Dovyalis Hebecarpa) Pulp ⇑ Vivian Caetano Bochi A, , Milene Teixeira Barcia A, Daniele Rodrigues A, Caroline Sefrin Speroni B, M

Total Page:16

File Type:pdf, Size:1020Kb

Dovyalis Hebecarpa) Pulp ⇑ Vivian Caetano Bochi A, , Milene Teixeira Barcia A, Daniele Rodrigues A, Caroline Sefrin Speroni B, M View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Food Chemistry 164 (2014) 347–354 Contents lists available at ScienceDirect Food Chemistry journal homepage: www.elsevier.com/locate/foodchem Analytical Methods Polyphenol extraction optimisation from Ceylon gooseberry (Dovyalis hebecarpa) pulp ⇑ Vivian Caetano Bochi a, , Milene Teixeira Barcia a, Daniele Rodrigues a, Caroline Sefrin Speroni b, M. Monica Giusti c, Helena Teixeira Godoy a a Department of Food Science, Faculty of Food Engineering, Campinas State University (UNICAMP), P.O. Box 6121, 13083-862 Campinas, SP, Brazil b Integrated Center for Laboratory Analysis Development (NIDAL), Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil c The Ohio State University, Department of Food Science and Technology, 2015 Fyffe Road, Columbus, OH 43210, United States article info abstract Article history: Originally from Asia, Dovyalis hebecarpa is a dark purple/red exotic berry now also produced in Brazil. Received 27 October 2013 However, no reports were found in the literature about phenolic extraction or characterisation of this Received in revised form 8 May 2014 berry. In this study we evaluate the extraction optimisation of anthocyanins and total phenolics in Accepted 11 May 2014 D. hebecarpa berries aiming at the development of a simple and mild analytical technique. Multivariate Available online 16 May 2014 analysis was used to optimise the extraction variables (ethanol:water:acetone solvent proportions, times, and acid concentrations) at different levels. Acetone/water (20/80 v/v) gave the highest anthocyanin Keywords: extraction yield, but pure water and different proportions of acetone/water or acetone/ethanol/water D. hebecarpa (with >50% of water) were also effective. Neither acid concentration nor time had a significant effect Response surface methodology Simplex lattice design on extraction efficiency allowing to fix the recommended parameters at the lowest values tested Anthocyanin (0.35% formic acid v/v, and 17.6 min). Under optimised conditions, extraction efficiencies were increased Phenolic by 31.5% and 11% for anthocyanin and total phenolics, respectively as compared to traditional methods Extraction optimisation that use more solvent and time. Thus, the optimised methodology increased yields being less hazardous and time consuming than traditional methods. Finally, freeze-dried D. hebecarpa showed high content of target phytochemicals (319 mg/100 g and 1421 mg/100 g of total anthocyanin and total phenolic content, respectively). Ó 2014 Elsevier Ltd. All rights reserved. 1. Introduction the mouth due to a velvety texture and could be considered co- product (Morton & Dowling, 1987). Recently, it is being cultivated Ceylon gooseberry or Ketembilla (Dovyalis hebecarpa, Salicaceae as an exotic fruit in the southwest regions of Brazil. High produc- family), originally from Sri Lanka and introduced into USA (Florida) tion is obtained from March to May, but it is cultivated until in 1920, is a small spherical fruit (0.5–1 inch) characterised by a August with satisfactory harvesting yields. deep purple-red colour, sour juice, and small seeds enclosed in A hybrid of D. hebecarpa with Dovyalis abyssinica was reported the pulp. Fruits can be consumed as jams, juice, or fresh after skin as a source of vitamin C (120.3 mg/100 g of fresh fruit) and with removal. Despite an attractive appearance, skins are unpleasant in good physical quality for market, showing an average of 75% pulp (Cavalcante & Martins, 2005). Phenolic composition of this hybrid revealed higher contents of anthocyanins in fruit peels and carote- Abbreviations: SLD, simplex lattice design; RSM, response surface methodology; noids in the pulp (De Rosso & Mercadante, 2007). Nevertheless, no TMA, total monomeric anthocyanin; TPC, total phenolic content; GAE, gallic acid reports were found about extraction and phytochemicals content