Mantas, Dolphins & Coral Reefs – a Maldives Cruise
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Balistapus Undulatus (Park, 1797) Frequent Synonyms / Misidentifications: None / None
click for previous page Tetraodontiformes: Balistidae 3919 Balistapus undulatus (Park, 1797) Frequent synonyms / misidentifications: None / None. FAO names: En - Orangestriped triggerfish. Diagnostic characters: Body deep, compressed. Large scale plates forming regular rows; and scales of cheek in an even, relatively complete covering. Scales enlarged above pectoral-fin base and just behind gill opening to form a flexible tympanum; scales of caudal peduncle with 2 longitudinal rows of large anteriorly projecting spines. No groove in front of eye. Mouth terminal; teeth pointed, the central pair in each jaw largest. First dorsal fin with III prominent spines, the first capable of being locked in an erected position by the second, the third short but distinct; dorsal-fin rays 24 to 27 (usually 25 or 26); anal-fin rays 20 to 24; caudal fin slightly rounded; pectoral-fin rays 13 to 15 (usually 14). Caudal peduncle compressed. Colour: dark green to dark brown with oblique curved orange lines on posterior head and body; an oblique band of narrow blue and orange stripes from around mouth to below pectoral fins; a large round black blotch around peduncular spines; rays of soft dorsal, anal, and pectoral fins orange; caudal fin orange. Size: Maximum total length 30 cm. Habitat, biology, and fisheries: Occurs in coral reefs at depths to 30 m. Feeds on various organisms, including live coral, algae, sea urchins, crabs and other crustaceans, molluscs, tunicates, and fishes. Marketed fresh and dried-salted. Distribution: Widespread in the tropical Indo-West Pacific, from East Africa, including the Red Sea, through Indonesia to the Tuamotu Islands; north to southern Japan, south to New Caledonia. -
Target Fish Carnivores
TARGET FISH CARNIVORES WRASSES - LABRIDAE Thicklips Hemigymnus spp. Slingjaw Wrasse Epibulus insidiator Tripletail Wrasse Cheilinus trilobatus Redbreasted Wrasse Cheilinus fasciatus Barefoot Conservation | TARGET FISH CARNIVORES| July 2016 1 Hogfish Bodianus spp. Tuskfish Choerodon spp. Moon Wrasse Thalassoma lunare Humphead Wrasse Cheilinus undulatus Barefoot Conservation | TARGET FISH CARNIVORES| July 2016 2 GOATFISH - MULLIDAE Dash-dot Goatfish Parupeneus barberinus Doublebar Goatfish Parupeneus bifasciatus Manybar Goatfish Parupeneus multifasciatus SNAPPER - LUTJANIDAE Midnight Snapper Macolor macularis Barefoot Conservation | TARGET FISH CARNIVORES| July 2016 3 Spanish Flag Snapper Lutjanus carponotatus Black-banded Snapper Lutjanus semicinctus Checkered Snapper Lutjanus decussatus Two-spot Snapper Lutjanus biguttatus Red Snapper Lutjanus bohar Barefoot Conservation | TARGET FISH CARNIVORES| July 2016 4 GROUPER – SERRANIDAE Barramundi Cod Cromileptes altivelis Bluespotted Grouper Cephalopholis cyanostigma Peacock Grouper Cephalopholis argus Coral Grouper Cephalopholis miniata Barefoot Conservation | TARGET FISH CARNIVORES| July 2016 5 Lyretails Variola albimarginata & Variola louti Honeycomb Grouper Epinephelus merra Highfin Grouper Epinephelus maculatus Flagtail Grouper Cephalopholis urodeta Barefoot Conservation | TARGET FISH CARNIVORES| July 2016 6 Blacksaddle Coral Grouper Plectropomus laevis Large Groupers TRIGGERFISH - BALISTIDAE Titan Triggerfish Balistoides viridescens Barefoot Conservation | TARGET FISH CARNIVORES| July -
Fish Species of Oahu, Hawaii 2016
Fish identification photo guide, Oahu, Hawaii 2016 (work in progress 2016-08-22) Stina Tano About this guide Disclaimer First of all, this document is by no means perfect- I have spent a lot of time trying to correctly identify the fish species herein, but shit happens. Use your own best judgement, and do not hold me responsible for misidentifications. All photos are by S Tano if not stated otherwise. Please note that all pictures have been edited, and that some of them, despite this, still suck- it happens, get over it. Families found herein: Acanthuridae (p.1-7) Balistidae (p.8-9) Blennidae (p.10) Carangidae (p.11) Chaetodontidae (p.12-14) Cirrhitidae (p.15) Fistulariidae (p.16) Gobiidae (p.17) Kuhliidae (p.18) Kyphosidae (p.19-20) Labridae (p.21-26) Lutjanidae (p.27) Monacanthidae (p.28) Mugilidae (p.29) Mullidae (p.30-31) Muraenidae (p.32-33) Myliobatidae (p.34) Ostraciidae (p.35) Pomacentridae (p.36-38) Scaridae (p.39-42) Serranidae (p.43) Syngnathidae (p.44) Tetraodontidae (p.45-46) Zanclidae (p.47) Acanthuridae 1 Acanthurus achilles Achilles tang Acanthurus blochii Ringtail surgeonfish Separates from A. xanthopterus by having a long (horizontally long) dark spine, white band on tail and yellow spot behind eye. Juvenile Acanthurus dussumieri Eyestripe surgeonfish Acanthuridae 2 Acanthurus guttatus Whitespotted surgeonfish Acanthurus leucopareius Whitebar surgeonfish Acanthurus nigrofuscus Brown surgeonfish/ Lavender tang Acanthuridae 3 Acanthurus nigroris Bluelined surgeonfish Acanthurus olivaceus Orangespot surgeonfish Acanthuridae 4 Acanthurus triostegus Convict surgeonfish Acanthurus xanthopterus Yellowfin surgeonfish Small (short in length horizontally) dark spine, yellow pectoral fins and yellow mask over eyes. -
Mantas, Dolphins and Coral Reefs – a Maldives Cruise
Mantas, Dolphins and Coral Reefs – A Maldives Cruise Naturetrek Tour Report 1 - 10 March 2018 Crabs by Pat Dean Hermit Crab by Pat Dean Risso’s Dolphin by Pat Dean Titan Triggerfish by Jenny Willsher Report compiled by Jenny Willsher Images courtesy of Pat Dean & Jenny Willsher Naturetrek Mingledown Barn Wolf's Lane Chawton Alton Hampshire GU34 3HJ UK T: +44 (0)1962 733051 E: [email protected] W: www.naturetrek.co.uk Tour Report Mantas, Dolphins and Coral Reefs – A Maldives Cruise Tour participants: Dr Chas Anderson (cruise leader) & Jenny Willsher (leader) with 13 Naturetrek clients Introduction For centuries the Maldives was a place to avoid if you were a seafarer due to its treacherous reefs, and this may have contributed to its largely unspoilt beauty. Now those very same reefs attract many visitors to experience the amazing diversity of marine life that it offers. Sharks and Scorpion fish, Octopus, Lionfish, Turtles and legions of multi-coloured fish of all shapes and sizes are to be found here! Add to that an exciting variety of cetaceans and you have a wildlife paradise. Despite the frustrating hiccoughs experienced by various members of the group in their travels, due to the snowy weather in the UK, we had a successful week in and around this intriguing chain of coral islands. After a brief stay in the lovely Bandos Island Resort (very brief for Pat and Stuart!), which gave us time for some snorkel practice, we boarded the MV Theia, our base for the next week. We soon settled into the daily routine of early morning and evening snorkels, daytimes searching for cetaceans or relaxing, and evening talks by Chas, our local Maldives expert. -
Fishes of Terengganu East Coast of Malay Peninsula, Malaysia Ii Iii
i Fishes of Terengganu East coast of Malay Peninsula, Malaysia ii iii Edited by Mizuki Matsunuma, Hiroyuki Motomura, Keiichi Matsuura, Noor Azhar M. Shazili and Mohd Azmi Ambak Photographed by Masatoshi Meguro and Mizuki Matsunuma iv Copy Right © 2011 by the National Museum of Nature and Science, Universiti Malaysia Terengganu and Kagoshima University Museum All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without prior written permission from the publisher. Copyrights of the specimen photographs are held by the Kagoshima Uni- versity Museum. For bibliographic purposes this book should be cited as follows: Matsunuma, M., H. Motomura, K. Matsuura, N. A. M. Shazili and M. A. Ambak (eds.). 2011 (Nov.). Fishes of Terengganu – east coast of Malay Peninsula, Malaysia. National Museum of Nature and Science, Universiti Malaysia Terengganu and Kagoshima University Museum, ix + 251 pages. ISBN 978-4-87803-036-9 Corresponding editor: Hiroyuki Motomura (e-mail: [email protected]) v Preface Tropical seas in Southeast Asian countries are well known for their rich fish diversity found in various environments such as beautiful coral reefs, mud flats, sandy beaches, mangroves, and estuaries around river mouths. The South China Sea is a major water body containing a large and diverse fish fauna. However, many areas of the South China Sea, particularly in Malaysia and Vietnam, have been poorly studied in terms of fish taxonomy and diversity. Local fish scientists and students have frequently faced difficulty when try- ing to identify fishes in their home countries. During the International Training Program of the Japan Society for Promotion of Science (ITP of JSPS), two graduate students of Kagoshima University, Mr. -
