Threats to and Protection of Coral Reefs (Gefährdung Und Schutz Von Korallenriffen) VO 859403

Total Page:16

File Type:pdf, Size:1020Kb

Threats to and Protection of Coral Reefs (Gefährdung Und Schutz Von Korallenriffen) VO 859403 Antonius 1/70 Lecture (SS 2000) Threats to and protection of coral reefs (gefährdung und schutz von korallenriffen) VO 859403 given by dr. Arnfried Antonius University of Vienna (script compiled by P.Madl) Part I Definition………………………………………….. 2 Part III Reef zonation……………………………………. 23 Reef building organisms.……...…………………... 2 Deep fore reef, ….……………….……… 24 Characteristics of organic reefs……………………. 3 Reef slope, reef front, reef terrace, …….. 25 Structure of coral reefs……..…………...…………. 4 Fore reef, reef crest……………………... 26 Constructive Components of Reef………………… 4 Reef flat, living coral sub-zone...……….. 27 Coral reef development…..……………………….. 5 Coral sub zone, lagoon; cay, shore……… 28 Taxonomy of cnidaria…..……………………….… 5 Reef Communities………………………………. 29 Development of coelenterata..………………. 6 Protozoa and the food web……………… 30 Acnidaria (ctenophora).……………………… 6 The flora of reefs………………...…………... 32 Cnidaria……………………………………… 6 Chlorophyta..……………………………. 32 Morphology of cnidaria……………………… 6 Phaeophyta……………………………… 32 Alternation of generation in cnidaria………… 7 Rhodophyta……………………………... 33 class Scyphozoa..……….....…….…………... 7 Cyanobacteria…………………………… 33 order Stauromedusae……………………. 7 Angiospermia…………………………… 33 order Coronatae…………………………. 8 The fauna of reefs………..……….….………. 34 order Semaeostomae………………….… 8 Porifera………………………………….. 34 order Rhizostomae……………………..... 8 Mollusca………………………………… 36 Order Cubozoa…………………….……. 8 Annelida………………………………… 38 class Hydrozoa…………..………………...... 8 Arthropoda……………………………… 41 order Trachylina and Siphonophora…….. 9 Echinodermata…………………………... 42 order Hydroida (Athecata and Thecata)… 9 Other reeffauna………………………….. 45 class Hydrocorallina……..……..…………... 9 Chordata……………………..………………. 46 order Milleporina…………………...…… 10 Tunicates………………………………... 46 order Stylasterina…………………...…… 10 Chondrichthyes…………………………. 46 class Anthozoa……………………………… 10 Osteichthyes…………………………….. 48 subclass Octocorallia………..…………… 10 Fish in the reef ecosystem…..…………... 51 order Telestacea…………………….…… 10 Reptiles………………………………….. 52 order Alcyonacea……………………..…. 10 Mammalia………………………………. 53 order Stolonifera……………………….... 11 order Gorgonaceae…………………….... 11 Part IV Environmental parameters………………………. 55 order Pennatulacea……………………… 12 Reef degradation…………………………...….… 55 order Helioporaceae……………….……. 12 Destruction of the reef - abiotic factors....….…… 56 subclass Hexacorallia………..………..….. 12 Chemical factors………………………… 56 order Actinaria…………………………... 12 Physical factors…………………………. 57 order Antipatharia.……………………… 12 Destruction of the reef - biotic factors….….…… 58 order Ceriantharia.……………….……… 13 Coral diseases…………………………………… 60 order Corallimorpharia.…………….…… 13 Disease working without a pathogen………... 60 order Zoanthidae.……………….………. 13 TBL, WBD…………………………..….. 60 order Scleractinia (madreporina).……….. 13 Disease working witht a pathogen…………... 60 BBD; 61 Part II Scleractinian coral reproduction and growth……... 14 RBD, BOC, BAB, BI…….……………... 62 Sexual reproduct. (brooders, broadcasters)….. 14 FI, LOD, YBD, DSD…..……………….. 63 Asexual reproduction……………………...… 16 SDR, SEB, PEY……………………….... 64 Anthocaulus, anthocyathus in Fungiidae.…… 17 Diseases involving a combination…………… 64 Growth rates…………………………………. 17 WS………………………………………. 64 Morphology of scleractinian corals.….………...…. 18 Mutations and other tissue abnormalities..….. 65 Corallite structure and their elements.………. 19 Hyperplasia, neoplasia………………….. 65 Colony growth , forms, and shapes………….. 20 Future outlook…………………………………… 65 Physiology of scleractinian corals...………...…...... 21 Part V References on the web.…………………..