsoni Richardson, 1904. 255 Ione thoracica (Montagu, 1808) . 256 Bopyridae Rafinesque, 1815 . 260 Pseudioninae Codreanu, 1967 . 260 Acrobelione Bourdon, 1981. 260 Acrobelione halimedae n. sp. 260 Key to females of species of Acrobelione Bourdon, 1981 . 262 Gyge Cornalia & Panceri, 1861. 262 Gyge branchialis Cornalia & Panceri, 1861 . 262 Gyge ovalis (Shiino, 1939) . 264 Ionella Bonnier, 1900 .
    [Show full text]
  • Organic Carbon Isotope Chemostratigraphy of Late Jurassic Early Cretaceous Arctic Canada
    University of Plymouth PEARL https://pearl.plymouth.ac.uk Faculty of Science and Engineering School of Geography, Earth and Environmental Sciences Finding the VOICE: organic carbon isotope chemostratigraphy of Late Jurassic Early Cretaceous Arctic Canada Galloway, JM http://hdl.handle.net/10026.1/15324 10.1017/s0016756819001316 Geological Magazine Cambridge University Press (CUP) All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. Proof Delivery Form Geological Magazine Date of delivery: Journal and vol/article ref: geo 1900131 Number of pages (not including this page): 15 This proof is sent to you on behalf of Cambridge University Press. Please check the proofs carefully. Make any corrections necessary on a hardcopy and answer queries on each page of the proofs Please return the marked proof within 2 days of receipt to: [email protected] Authors are strongly advised to read these proofs thoroughly because any errors missed may appear in the final published paper. This will be your ONLY chance to correct your proof. Once published, either online or in print, no further changes can be made. To avoid delay from overseas, please send the proof by airmail or courier. If you have no corrections to make, please email [email protected] to save having to return your paper proof. If corrections are light, you can also send them by email, quoting both page and line number.
    [Show full text]
  • Review of the Mineralogy of Calcifying Sponges
    Dickinson College Dickinson Scholar Faculty and Staff Publications By Year Faculty and Staff Publications 12-2013 Not All Sponges Will Thrive in a High-CO2 Ocean: Review of the Mineralogy of Calcifying Sponges Abigail M. Smith Jade Berman Marcus M. Key, Jr. Dickinson College David J. Winter Follow this and additional works at: https://scholar.dickinson.edu/faculty_publications Part of the Paleontology Commons Recommended Citation Smith, Abigail M.; Berman, Jade; Key,, Marcus M. Jr.; and Winter, David J., "Not All Sponges Will Thrive in a High-CO2 Ocean: Review of the Mineralogy of Calcifying Sponges" (2013). Dickinson College Faculty Publications. Paper 338. https://scholar.dickinson.edu/faculty_publications/338 This article is brought to you for free and open access by Dickinson Scholar. It has been accepted for inclusion by an authorized administrator. For more information, please contact [email protected]. © 2013. Licensed under the Creative Commons http://creativecommons.org/licenses/by- nc-nd/4.0/ Elsevier Editorial System(tm) for Palaeogeography, Palaeoclimatology, Palaeoecology Manuscript Draft Manuscript Number: PALAEO7348R1 Title: Not all sponges will thrive in a high-CO2 ocean: Review of the mineralogy of calcifying sponges Article Type: Research Paper Keywords: sponges; Porifera; ocean acidification; calcite; aragonite; skeletal biomineralogy Corresponding Author: Dr. Abigail M Smith, PhD Corresponding Author's Institution: University of Otago First Author: Abigail M Smith, PhD Order of Authors: Abigail M Smith, PhD; Jade Berman, PhD; Marcus M Key Jr, PhD; David J Winter, PhD Abstract: Most marine sponges precipitate silicate skeletal elements, and it has been predicted that they would be among the few "winners" in an acidifying, high-CO2 ocean.
    [Show full text]
  • PROGRAMME ABSTRACTS AGM Papers
    The Palaeontological Association 63rd Annual Meeting 15th–21st December 2019 University of Valencia, Spain PROGRAMME ABSTRACTS AGM papers Palaeontological Association 6 ANNUAL MEETING ANNUAL MEETING Palaeontological Association 1 The Palaeontological Association 63rd Annual Meeting 15th–21st December 2019 University of Valencia The programme and abstracts for the 63rd Annual Meeting of the Palaeontological Association are provided after the following information and summary of the meeting. An easy-to-navigate pocket guide to the Meeting is also available to delegates. Venue The Annual Meeting will take place in the faculties of Philosophy and Philology on the Blasco Ibañez Campus of the University of Valencia. The Symposium will take place in the Salon Actos Manuel Sanchis Guarner in the Faculty of Philology. The main meeting will take place in this and a nearby lecture theatre (Salon Actos, Faculty of Philosophy). There is a Metro stop just a few metres from the campus that connects with the centre of the city in 5-10 minutes (Line 3-Facultats). Alternatively, the campus is a 20-25 minute walk from the ‘old town’. Registration Registration will be possible before and during the Symposium at the entrance to the Salon Actos in the Faculty of Philosophy. During the main meeting the registration desk will continue to be available in the Faculty of Philosophy. Oral Presentations All speakers (apart from the symposium speakers) have been allocated 15 minutes. It is therefore expected that you prepare to speak for no more than 12 minutes to allow time for questions and switching between presenters. We have a number of parallel sessions in nearby lecture theatres so timing will be especially important.