Solomon Islands Marine Life Information on Biology and Management of Marine Resources
Solomon Islands Marine Life Information on biology and management of marine resources Simon Albert Ian Tibbetts, James Udy Solomon Islands Marine Life Introduction . 1 Marine life . .3 . Marine plants ................................................................................... 4 Thank you to the many people that have contributed to this book and motivated its production. It Seagrass . 5 is a collaborative effort drawing on the experience and knowledge of many individuals. This book Marine algae . .7 was completed as part of a project funded by the John D and Catherine T MacArthur Foundation Mangroves . 10 in Marovo Lagoon from 2004 to 2013 with additional support through an AusAID funded community based adaptation project led by The Nature Conservancy. Marine invertebrates ....................................................................... 13 Corals . 18 Photographs: Simon Albert, Fred Olivier, Chris Roelfsema, Anthony Plummer (www.anthonyplummer. Bêche-de-mer . 21 com), Grant Kelly, Norm Duke, Corey Howell, Morgan Jimuru, Kate Moore, Joelle Albert, John Read, Katherine Moseby, Lisa Choquette, Simon Foale, Uepi Island Resort and Nate Henry. Crown of thorns starfish . 24 Cover art: Steven Daefoni (artist), funded by GEF/IWP Fish ............................................................................................ 26 Cover photos: Anthony Plummer (www.anthonyplummer.com) and Fred Olivier (far right). Turtles ........................................................................................... 30 Text: Simon Albert, -
Housereef Marineguide
JUVENILE YELLOW BOXFISH (Ostracion cubicus) PHUKET MARRIOTT RESORT & SPA, MERLIN BEACH H O U S E R E E F M A R I N E G U I D E 1 BRAIN CORAL (Platygyra) PHUKET MARRIOTT RESORT & SPA, MERLIN BEACH MARINE GUIDE Over the past three years, Marriott and the IUCN have been working together nationwide on the Mangroves for the Future Project. As part of the new 5-year environmental strategy, we have incorporated coral reef ecosystems as part of an integrated coastal management plan. Mangrove forests and coral reefs are the most productive ecosystems in the marine environment, and thus must be kept healthy in order for marine systems to flourish. An identication guide to the marine life on the hotel reef All photos by Sirachai Arunrungstichai at the Marriott Merlin Beach reef 2 GREENBLOTCH PARROTFISH (Scarus quoyi) TABLE OF CONTENTS: PART 1 : IDENTIFICATION Fish..................................................4 PHUKET MARRIOTT RESORT & SPA, Coral..............................................18 MERLIN BEACH Bottom Dwellers.........................21 HOUSE REEF PART 2: CONSERVATION Conservation..........................25 MARINE GUIDE 3 GOLDBAND FUSILIER (Pterocaesio chrysozona) PART 1 IDENTIFICATION PHUKET MARRIOTT RESORT & SPA, MERLIN BEACH HOUSE REEF MARINE GUIDE 4 FALSE CLOWN ANEMONEFISH ( Amphiprion ocellaris) DAMSELFISHES (POMACE NTRIDAE) One of the most common groups of fish on a reef, with over 320 species worldwide. The most recognized fish within this family is the well - known Clownfish or Anemonefish. Damselfishes range in size from a few -
Ecology of Prognathodes Obliquus, a Butterflyfish Endemic to Mesophotic