……… 67 http://www.sbg.ac.at/ipk/avstudio/pierofun/funpage.htm Antonius 2/70 PART I - Definitions: Riff1: ein riff ist eine massgeblich von lebenden organismen aufgebaute, meist bankförmige struktur, die vom meeresboden bis zur wasser-oberfläche reicht. Es kann die fysikalischen und ökologischen eigenheiten ihrer umgebung beeinflussen. Die konsistenz ist fest, um den kräften im wasser zu widerstehen und bildet somit einen gegliederten raum für angepasste bewohner (Schuhmacher 1976). riffe anorganische riffe organische riffe andere organismen korallenriffe (siehe “Biologie Rezenter Riffe“ - Velimrov2) Riffbildende organismen: Algen, insbesondere kalkproduzierende rotalgen der familie Corallinacea tragen massgeblich zum aufbau von korallenriffen bei. Fädige blaualgen, bilden polster die in weiterer folge durch sedimentation “verkleben“ und letzendlich versteinern; anhäufungen solcher blöcke bilden riffe; seit dem präkambrium sind die cyanobakterien als baumeister der sogenannten Stromatolithen-riffe bekannt, die in heutiger form in der Shark Bay, vor der westaustralischen küste aktiv tätig sind. Seegräser in verbindung mit riffen ist eher als eine missbräuchliche begriffsverwendung für sogenannte “sedimentfallen” zu verstehen (lt. Moliet und Picard); die sedimentverfestigung wird durch das wurzelwerk des seegrases gefördert - sind daher erst durch die einwirkung mehrerer faktoren in der lage riffähnliche gebilde hervorzubringen; bislang wurden derartige verfestigungen mit 10m mächtigkeit vermessen; da algen und seegräser in den tropen immer anzutreffen sind vermutet man daher nicht zu unrecht dass sandstein-bänke aus seegras-beständen hervorgegangen sein müssen. Polychaeten-riffe3), vertreter einiger gattungen (z.b. Sabellaria und Phragmatopoma) bilden mächtige ansammlungen, welche durchaus die bezeichnung "riff" verdienen. So bildet Phragmatopoma lapidosa in der brandungszone der ostküste Florida’s bis zu 1m hohe riffe, welche sich mit unterbrechungen über eine länge von mehr als 300km erstrecken. Deren wohnröhren sind mit sand ausgekleidet die durch bioaktivitat der würmer verkrusten. Unter den Sabellariidae sind weiters auch jene vertreter der gattung Sabellarida florensis und S.vulgaris als riffbauer bekannt. Serpulliden-riffe4, zu den riffbildenden würmern zählen auch die borstenwürmer der familie Serpulidae; treten sie in massen auf, so können ihre röhren zu einer kompakten kalkstruktur verbacken. Spirobranchus giganteus ist in massen vor Texas und Florida zu finden (siehe auch fig.1). Gastropoden (vermitiden)-riffe4, rezente und fossile riffe dieser art finden sich nicht nur vor Florida’s küste, sondern auch im östlichen Mittelmeer; Vermetus nigricans baut riffe indem die freischwimmenden larven sich am hartsubstrat festsetzen und gewundene kalkröhren anlegen die sie mit benachbarten individuen verzementieren (siehe auch fig.1) . Bivalvia, wie z.b. austern (Ostrea edulis) und miesmuscheln (Mytilus edulis) bilden ebenso grossflächige muschelbänke, sind aber durchwegs auf gemässigte breiten beschränkt. Korallen, zu den wichtigste riffbildnern zählen jene zu den nesseltieren (Cnidaria) gehörenden steinkorallen (Madreporaria), und andere hermatypische (riffbildendene) korallen, wie z.b. feuerkorallen (familie Milleporidae) als auch hornkorallen (familie Gorgoniidae) sowie weitere vertreter anderer familien. Mithilfe der kalksynthese scheidet der korallenpolypen kalk ab. Die zur kalkbildung nötigen kalzium- 2+ ionen (Ca ) und kohlendioxid (CO2) werden im meereswasser oder im korallenpolypen, von den skelett- aufbauenden zellen zur verfügung gestellt. Daraus wird kalziumkarbonat (CaCO3) gebildet. Dies kann jedoch nur in gewissen massen produziert werden, da das produkt durch massenwirkungs-gesetze - teilweise wieder in lösung geht. Wird aus dem reaktionssystem kohlensäure (HCO3 ) entzogen, kann vermehrt kalk synthetisiert werden. Die zooxanthellen übernehmen diese funktion, sie “saugen” CO2 vom stoffwechsel der korallen und verwenden es für ihre fotosynthese. Mit hilfe der zooxanthellen können korallen ihre kalkproduktion um ein vielfaches erhöhen (see p22 figure 41a). Kurz einige begriffe aus der paläontologie die in der riffbildung eine rolle spielen: BIOHERM = a mound, dome, or reef-like mass of rock that is composed almost exclusively of the remains of sedentary marine organisms and is embedded in rock of different physical character (riffartig die hügelförmig oder linsenförmig ist - streng organisch entstanden; durch einlagerung organischer strukturen ins gestein). BIOSTROM = refers to a flat bed of