equivalent; CGE, cyanidin-3-glucoside equivalent. in D. hebecarpa species. ⇑ Corresponding author. Address: Santa Maria Federal University (Universidade Federal de Santa Maria, UFSM), Rural Science Center (Centro de Ciências Rurais, Phenolic compounds are secondary metabolites in fruits and CCR), Food Technology and Science Department (Departamento de Tecnologia e vegetables acting as a defense barrier against microorganism, Ciência de Alimento, DTCA), 42 Building, 97119-900 Santa Maria, RS, Brazil. Tel.: insects, and UV radiation, or as attractants to promote pollination +55 55 3213 4890; fax: +55 19 3521 2153. and seed dispersal. Some phytochemicals, as anthocyanins and E-mail addresses: [email protected] (V.C. Bochi), [email protected] phenolic acids, are very important for food acceptance acting as (M.M. Giusti), [email protected] (H.T. Godoy). http://dx.doi.org/10.1016/j.foodchem.2014.05.031 0308-8146/Ó 2014 Elsevier Ltd. All rights reserved. 348 V.C. Bochi et al. / Food Chemistry 164 (2014) 347–354 natural pigments or adding specific flavours, such as astringency Due to the increasing need for efficient, simple, and mild and acidity (Shahidi & Naczk, 2003; Lattanzio, Kroon, Quideau, & extraction procedures for anthocyanins and other phenolics to Treutter, 2009). allow its further evaluation and characterisation, this work was Potential health benefits of phenolic compounds in the human focused on optimising extraction methods for these types of diet have been extensively discussed in the literature and are still compounds from D. hebecarpa pulp. Within this study, multi- being investigated mainly linked to antioxidant activity and variate experimental designs were used to develop procedures degenerative disease prevention (Zafra-Stone et al., 2007). The bio- investigating extraction variables to improve knowledge in this logical activity of berry phytochemicals is believed to be a result of field. multiple mechanisms that initially were believed to be mainly linked to antioxidant effects. However, nowadays the questionable 2. Material and methods polyphenols bioavailability has given rise to the discussion of different mechanisms by which it could act in the onset and in the 2.1. Chemicals and equipment development of degenerative diseases. Some of them are their anti-inflammatory activity, their enzyme inhibition capacity, The phenol reagent Folin–Ciocalteu and gallic acid were or their potential modulation of the gut microbiota (Chiva- obtained from Sigma–Aldrich. A Büchi rotary evaporator and an Blanch & Visioli, 2012). UV-1600 spectrophotometer from Proanálise (São Paulo, Brazil) Anthocyanins are glycosylated forms of polyhydroxy and were used for concentration and quantification purposes. A food polymethoxy derivatives of 2-phenylbenzopyrylium, acylated or processor (Philips Mini Food Processor, model HR7625) Terroni not, which are found as red to purple natural pigments in fruit Freeze-dryer, model LS-3000E (São Carlos, Brazil) and a Qhimis and vegetables. Usually, extraction procedures are conducted using analytical grinder, model Q298A (São Paulo, Brazil) were used for acidified solvents due to the higher anthocyanin stability at low pH sample preparation. values (Giusti & Jing, 2008). However, degradation of native chemical structure due to acid hydrolysis or oxidation can occur if 2.2. Sample preparation the acid concentration is high or if the extraction time is long (Naczk & Shahidi, 2006; Revilla, Ryan, & Martín-Ortega, 1998). Ripened samples (12.5 °Brix) were obtained from Bragança Thus, extraction conditions should be studied to ensure high Paulista city (São Paulo, Brazil) in April of 2010 (see Supplementary extraction yields and minimal degradation in native chemical material for fruit images). After harvesting, fruits were manually structure of these pigments. Finally, results obtained under peeled while frozen (À20 °C) to minimise enzymatic degradation optimised extraction conditions will better represent the real com- and decrease juice loss. Frozen pulps were crushed using a food position of the vegetable matrix being used for characterisation processor and placed into trays to re-freeze. Materials were then studies. freeze-dried until the pressure