Coral Reefs https://doi.org/10.1007/s00338-019-01822-8 NOTE Ecology of Prognathodes obliquus, a butterflyfish endemic to mesophotic ecosystems of St. Peter and St. Paul’s Archipelago 1 1 2 Lucas T. Nunes • Isadora Cord • Ronaldo B. Francini-Filho • 3 4 4 Se´rgio N. Stampar • Hudson T. Pinheiro • Luiz A. Rocha • 1 5 Sergio R. Floeter • Carlos E. L. Ferreira Received: 11 March 2019 / Revised: 17 May 2019 / Accepted: 20 May 2019 Ó Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Chaetodontidae is among the most conspicuous consumed and used mostly as refuge. In conclusion, P. families of fishes in tropical and subtropical coral and obliquus is a generalist invertebrate feeder typical of rocky reefs. Most ecological studies focus in the genus mesophotic ecosystems of SPSPA. Chaetodon, while Prognathodes remains poorly under- stood. Here we provide the first account on the ecology of Keywords Chaetodontidae Á Diet Á Deep reefs Á Prognathodes obliquus, a butterflyfish endemic to St. Peter Microplastics Á Mid-Atlantic Ridge Á St. Paul’s Rocks and St. Paul’s Archipelago (SPSPA), Mid-Atlantic Ridge. We studied the depth distribution and foraging behaviour of P. obliquus through technical diving, remote-operated Introduction vehicles and submarines. Also, we characterized its diet by analysing stomach contents. Prognathodes obliquus is Chaetodontidae (butterflyfishes) is an iconic and diverse mostly found below 40 m, with abundance peaking fish family inhabiting tropical and subtropical reefs. It between 90 and 120 m and deepest record to date at 155 m. contains approximately 130 species (Froese and Pauly It forages mostly over sediment, epilithic algal matrix and 2019), most of them living in shallow coral ecosystems complex bottoms formed by fused polychaete tubes, (SCEs; 0–30 m depth) and about 10% in the mesophotic preying mostly upon polychaetes, crustaceans, hydroids coral ecosystems (MCEs; 30–150 m; Pratchett et al. -
Cerritos Library Aquarium - Current Fish Residents
Cerritos Library Aquarium - Current Fish Residents Blue Tang (Paracanthurus hepatus) Location: Indo-Pacific, seen in reefs of the Philippines, Indonesia, Japan, the Great Barrier Reef of Australia, New Caledonia, Samoa, East Africa, and Sri Lanka Length: Up to 12 inches Food: Omnivores, feed on plankton and algae Characteristics: Live in pairs, or in small groups. Belong to group of fish called surgeonfish due to sharp spines on caudal peduncle (near tailfin). Spines are used only as a method of protection against aggressors Naso Tang (Naso lituratus) Other Names: Orangespine Unicornfish, Lipstick Tang, Tricolor Tang Location: Indo-Pacific reefs Length: Up to 2 feet Food: Primarily herbivores, mostly feed on algae with some plankton Characteristics: Like other surgeonfish, have a scalpel- like spine at the base of the tail for protection against aggressors. Mata tang (Acanthurus mata) Other Names: Elongate Surgeonfish, Pale Surgeonfish Location: Central Pacific, Eastern Asia Length: Up to 20 inches Food: Primarily herbivorous; diet includes algae, seaweed; occasionally carnivorous Characteristics: Like other surgeonfish, have a scalpel- like spine at the base of the tail for protection against aggressors. Yellow Tang (Zebrasoma flavescens) Other Names: Yellow Sailfin Tang, Lemon Surgeonfish, Yellow Surgeonfish Location: Hawaiian islands Length: Up to 8 inches Food: Primarily herbivorous; diet includes algae, seaweed Characteristics: Males have a patch of raised scales that resemble tiny white, fuzzy spikes to the rear of the spine; females do not Mustard tang (Acanthurus guttatus) Other Names: White spotted Surgeonfish Location: Shallow waters on reefs in the Indo-Pacific Length: Up to 12 inches Food: Primarily herbivorous; diet includes algae, seaweed Characteristics: Rarely seen; hide under shallow reefs to protect themselves from predators. -
Inventory of Marine Vertebrate Species and Fish-Habitat Utilization Patterns in Coastal Waters Off Four National Parks in Hawai‘I
PACIFIC COOPERATIVE STUDIES UNIT UNIVERSITY OF HAWAI`I AT MĀNOA Dr. David C. Duffy, Unit Leader Department of Botany 3190 Maile Way, St. John #408 Honolulu, Hawai’i 96822 Technical Report 168 Inventory of marine vertebrate species and fish-habitat utilization patterns in coastal waters off four national parks in Hawai‘i February 2010 Jim Beets, Ph.D.1, Eric Brown, Ph.D.2, and Alan Friedlander, Ph.D.3 1University of Hawaii at Hilo, 200 W. Kawili St., Hilo, Hawai‘i 96720 2Kalaupapa National Historical Park, P.O. Box 2222, Kalaupapa, HI 96742 3NOAA/NOS/NCCOS/CCMA/Biogeography Team, Makapu‘u Point, Waimānalo, Hawai‘i 96795 PCSU is a cooperative program between the University of Hawai`i and U.S. National Park Service, Cooperative Ecological Studies Unit. Organization Contact Information: National Park Service, Inventory and Monitoring Program, Pacific Island Network, P.O. Box 52, Hawai‘i National Park, HI 96718, phone: 808-985-6180, fax: 808-985-6111 http://science.nature.nps.gov/im/units/pacn/ Recommended Citation: Beets, J., E. Brown, and A. Friedlander. 