often in-situ skeletal organisms without significant relief; riffbildung die ausschliesslich durch sedimentäre organismen herrührt; streng genommen handelt es sich dabei um eine geschichtete struktur (z.b. durch muscheln bewerkstelligt) die nicht hügel- oder linsenförmig aufgeschichtet ist. http://www.sbg.ac.at/ipk/avstudio/pierofun/funpage.htm Antonius 3/70 The map (adapted from Jaap &Hallock, 1990) shows the different kinds of reefs in Florida and their locations. It must be noted that the habitat distribution is very patchy in each area. In southwestern Florida, the Vermetids are mainly located in the Ten Thousand Islands area but also extend intermittently along the western coast of Florida as far as Sarasota. However, they are not found in Florida Bay or the Keys, but a small colony has been reported on the old coaling piers at Fort Jefferson in the Dry Tortugas. Some researchers have reported in the literature that they consider the species that is found in the “Ten Thousand Islands” area are extinct, as the reefs were formed during the last interglacial period that drowned the beach ridges that make up the present-day islands. Foraminiferen-riffe5 sind überwiegend azoo- Fig. 1 Serpulid- and Vermitid-reefs4 xanthellaten und daher auf tiefere gewässer beschränkt; lediglich Marginopora vertebralis ist als eine der wenigen vertreter auch in der eufotischen zone zu finden und wird durch die
Recommended publications
  • Some Aspects of the Biology of Three Northwestern Atlantic Chitons
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 1978 SOME ASPECTS OF THE BIOLOGY OF THREE NORTHWESTERN ATLANTIC CHITONS: TONICELLA RUBRA, TONICELLA MARMOREA, AND ISCHNOCHITON ALBUS (MOLLUSCA: POLYPLACOPHORA) PAUL DAVID LANGER University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation LANGER, PAUL DAVID, "SOME ASPECTS OF THE BIOLOGY OF THREE NORTHWESTERN ATLANTIC CHITONS: TONICELLA RUBRA, TONICELLA MARMOREA, AND ISCHNOCHITON ALBUS (MOLLUSCA: POLYPLACOPHORA)" (1978). Doctoral Dissertations. 2329. https://scholars.unh.edu/dissertation/2329 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • The Reef Corridor of the Southwest Gulf of Mexico: Challenges for Its Management and Conservation
    Ocean & Coastal Management 86 (2013) 22e32 Contents lists available at ScienceDirect Ocean & Coastal Management journal homepage: www.elsevier.com/locate/ocecoaman The Reef Corridor of the Southwest Gulf of Mexico: Challenges for its management and conservation Leonardo Ortiz-Lozano a,*, Horacio Pérez-España b,c, Alejandro Granados-Barba a, Carlos González-Gándara d, Ana Gutiérrez-Velázquez e, Javier Martos d a Análisis y Síntesis de Zonas Costeras, Instituto de Ciencias Marinas y Pesquerías, Universidad Veracruzana, Av. Hidalgo #617, Col. Río Jamapa 94290, Boca del Río, Veracruz, Mexico b Arrecifes Coralinos, Instituto de Ciencias Marinas y Pesquerías, Universidad Veracruzana, Av. Hidalgo #617, Col. Río Jamapa 94290, Boca del Río, Veracruz, Mexico c Centro de Investigación de Ciencias Ambientales, Universidad Autónoma del Carmen, Av. Laguna de Términos s/n, Col. Renovación 2da sección, CP 24155, Ciudad del Carmen, Campeche, Mexico d Laboratorio de Arrecifes Coralinos, Facultad de Ciencias Biológicas y Agropecuarias, Zona Poza Rica Tuxpan, Universidad Veracruzana, Carr. Tuxpan.- Tampico km 7.5, Col. Universitaria, CP 92860, Tuxpan, Veracruz, Mexico e Posgrado. Instituto de Ecología, A.C., Departamento de Ecología y Comportamiento Animal, Apartado Postal 63, Xalapa 91000, Veracruz, Mexico article info abstract Article history: Flow of species and spatial continuity of biological processes between geographically separated areas Available online may be achieved using management tools known as Ecological Corridors (EC). In this paper we propose an EC composed of three highly threatened coral reef systems in the Southwest Gulf of Mexico: Sistema Arrecifal Lobos Tuxpan, Sistema Arrecifal Veracruzano and Arrecifes de los Tuxtlas. The proposed EC is supported by the concept of Marine Protected Areas Networks, which highlights the biogeographical and habitat heterogeneity representations as the main criteria to the establishment of this kind of networks.