was reduced to stable values lower Aiming to develop efficient and fast new extraction techniques, than 22lHg. Since particle size is extremely relevant to extraction sonication and subcritical fluids have been tested with promising effectiveness, freeze-dried samples were grinded until a fine and results (Adil, Cetin, Yener, & Bayındırlı, 2007). However, these flu- visually homogenous powder was obtained. ids increase the extraction costs and require equipment that is not typically present in most laboratory facilities. Moreover, in some cases, traditional methods still give better yields. Previous litera- 2.3. Initial extraction procedure ture data revealed that solvent extraction showed higher results A water/acetone (25:75 v/v) mixture, acidified with 2% of formic than an optimised subcritical fluid method (CO2 plus ethanol) in apple and peach pomace for total phenolics and antioxidant activ- acid was the initial solvent tested (Mertz, Cheynier, Günata, & Brat, ity (Adil et al., 2007). Nevertheless, the presence of even relatively 2007). Freeze-dried powder samples (0.5 g) were mixed with the safer solvents (such as alcohol) in the composition of natural colo- extraction solvent (15 ml) in a ratio of 1:30 w/v for 15 min, filtered rants may limit its application
Recommended publications
  • A Compilation and Analysis of Food Plants Utilization of Sri Lankan Butterfly Larvae (Papilionoidea)
    MAJOR ARTICLE TAPROBANICA, ISSN 1800–427X. August, 2014. Vol. 06, No. 02: pp. 110–131, pls. 12, 13. © Research Center for Climate Change, University of Indonesia, Depok, Indonesia & Taprobanica Private Limited, Homagama, Sri Lanka http://www.sljol.info/index.php/tapro A COMPILATION AND ANALYSIS OF FOOD PLANTS UTILIZATION OF SRI LANKAN BUTTERFLY LARVAE (PAPILIONOIDEA) Section Editors: Jeffrey Miller & James L. Reveal Submitted: 08 Dec. 2013, Accepted: 15 Mar. 2014 H. D. Jayasinghe1,2, S. S. Rajapaksha1, C. de Alwis1 1Butterfly Conservation Society of Sri Lanka, 762/A, Yatihena, Malwana, Sri Lanka 2 E-mail: [email protected] Abstract Larval food plants (LFPs) of Sri Lankan butterflies are poorly documented in the historical literature and there is a great need to identify LFPs in conservation perspectives. Therefore, the current study was designed and carried out during the past decade. A list of LFPs for 207 butterfly species (Super family Papilionoidea) of Sri Lanka is presented based on local studies and includes 785 plant-butterfly combinations and 480 plant species. Many of these combinations are reported for the first time in Sri Lanka. The impact of introducing new plants on the dynamics of abundance and distribution of butterflies, the possibility of butterflies being pests on crops, and observations of LFPs of rare butterfly species, are discussed. This information is crucial for the conservation management of the butterfly fauna in Sri Lanka. Key words: conservation, crops, larval food plants (LFPs), pests, plant-butterfly combination. Introduction Butterflies go through complete metamorphosis 1949). As all herbivorous insects show some and have two stages of food consumtion.
    [Show full text]
  • Pollination of Cultivated Plants in the Tropics 111 Rrun.-Co Lcfcnow!Cdgmencle
    ISSN 1010-1365 0 AGRICULTURAL Pollination of SERVICES cultivated plants BUL IN in the tropics 118 Food and Agriculture Organization of the United Nations FAO 6-lina AGRICULTUTZ4U. ionof SERNES cultivated plans in tetropics Edited by David W. Roubik Smithsonian Tropical Research Institute Balboa, Panama Food and Agriculture Organization of the United Nations F'Ø Rome, 1995 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-11 ISBN 92-5-103659-4 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. FAO 1995 PlELi. uion are ted PlauAr David W. Roubilli (edita Footli-anal ISgt-iieulture Organization of the Untled Nations Contributors Marco Accorti Makhdzir Mardan Istituto Sperimentale per la Zoologia Agraria Universiti Pertanian Malaysia Cascine del Ricci° Malaysian Bee Research Development Team 50125 Firenze, Italy 43400 Serdang, Selangor, Malaysia Stephen L. Buchmann John K. S. Mbaya United States Department of Agriculture National Beekeeping Station Carl Hayden Bee Research Center P.