2010. Inventory of marine vertebrate species and fish-habitat utilization patterns in coastal waters off four national parks in Hawai‘i. Pacific Cooperative Studies Unit Technical Report 168. University of Hawai‘i at Mānoa, Department of Botany. Honolulu, HI. 55 pg. Key words: Inventory, marine vertebrates, marine fishes, marine mammals, marine turtles Place key words: Hawai‘i, Pacific Island Network, Molokai, island of Hawai‘i, Kaloko-Honokōhau National Historical Park, Kalaupapa National -
Life on the Coral Reef
Coral Reef Teacher’s Guide Life on the Coral Reef Life on the Coral Reef THE CORAL REEF ECOSYSTEM The muddy silt drifts out to sea, covering the nearby Coral reefs provide the basis for the most productive coral reefs. Some corals can remove the silt, but many shallow water ecosystem in the world. An ecosystem cannot. If the silt is not washed off within a short pe- is a group of living things, such as coral, algae and riod of time by the current, the polyps suffocate and fishes, along with their non-living environment, such die. Not only the rainforest is destroyed, but also the as rocks, water, and sand. Each influences the other, neighboring coral reef. and both are necessary for the successful maintenance of life. If one is thrown out of balance by either natural Reef Zones or human-made causes, then the survival of the other Coral reefs are not uniform, but are shaped by the is seriously threatened. forces of the sea and the structure of the sea floor into DID YOU KNOW? All of the Earth’s ecosystems are a series of different parts or reef zones. Understand- interrelated, forming a shell of life that covers the ing these zones is useful in understanding the ecol- entire planet – the biosphere. For instance, if too many ogy of coral reefs. Keep in mind that these zones can trees are cut down in the rainforest, soil from the for- blend gradually into one another, and that sometimes est is washed by rain into rivers that run to the ocean. -
Behavioral and Ecological Correlates of Foureye Butterflyfish, Chaetodon
Rev. Biol. Trop., 51, Supl. 4: 77-81, 2003 www.rbt.ac.cr, www.ucr.ac.cr Behavioral and ecological correlates of foureye butterflyfish, Chaetodon capistratus, (Perciformes: Chaetodontidae) infected with Anilocra chaetodontis (Isopoda: Cymothoidae) Dwayne W. Meadows and Christina M. Meadows Department of Zoology, Weber State University, Ogden, UT 84408-2505, U.S.A. Current address: 789 Mahealani Place, Kihei, HI 96753, U. S. A. Phone (808) 879-4921, e-mail: [email protected] (Received 31-VIII-2001. Corrected 11-III-2002. Accepted 22-XI-2002) Abstract: We observed the behavior and ecology of Chaetodon capistratus infected and uninfected with the ecto- parasitic isopod Anilocra chaetodontis to assess whether there may be parasite induced alterations in host biology, host defenses against infection, and/or pathology related to infection. We also examined habitat related differences in infection rates. Infected fish had higher rates of interaction with conspecifics and spent more time in low flow envi- ronments (which might improve transmission of juvenile parasites to new hosts). Butterflyfish without isopods were chased more frequently by damselfishes, fed more, and had larger territories. Time spent near conspecifics, and fish condition and gonadosomatic index did not vary between infected and uninfected fish. These results suggest that foureye butterflyfish behavior is altered by the isopod parasite in order for the isopods to more easily gain mates or transmit offspring to new hosts. Key words: Caribbean, coral reef, fish, host behavior, parasite, isopod. Animals infected with parasites often be- studies examining whether parasites alter be- have differently than uninfected conspecifics havior in definitive hosts (see reviews in (see reviews in Moore 1995, Poulin 1995).