    [Show full text]
  • Coral Bleaching Early Warning Network Current Conditions Report #20090910
    Mote Marine Laboratory / Florida Keys National Marine Sanctuary Coral Bleaching Early Warning Network Current Conditions Report #20090910 Updated September 10, 2009 Summary: Based on climate predictions, current conditions, and field observations, the threat for mass coral bleaching within the FKNMS remains MODERATE. Figure 2. NOAA’s Coral Bleaching HotSpot Map for September 10, 2009. Figure 1. NOAA’s Coral Bleaching Thermal Stress Outlook for Sept. – Dec., 2009. www.osdpd.noaa.gov/PSB/EPS/SST/climohot.html http://coralreefwatch.noaa.gov/satellite/index.html Weather and Sea Temperatures According to the latest NOAA Coral Reef Watch Coral Bleaching Thermal Stress Outlook (updated Sept. 10, 2009) there continues to be significant potential for coral bleaching throughout the Caribbean in 2009, especially in the Lesser Antilles; however, it now appears that the likelihood of significant bleaching in the Florida Keys has been reduced compared to the rest of the greater Caribbean (Fig. 1). Current remote sensing analysis by NOAA’s Coral Reef Watch program Figure 3. NOAA’s Degree Heating Weeks Map for September 10, 2009. indicates that the Florida Keys region continues to experience elevated levels www.osdpd.noaa.gov/PSB/EPS/SST/dhw_retro.html of thermal stress and moderate potential for coral bleaching. NOAA’s recent Water Temperatures (August 27 - September 10, 2009) Coral Bleaching HotSpot Map (Fig. 2), which provides current sea surface 35 temperature (SST) compared to the historically expected SST’s for the region, shows that temperature anomalies for the Florida Keys National Marine 30 Sanctuary and surrounding waters continue to remain above-average and have increased slightly since the end of August.
    [Show full text]
  • Climate Change Impacts on Corals in the UK Overseas Territories of British Indian Ocean Territory (BIOT) and the Pitcairn Islands
    Climate change impacts on corals in the UK Overseas Territories of British Indian Ocean Territory (BIOT) and the Pitcairn Islands Blue Belt Programme April 2021 Authors: Lincoln, S., Cowburn, B., Howes, E., Birchenough, S.N.R., Pinnegar, J., Dye, S., Buckley, P., Engelhard, G.H. and Townhill, B.L. Issue date: 29 March 2021 © Crown copyright 2020 This information is licensed under the Open Government Licence v3.0. To view this licence, visit www.nationalarchives.gov.uk/doc/open-government-licence/ This publication is available at www.gov.uk/government/publications www.cefas.co.uk Document Control Submitted to: Kylie Bamford (UK Foreign, Commonwealth and Development Office) Date submitted: 29 March 2021 Project Manager: Victoria Young Report compiled by: Susana Lincoln Quality control by: Georg H. Engelhard Approved by and date: Christopher Darby and Silvana Birchenough, 25 March 2021 Version: Final checked Version Control History Author Date Summary of changes Version Lincoln et al. November 2020 Initial draft V0.1 Lincoln et al. January 2021 External peer review completed V0.2 Lincoln et al. February 2021 QC QA corrections and final draft V1.0 Lincoln et al. February 2021 Comments from Emily Hardman V1.1 (Marine Management Organisation) Lincoln et al. March 2021 Editorial comments from Silvana V2.0 Birchenough et al. Lincoln et al. March 2021 Editorial comments from V2.1 Christopher Darby Lincoln et al. March 2021 All comments addressed Final Lincoln et al. April 2021 Final checks by reviewers prior Checked to publication This report has been reviewed by: Sheppard, C. (University of Warwick, UK), Wabnitz, C.