    [Show full text]
  • Anthocyanins, Vibrant Color Pigments, and Their Role in Skin Cancer Prevention
    biomedicines Review Anthocyanins, Vibrant Color Pigments, and Their Role in Skin Cancer Prevention 1,2, , 2,3, 4,5 3 Zorit, a Diaconeasa * y , Ioana S, tirbu y, Jianbo Xiao , Nicolae Leopold , Zayde Ayvaz 6 , Corina Danciu 7, Huseyin Ayvaz 8 , Andreea Stanilˇ aˇ 1,2,Madˇ alinaˇ Nistor 1,2 and Carmen Socaciu 1,2 1 Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; [email protected] (A.S.); [email protected] (M.N.); [email protected] (C.S.) 2 Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănă¸stur3-5, 400372 Cluj-Napoca, Romania; [email protected] 3 Faculty of Physics, Babes, -Bolyai University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania; [email protected] 4 Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau 999078, China; [email protected] 5 International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China 6 Faculty of Marine Science and Technology, Department of Marine Technology Engineering, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey; [email protected] 7 Victor Babes University of Medicine and Pharmacy, Department of Pharmacognosy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; [email protected] 8 Department of Food Engineering, Engineering Faculty, Canakkale Onsekiz Mart University, 17020 Canakkale, Turkey; [email protected] * Correspondence: [email protected]; Tel.: +40-751-033-871 These authors contributed equally to this work. y Received: 31 July 2020; Accepted: 25 August 2020; Published: 9 September 2020 Abstract: Until today, numerous studies evaluated the topic of anthocyanins and various types of cancer, regarding the anthocyanins’ preventative and inhibitory effects, underlying molecular mechanisms, and such.
    [Show full text]
  • Fine Root Morphology, Biochemistry and Litter Quality Indices of Fast- and Slow-Growing Woody Species in Ethiopian Highland Forest
    Ecosystems DOI: 10.1007/s10021-017-0163-7 Ó 2017 The Author(s). This article is an open access publication Fine Root Morphology, Biochemistry and Litter Quality Indices of Fast- and Slow-growing Woody Species in Ethiopian Highland Forest Dessie Assefa,1* Douglas L. Godbold,1 Beyene Belay,2 Abrham Abiyu,3 and Boris Rewald1 1Institute of Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Peter-Jordan-Straße 82, 1190 Vienna, Austria; 2Institute of Silviculture, University of Natural Resources and Life Sciences (BOKU), Peter-Jordan-Straße 82, 1190 Vienna, Austria; 3Amhara Agricultural Research Institute, P. O. Box 527, Bahir Dar, Ethiopia ABSTRACT Fine root turnover of trees is a major C input to soil. the acid-insoluble fraction (AIF) was the highest However, the quality of litter input is influenced by (44–51%). The carbon content, AIF, and the lig- root morphological traits and tissue chemical nocellulose index were higher for slower-growing composition. In this study, fine roots of ten tropical species. Root tissue density was lower in faster- woody species were collected from an Afromon- growing species (0.33 g cm-3) than slower-grow- tane forest in the northern highlands of Ethiopia. ing species (0.40 g cm-3) and showed a strong The fine roots were analysed for root morphologi- positive correlation with carbon content (r2 = 0.84) cal traits and tissue chemistry measured as proxy and the AIF (rpearson = 0.93). The morphological carbon fractionations. Based on stem increment, traits of fine roots between faster- and slower- the 10 species were divided into faster- and slower- growing species reflect the ecological strategy they growing species.
    [Show full text]
  • Mediterranean Fruit Fly, Ceratitis Capitata (Wiedemann) (Insecta: Diptera: Tephritidae)1 M
    EENY-214 Mediterranean Fruit Fly, Ceratitis capitata (Wiedemann) (Insecta: Diptera: Tephritidae)1 M. C. Thomas, J. B. Heppner, R. E. Woodruff, H. V. Weems, G. J. Steck, and T. R. Fasulo2 Introduction Because of its wide distribution over the world, its ability to tolerate cooler climates better than most other species of The Mediterranean fruit fly, Ceratitis capitata (Wiede- tropical fruit flies, and its wide range of hosts, it is ranked mann), is one of the world’s most destructive fruit pests. first among economically important fruit fly species. Its The species originated in sub-Saharan Africa and is not larvae feed and develop on many deciduous, subtropical, known to be established in the continental United States. and tropical fruits and some vegetables. Although it may be When it has been detected in Florida, California, and Texas, a major pest of citrus, often it is a more serious pest of some especially in recent years, each infestation necessitated deciduous fruits, such as peach, pear, and apple. The larvae intensive and massive eradication and detection procedures feed upon the pulp of host fruits, sometimes tunneling so that the pest did not become established. through it and eventually reducing the whole to a juicy, inedible mass. In some of the Mediterranean countries, only the earlier varieties of citrus are grown, because the flies develop so rapidly that late-season fruits are too heav- ily infested to be marketable. Some areas have had almost 100% infestation in stone fruits. Harvesting before complete maturity also is practiced in Mediterranean areas generally infested with this fruit fly.