    [Show full text]
  • SI Appendix for Hopkins, Melanie J, and Smith, Andrew B
    Hopkins and Smith, SI Appendix SI Appendix for Hopkins, Melanie J, and Smith, Andrew B. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution. Corrections to character matrix Before running any analyses, we corrected a few errors in the published character matrix of Kroh and Smith (1). Specifically, we removed the three duplicate records of Oligopygus, Haimea, and Conoclypus, and removed characters C51 and C59, which had been excluded from the phylogenetic analysis but mistakenly remain in the matrix that was published in Appendix 2 of (1). We also excluded Anisocidaris, Paurocidaris, Pseudocidaris, Glyphopneustes, Enichaster, and Tiarechinus from the character matrix because these taxa were excluded from the strict consensus tree (1). This left 164 taxa and 303 characters for calculations of rates of evolution and for the principal coordinates analysis. Other tree scaling methods The most basic method for scaling a tree using first appearances of taxa is to make each internal node the age of its oldest descendent ("stand") (2), but this often results in many zero-length branches which are both theoretically questionable and in some cases methodologically problematic (3). Several methods exist for modifying zero-length branches. In the case of the results shown in Figure 1, we assigned a positive length to each zero-length branch by having it share time equally with a preceding, non-zero-length branch (“equal”) (4). However, we compared the results from this method of scaling to several other methods. First, we compared this with rates estimated from trees scaled such that zero-length branches share time proportionally to the amount of character change along the branches (“prop”) (5), a variation which gave almost identical results as the method used for the “equal” method (Fig.
    [Show full text]
  • Spatangus Purpureus O.F. Müller, 1776
    Spatangus purpureus O.F. Müller, 1776 AphiaID: 124418 VIOLET HEART-URCHIN Animalia (Reino) > Echinodermata (Filo) > Echinozoa (Subfilo) > Echinoidea (Classe) > Euechinoidea (Subclasse) > Irregularia (Infraclasse) > Atelostomata (Superordem) > Spatangoida (Ordem) > Brissidina (Subordem) > Spatangoidea (Superfamilia) > Spatangidae (Familia) © Vasco Ferreira Hans Hillewaert Roberto Pillon Facilmente confundível com: 1 Echinocardium cordatum Ouriço-coração Sinónimos Prospatangus purpureus (O.F. Müller, 1776) Spatagus purpureus O.F. Müller, 1776 Spatangus meridionalis Risso, 1825 Spatangus Regina Spatangus reginae Gray, 1851 Spatangus spinosissimus Desor in L. Agassiz & Desor, 1847b Referências additional source Hansson, H. (2004). North East Atlantic Taxa (NEAT): Nematoda. Internet pdf Ed. Aug 1998., available online at http://www.tmbl.gu.se/libdb/taxon/taxa.html [details] basis of record Hansson, H.G. (2001). Echinodermata, in: Costello, M.J. et al. (Ed.) (2001). European register of marine species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Collection Patrimoines Naturels,. 50: pp. 336-351. [details] additional source Southward, E.C.; Campbell, A.C. (2006). [Echinoderms: keys and notes for the identification of British species]. Synopses of the British fauna (new series), 56. Field Studies Council: Shrewsbury, UK. ISBN 1-85153-269-2. 272 pp. [details] additional source Muller, Y. (2004). Faune et flore du littoral du Nord, du Pas-de-Calais et de la Belgique: inventaire. [Coastal fauna and flora of the Nord, Pas-de-Calais and Belgium: inventory]. Commission Régionale de Biologie Région Nord Pas-de-Calais: France. 307 pp., available online at http://www.vliz.be/imisdocs/publications/145561.pdf [details] original description Müller, O. F. (1776). Zoologiae Danicae prodromus: seu Animalium Daniae et Norvegiae indigenarum characteres, nomina, et synonyma imprimis popularium.