    [Show full text]
  • Regional Studies in Marine Science Reef Condition and Protection Of
    Regional Studies in Marine Science 32 (2019) 100893 Contents lists available at ScienceDirect Regional Studies in Marine Science journal homepage: www.elsevier.com/locate/rsma Reef condition and protection of coral diversity and evolutionary history in the marine protected areas of Southeastern Dominican Republic ∗ Camilo Cortés-Useche a,b, , Aarón Israel Muñiz-Castillo a, Johanna Calle-Triviño a,b, Roshni Yathiraj c, Jesús Ernesto Arias-González a a Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Mérida B.P. 73 CORDEMEX, C.P. 97310, Mérida, Yucatán, Mexico b Fundación Dominicana de Estudios Marinos FUNDEMAR, Bayahibe, Dominican Republic c ReefWatch Marine Conservation, Bandra West, Mumbai 400050, India article info a b s t r a c t Article history: Changes in structure and function of coral reefs are increasingly significant and few sites in the Received 18 February 2019 Caribbean can tolerate local and global stress factors. Therefore, we assessed coral reef condition Received in revised form 20 September 2019 indicators in reefs within and outside of MPAs in the southeastern Dominican Republic, considering Accepted 15 October 2019 benthic cover as well as the composition, diversity, recruitment, mortality, bleaching, the conservation Available online 18 October 2019 status and evolutionary distinctiveness of coral species. In general, we found that reef condition Keywords: indicators (coral and benthic cover, recruitment, bleaching, and mortality) within the MPAs showed Coral reefs better conditions than in the unprotected area (Boca Chica). Although the comparison between the Caribbean Boca Chica area and the MPAs may present some spatial imbalance, these zones were chosen for Biodiversity the purpose of making a comparison with a previous baseline presented.
    [Show full text]
  • MARINE FAUNA and FLORA of BERMUDA a Systematic Guide to the Identification of Marine Organisms
    MARINE FAUNA AND FLORA OF BERMUDA A Systematic Guide to the Identification of Marine Organisms Edited by WOLFGANG STERRER Bermuda Biological Station St. George's, Bermuda in cooperation with Christiane Schoepfer-Sterrer and 63 text contributors A Wiley-Interscience Publication JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore ANTHOZOA 159 sucker) on the exumbrella. Color vari­ many Actiniaria and Ceriantharia can able, mostly greenish gray-blue, the move if exposed to unfavorable condi­ greenish color due to zooxanthellae tions. Actiniaria can creep along on their embedded in the mesoglea. Polyp pedal discs at 8-10 cm/hr, pull themselves slender; strobilation of the monodisc by their tentacles, move by peristalsis type. Medusae are found, upside­ through loose sediment, float in currents, down and usually in large congrega­ and even swim by coordinated tentacular tions, on the muddy bottoms of in­ motion. shore bays and ponds. Both subclasses are represented in Ber­ W. STERRER muda. Because the orders are so diverse morphologically, they are often discussed separately. In some classifications the an­ Class Anthozoa (Corals, anemones) thozoan orders are grouped into 3 (not the 2 considered here) subclasses, splitting off CHARACTERISTICS: Exclusively polypoid, sol­ the Ceriantharia and Antipatharia into a itary or colonial eNIDARIA. Oral end ex­ separate subclass, the Ceriantipatharia. panded into oral disc which bears the mouth and Corallimorpharia are sometimes consid­ one or more rings of hollow tentacles. ered a suborder of Scleractinia. Approxi­ Stomodeum well developed, often with 1 or 2 mately 6,500 species of Anthozoa are siphonoglyphs. Gastrovascular cavity compart­ known. Of 93 species reported from Ber­ mentalized by radially arranged mesenteries.