    [Show full text]
  • Koshim) Using UV-Vis Spectrophotometry by Degu Daba Ejo Advisor: Alemu Kebede(Phd
    Extraction and Characterization of lycopene from Dovyalis Abyssinica Warb (Koshim) Using UV-Vis Spectrophotometry By Degu Daba Ejo A Thesis Submitted to The Department of Physics School of Applied Natural Science Presented in Partial Fulfillment of the Requirement for the Degree of Master’s in Physics (Specialization in Laser Spectroscopy) Office of Graduate Studies Adama Science and Technology University Adama, Ethiopia September17, 2017 Extraction and Characterization of lycopene from Dovyalis Abyssinica Warb (Koshim) Using UV-Vis Spectrophotometry By Degu Daba Ejo Advisor: Alemu Kebede(PhD) A Thesis Submitted to The Department of Physics School of Applied Natural Science Presented in Partial Fulfillment of the Requirement for the Degree of Master’s in Physics (Specialization in Laser Spectroscopy) Office of Graduate Studies Adama Science and Technology University Adama, Ethiopia September17, 2017 Approval of Board of Examiners We, the undersigned, members of the Board of Examiners of the final open defense by Degu Daba Ejo has read and evaluated his/her thesis entitled “Extraction and Characterization of lycopene from Dovyalis Abyssinica Warb (Koshim) Using UV- Vis Spectrophotometry” and examined the candidate. This is, therefore, to certify that the thesis has been accepted in partial fulfillment of the requirement of the Degree of Master of Science in physics (Laser Spectroscopy) _____________________ ___________________ ___________________ Advisor Signature Date _____________________________ _____________________ ___________________ Chairperson Signature Date _____________________________ _____________________ ___________________ Internal Examiner Signature Date _____________________________ _____________________ ___________________ External Examiner Signature Date Declaration I hereby declare that this MSc Thesis is my original work and has not been presented for a degree in any other university, and all sources of material used for this thesis have been duly acknowledged.
    [Show full text]
  • United States Environmental Protection Agency Washington, D.C
    UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460 OFFICE OF CHEMICAL SAFETY AND POLLUTION PREVENTION MEMORANDUM DATE: March 1, 2013 SUBJECT: Crop Grouping – Part X: Analysis of the USDA IR-4 Petition to Amend the Crop Group Regulation 40 CFR § 180.41 (c) (25) and Commodity Definitions [40 CFR 180.1 (g)] Related to the Proposed Crop Group 23 Tropical and Subtropical Fruit – Edible Peel. PC Code: NA DP Barcode: NA Decision No.: NA Registration No.: NA Petition No.: NA Regulatory Action: Crop Grouping Regulation Risk Assessment Type: None Case No.: NA TXR No.: NA CAS No.: NA MRID No.: 482971-01 40 CFR: 180.41 (c) (25) and 180.1 (g) FROM: Bernard A. Schneider, Ph.D., Senior Plant Physiologist Chemistry and Exposure Branch Health Effects Division (7509P) THROUGH: Donna Davis and Donald Wilbur, Ph.D., Chairpersons HED Chemistry Science Advisory Council (ChemSAC) Health Effects Division (7509P) TO: Barbara Madden, Minor Use Officer Risk Integration, Minor Use, and Emergency Response Branch (RIMUERB) Registration Division (7505P) cc: IR-4 Project, Bill Barney, Jerry Baron, Dan Kunkel, Debbie Carpenter, Van Starner 2 ACTION REQUESTED: William P. Barney, Crop Grouping Project Coordinator, and Kathryn Homa, Assistant Coordinator, USDA Interregional Research Project No. 4 (IR-4), State Agricultural Experiment Station, Rutgers University has submitted a petition (November 16, 2010) on behalf of the IR-4 Project, and the Tropical Fruits Workgroup of the International Crop Grouping Consulting Committee (ICGCC) to establish a new Crop Group (40 CFR § 180.41) Crop Group 23, Tropical and Subtropical Fruit – Edible Peel Group, and propose addition of Commodity Definitions 40 CFR 180.1 (g).