    [Show full text]
  • Page -  Paleo Lab 06 - the Cambrian Explosion of Life
    page - Paleo Lab 06 - The Cambrian Explosion of Life An Introduction to Index Fossils CLASSIFICATION AND TAXONOMY Geologists follow the lead of biologists in the classification and naming of organisms (taxonomy after taxon = name). Since its introduction early in the 18th century, the system devised by Linnaeus has been used to categorize organisms and to affix a formal name to each species. Major classification categories or groupings are listed below on the left with an example using the species of the common house cat to show how the system may be used: KINGDOM Animalia PHYLUM Chordata CLASS Mammalia ORDER Carnivora FAMILY Felidae GENUS Felis SPECIES domestica The basic unit of the system is the species, and each category above it includes the divisions below. A two part (binomial) formal designation for each species, following the scheme of Linnaeus, is composed of the capitalized name of the genus (plural = genera) followed by the uncapitalized name of the species (plural = species). Note that the binomial is printed in a special way (italics) to distinguish it. After at least 5000 years of domestication, man has drawn out of that species such a variety of traits through selection and cross-breeding that it may be more difficult to realize that all such cats belong to the same species than it is to recognize that they share the same genus with the lion (Felis leo), leopard (Felis pardus), jaguar (Felis onca), tiger (Felis tigris), and the cougar or puma (Felis concolor). All wildcats belong to the same genus but are classified in three separate species found in Europe, Africa, and the Americas (the ocelot), Felis sylvestris, F.
    [Show full text]
  • Studies on the Systematics and Life History of Polymorphous Altmani (Perry)
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1967 Studies on the Systematics and Life History of Polymorphous Altmani (Perry). John Edward Karl Jr Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Karl, John Edward Jr, "Studies on the Systematics and Life History of Polymorphous Altmani (Perry)." (1967). LSU Historical Dissertations and Theses. 1341. https://digitalcommons.lsu.edu/gradschool_disstheses/1341 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 67-17,324 KARL, Jr., John Edward, 1928- STUDIES ON THE SYSTEMATICS AND LIFE HISTORY OF POLYMORPHUS ALTMANI (PERRY). Louisiana State University and Agricultural and Mechanical College, Ph.D., 1967 Zoology University Microfilms, Inc., Ann Arbor, Michigan Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. © John Edward Karl, Jr. 1 9 6 8 All Rights Reserved Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. -STUDIES o n t h e systematics a n d LIFE HISTORY OF POLYMQRPHUS ALTMANI (PERRY) A Dissertation 'Submitted to the Graduate Faculty of the Louisiana State University and Agriculture and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Zoology and Physiology by John Edward Karl, Jr, Mo S«t University of Kentucky, 1953 August, 1967 Reproduced with permission of the copyright owner.
    [Show full text]
  • 06 Pavia.Pmd
    Bollettino della Società Paleontologica Italiana, 45 (2-3), 2006, 217-226. Modena, 15 gennaio 2007217 Lissoceras monachum (Gemmellaro), a ghost Ammonitida of the Tethyan Bathonian Giulio PAVIA G. Pavia, Dipartimento di Scienze della Terra, via Valperga Caluso 35, I-10124 Torino (Italy); [email protected] KEY-WORDS - Systematics, Ammonitida, Lissoceras, Bathonian, Tethys. ABSTRACT - L. monachum has been frequently recorded in the Upper Bajocian and Lower Bathonian, but references in literature differ in morphological details as they are based on a juvenile and poorly-preserved holotype. In addition, the type of L. monachum comes from a bed affected by taphonomical condensation mixing fossils from Early and Middle Bathonian times, i.e. the biochronological meaning of Gemmellaro’s taxon cannot be specified with biostratigraphic criteria from the type-locality. These references are here revised and refused on the basis of two topotypes recently sampled at Monte Erice in western Sicily, which allow a precise morphological definition of L. monachum by means of architectural and sutural characteristics. The only acceptable biostratigraphic datum comes from a Lower Bathonian specimen from southern France. The differences from L. ferrifex, L. magnum, and L. ventriplanum are discussed. Finally, the suture-line of topotype PU111502 of L. monachum and those specimens from the Upper Bajocian of the Venetian Alps, here named L. aff. monachum, support the phyletic relationships between L. ferrifex and L. magnum through transitional forms of L. monachum aged for the Tethyan Early Bathonian. RIASSUNTO - [Lissoceras monachum (Gemmellaro), un Ammonitida fantasma del Batoniano Tetideo] - L’ammonite Lissoceras monachum, della famiglia medio- e tardo-giurassica Lissoceratidae, risulta ripetutamente citata nella letteratura sistematica relativa al Baiociano superiore e al Batoniano inferiore.
    [Show full text]