    [Show full text]
  • Corallimorph and Montipora Reefs in Ulithi Atoll, Micronesia: Documenting Unusual Reefs
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/303060119 Corallimorph and Montipora Reefs in Ulithi Atoll, Micronesia: documenting unusual reefs Article · May 2016 DOI: 10.5281/zenodo.51289 CITATIONS READS 0 174 6 authors, including: Nicole Crane Peter Ansgar Nelson Cabrillo Community College District University of California, Santa Cruz 21 PUBLICATIONS 248 CITATIONS 26 PUBLICATIONS 272 CITATIONS SEE PROFILE SEE PROFILE Giacomo Bernardi University of California, Santa Cruz 367 PUBLICATIONS 4,728 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: One People One Reef: Micronesian outer islands View project Stay or Go View project All content following this page was uploaded by Nicole Crane on 13 May 2016. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. Corallimorph and Montipora Reefs in Ulithi Atoll, Micronesia: documenting unusual reefs NICOLE L. CRANE Department of Biology, Cabrillo College, 6500 Soquel Drive, Aptos, CA 95003, USA Oceanic Society, P.O. Box 844, Ross, CA 94957, USA One People One Reef, 100 Shaffer Road, Santa Cruz, CA 95060, USA MICHELLE J. PADDACK Santa Barbara City College, Santa Barbara, CA 93109, USA Oceanic Society, P.O. Box 844, Ross, CA 94957, USA One People One Reef, 100 Shaffer Road, Santa Cruz, CA 95060, USA PETER A. NELSON H. T. Harvey & Associates, Los Gatos, CA 95032, USA Institute of Marine Science, University of California Santa Cruz, CA 95060, USA One People One Reef, 100 Shaffer Road, Santa Cruz, CA 95060, USA AVIGDOR ABELSON Department of Zoology, Tel Aviv University, Ramat Aviv, 69978, Israel One People One Reef, 100 Shaffer Road, Santa Cruz, CA 95060, USA JOHN RULMAL, JR.
    [Show full text]
  • Mantas, Dolphins & Coral Reefs – a Maldives Cruise
    Mantas, Dolphins & Coral Reefs – A Maldives Cruise Naturetrek Tour Report 8 – 17 February 2019 Hawksbill Turtle Manta Ray Short-finned Pilot Whale Black-footed Anemone Fish Report & images compiled by Sara Frost Naturetrek Mingledown Barn Wolf's Lane Chawton Alton Hampshire GU34 3HJ UK T: +44 (0)1962 733051 E: [email protected] W: www.naturetrek.co.uk Tour Report Mantas, Dolphins & Coral Reefs – A Maldives Cruise Tour participants: Sara Frost and Chas Anderson (tour leaders) with 15 Naturetrek clients Summary Our time spent cruising around the beautiful Maldivian islands and atolls resulted in some superb marine wildlife encounters, and lovely warm evenings anchored off remote tropical islands, a dazzling variety of colourful fish, numerous turtles and dolphins and a daily visual feast of innumerable shades of turquoise! The highlight was the group’s encounter with a group of 6 Manta Rays while snorkelling. We enjoyed a morning’s excitement as the Mantas appeared and disappeared alongside us, their huge mouths wide open as they fed on the plankton, with all of the group getting fantastic close-up views! Every morning and evening, the group enjoyed a pre-breakfast and pre-dinner snorkel on coral reefs, where the colour and variety of fish was wonderful! Regal Angelfish, parrotfish, sea cucumbers, many different types of butterflyfish and wrasses, Maldive Anemonefish, reef squid, triggerfish, Moorish Idols, both White- and Black- tipped Reef Sharks and Hawksbill Turtles were just a few of the highlights! Back on board, while cruising between atolls, islands and reefs, seven confirmed species of cetacean were seen: several groups of Spinner Dolphins (including one huge group of at least 500), Pan-tropical Spotted Dolphins, both Common and Indo- Pacific Bottlenose Dolphins, plus Fraser’s Dolphins, plus Risso’s Dolphins and two groups of Pilot Whales – the first being very inquisitive and spending an hour with us spy hopping alongside the boat! All in all, it was a wonderful trip that will never be forgotten.
    [Show full text]
  • Microbiomes of Gall-Inducing Copepod Crustaceans from the Corals Stylophora Pistillata (Scleractinia) and Gorgonia Ventalina
    www.nature.com/scientificreports OPEN Microbiomes of gall-inducing copepod crustaceans from the corals Stylophora pistillata Received: 26 February 2018 Accepted: 18 July 2018 (Scleractinia) and Gorgonia Published: xx xx xxxx ventalina (Alcyonacea) Pavel V. Shelyakin1,2, Sofya K. Garushyants1,3, Mikhail A. Nikitin4, Sofya V. Mudrova5, Michael Berumen 5, Arjen G. C. L. Speksnijder6, Bert W. Hoeksema6, Diego Fontaneto7, Mikhail S. Gelfand1,3,4,8 & Viatcheslav N. Ivanenko 6,9 Corals harbor complex and diverse microbial communities that strongly impact host ftness and resistance to diseases, but these microbes themselves can be infuenced by stresses, like those caused by the presence of macroscopic symbionts. In addition to directly infuencing the host, symbionts may transmit pathogenic microbial communities. We analyzed two coral gall-forming copepod systems by using 16S rRNA gene metagenomic sequencing: (1) the sea fan Gorgonia ventalina with copepods of the genus Sphaerippe from the Caribbean and (2) the scleractinian coral Stylophora pistillata with copepods of the genus Spaniomolgus from the Saudi Arabian part of the Red Sea. We show that bacterial communities in these two systems were substantially diferent with Actinobacteria, Alphaproteobacteria, and Betaproteobacteria more prevalent in samples from Gorgonia ventalina, and Gammaproteobacteria in Stylophora pistillata. In Stylophora pistillata, normal coral microbiomes were enriched with the common coral symbiont Endozoicomonas and some unclassifed bacteria, while copepod and gall-tissue microbiomes were highly enriched with the family ME2 (Oceanospirillales) or Rhodobacteraceae. In Gorgonia ventalina, no bacterial group had signifcantly diferent prevalence in the normal coral tissues, copepods, and injured tissues. The total microbiome composition of polyps injured by copepods was diferent.
    [Show full text]
  • Preliminary Report on the Octocorals (Cnidaria: Anthozoa: Octocorallia) from the Ogasawara Islands
    国立科博専報,(52), pp. 65–94 , 2018 年 3 月 28 日 Mem. Natl. Mus. Nat. Sci., Tokyo, (52), pp. 65–94, March 28, 2018 Preliminary Report on the Octocorals (Cnidaria: Anthozoa: Octocorallia) from the Ogasawara Islands Yukimitsu Imahara1* and Hiroshi Namikawa2 1Wakayama Laboratory, Biological Institute on Kuroshio, 300–11 Kire, Wakayama, Wakayama 640–0351, Japan *E-mail: [email protected] 2Showa Memorial Institute, National Museum of Nature and Science, 4–1–1 Amakubo, Tsukuba, Ibaraki 305–0005, Japan Abstract. Approximately 400 octocoral specimens were collected from the Ogasawara Islands by SCUBA diving during 2013–2016 and by dredging surveys by the R/V Koyo of the Tokyo Met- ropolitan Ogasawara Fisheries Center in 2014 as part of the project “Biological Properties of Bio- diversity Hotspots in Japan” at the National Museum of Nature and Science. Here we report on 52 lots of these octocoral specimens that have been identified to 42 species thus far. The specimens include seven species of three genera in two families of Stolonifera, 25 species of ten genera in two families of Alcyoniina, one species of Scleraxonia, and nine species of four genera in three families of Pennatulacea. Among them, three species of Stolonifera: Clavularia cf. durum Hick- son, C. cf. margaritiferae Thomson & Henderson and C. cf. repens Thomson & Henderson, and five species of Alcyoniina: Lobophytum variatum Tixier-Durivault, L. cf. mirabile Tixier- Durivault, Lohowia koosi Alderslade, Sarcophyton cf. boletiforme Tixier-Durivault and Sinularia linnei Ofwegen, are new to Japan. In particular, Lohowia koosi is the first discovery since the orig- inal description from the east coast of Australia.
    [Show full text]
  • Checklist of Fish and Invertebrates Listed in the CITES Appendices
    JOINTS NATURE \=^ CONSERVATION COMMITTEE Checklist of fish and mvertebrates Usted in the CITES appendices JNCC REPORT (SSN0963-«OStl JOINT NATURE CONSERVATION COMMITTEE Report distribution Report Number: No. 238 Contract Number/JNCC project number: F7 1-12-332 Date received: 9 June 1995 Report tide: Checklist of fish and invertebrates listed in the CITES appendices Contract tide: Revised Checklists of CITES species database Contractor: World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge, CB3 ODL Comments: A further fish and invertebrate edition in the Checklist series begun by NCC in 1979, revised and brought up to date with current CITES listings Restrictions: Distribution: JNCC report collection 2 copies Nature Conservancy Council for England, HQ, Library 1 copy Scottish Natural Heritage, HQ, Library 1 copy Countryside Council for Wales, HQ, Library 1 copy A T Smail, Copyright Libraries Agent, 100 Euston Road, London, NWl 2HQ 5 copies British Library, Legal Deposit Office, Boston Spa, Wetherby, West Yorkshire, LS23 7BQ 1 copy Chadwick-Healey Ltd, Cambridge Place, Cambridge, CB2 INR 1 copy BIOSIS UK, Garforth House, 54 Michlegate, York, YOl ILF 1 copy CITES Management and Scientific Authorities of EC Member States total 30 copies CITES Authorities, UK Dependencies total 13 copies CITES Secretariat 5 copies CITES Animals Committee chairman 1 copy European Commission DG Xl/D/2 1 copy World Conservation Monitoring Centre 20 copies TRAFFIC International 5 copies Animal Quarantine Station, Heathrow 1 copy Department of the Environment (GWD) 5 copies Foreign & Commonwealth Office (ESED) 1 copy HM Customs & Excise 3 copies M Bradley Taylor (ACPO) 1 copy ^\(\\ Joint Nature Conservation Committee Report No.
    [Show full text]
  • Taxonomic Checklist of CITES Listed Coral Species Part II
    CoP16 Doc. 43.1 (Rev. 1) Annex 5.2 (English only / Únicamente en inglés / Seulement en anglais) Taxonomic Checklist of CITES listed Coral Species Part II CORAL SPECIES AND SYNONYMS CURRENTLY RECOGNIZED IN THE UNEP‐WCMC DATABASE 1. Scleractinia families Family Name Accepted Name Species Author Nomenclature Reference Synonyms ACROPORIDAE Acropora abrolhosensis Veron, 1985 Veron (2000) Madrepora crassa Milne Edwards & Haime, 1860; ACROPORIDAE Acropora abrotanoides (Lamarck, 1816) Veron (2000) Madrepora abrotanoides Lamarck, 1816; Acropora mangarevensis Vaughan, 1906 ACROPORIDAE Acropora aculeus (Dana, 1846) Veron (2000) Madrepora aculeus Dana, 1846 Madrepora acuminata Verrill, 1864; Madrepora diffusa ACROPORIDAE Acropora acuminata (Verrill, 1864) Veron (2000) Verrill, 1864; Acropora diffusa (Verrill, 1864); Madrepora nigra Brook, 1892 ACROPORIDAE Acropora akajimensis Veron, 1990 Veron (2000) Madrepora coronata Brook, 1892; Madrepora ACROPORIDAE Acropora anthocercis (Brook, 1893) Veron (2000) anthocercis Brook, 1893 ACROPORIDAE Acropora arabensis Hodgson & Carpenter, 1995 Veron (2000) Madrepora aspera Dana, 1846; Acropora cribripora (Dana, 1846); Madrepora cribripora Dana, 1846; Acropora manni (Quelch, 1886); Madrepora manni ACROPORIDAE Acropora aspera (Dana, 1846) Veron (2000) Quelch, 1886; Acropora hebes (Dana, 1846); Madrepora hebes Dana, 1846; Acropora yaeyamaensis Eguchi & Shirai, 1977 ACROPORIDAE Acropora austera (Dana, 1846) Veron (2000) Madrepora austera Dana, 1846 ACROPORIDAE Acropora awi Wallace & Wolstenholme, 1998 Veron (2000) ACROPORIDAE Acropora azurea Veron & Wallace, 1984 Veron (2000) ACROPORIDAE Acropora batunai Wallace, 1997 Veron (2000) ACROPORIDAE Acropora bifurcata Nemenzo, 1971 Veron (2000) ACROPORIDAE Acropora branchi Riegl, 1995 Veron (2000) Madrepora brueggemanni Brook, 1891; Isopora ACROPORIDAE Acropora brueggemanni (Brook, 1891) Veron (2000) brueggemanni (Brook, 1891) ACROPORIDAE Acropora bushyensis Veron & Wallace, 1984 Veron (2000) Acropora fasciculare Latypov, 1992 ACROPORIDAE Acropora cardenae Wells, 1985 Veron (2000) CoP16 Doc.
    [Show full text]