    [Show full text]
  • Dictionary of Cultivated Plants and Their Regions of Diversity Second Edition Revised Of: A.C
    Dictionary of cultivated plants and their regions of diversity Second edition revised of: A.C. Zeven and P.M. Zhukovsky, 1975, Dictionary of cultivated plants and their centres of diversity 'N -'\:K 1~ Li Dictionary of cultivated plants and their regions of diversity Excluding most ornamentals, forest trees and lower plants A.C. Zeven andJ.M.J, de Wet K pudoc Centre for Agricultural Publishing and Documentation Wageningen - 1982 ~T—^/-/- /+<>?- •/ CIP-GEGEVENS Zeven, A.C. Dictionary ofcultivate d plants andthei rregion so f diversity: excluding mostornamentals ,fores t treesan d lowerplant s/ A.C .Zeve n andJ.M.J ,d eWet .- Wageninge n : Pudoc. -11 1 Herz,uitg . van:Dictionar y of cultivatedplant s andthei r centreso fdiversit y /A.C .Zeve n andP.M . Zhukovsky, 1975.- Me t index,lit .opg . ISBN 90-220-0785-5 SISO63 2UD C63 3 Trefw.:plantenteelt . ISBN 90-220-0785-5 ©Centre forAgricultura l Publishing and Documentation, Wageningen,1982 . Nopar t of thisboo k mayb e reproduced andpublishe d in any form,b y print, photoprint,microfil m or any othermean swithou t written permission from thepublisher . Contents Preface 7 History of thewor k 8 Origins of agriculture anddomesticatio n ofplant s Cradles of agriculture and regions of diversity 21 1 Chinese-Japanese Region 32 2 Indochinese-IndonesianRegio n 48 3 Australian Region 65 4 Hindustani Region 70 5 Central AsianRegio n 81 6 NearEaster n Region 87 7 Mediterranean Region 103 8 African Region 121 9 European-Siberian Region 148 10 South American Region 164 11 CentralAmerica n andMexica n Region 185 12 NorthAmerica n Region 199 Specieswithou t an identified region 207 References 209 Indexo fbotanica l names 228 Preface The aimo f thiswor k ist ogiv e thereade r quick reference toth e regionso f diversity ofcultivate d plants.Fo r important crops,region so fdiversit y of related wild species areals opresented .Wil d species areofte nusefu l sources of genes to improve thevalu eo fcrops .
    [Show full text]
  • Quick Harvest and Postharvest Tips for Better Quality and Longer
    Fruit, Nut, and Beverage Crops July 2014 F_N- 36 Quick Harvest and Postharvest Tips for Better Quality and Longer Postharvest Life Ken Love,1 Nancy Chen,2 and Robert Paull2 1Hawaii Tropical Fruit Growers Association, Captain Cook, Hawai‘i; 2Tropical Plant and Soil Sciences, University of Hawai‘i at Manoa, Honolulu, Hawai‘i Abiu Acerola Pouteria caimito Malpighia emarginata Abiu fruit are harvested when they become bright yellow, Acerola is extremely fragile and must be harvested gently. and the fruit continue to ripen after harvest. Full ripening Generally, acerola should be picked when almost fully occurs in 1 to 5 days after harvest, when the fruit pulp no red. Fruit are often field-packed into clamshell plastic longer has a sticky latex. The translucent flesh becomes containers, no more than two layers deep. A third layer jelly-like, with a pleasant, somewhat caramel-flavored often puts too much weight on the bottom fruit. The pulp. The tough, leathery skin can be easily bruised, but clamshell should be placed in a pre-chilled cooler in the if handled carefully the fruit has a good postharvest life. field to reduce the temperature of the fruit as quickly as The flesh browns quickly after slicing, and the fruit is possible. With rapid cooling, the postharvest life can be usually prepared just before eating. increased from about 4 to 10 days. Fruit with a longer postharvest life are more desirable to grocery stores and chefs and enhance your reputation for high-quality fruit. Atemoya / Cherimoya Annona squamosa x A. cherimola / Annona cherimola It is notoriously difficult to determine the best time to harvest atemoya and its relatives.
    [Show full text]
  • Diversity and Evolution of Rosids
    *Malpighiales • large and diverse group of 39 families - many of them Diversity and contributing importantly to tropical Evolution of Rosids forest diversity . willows, spurges, and maples . *Salicaceae - willows, poplars *Salicaceae - willows, poplars Chemically defined by salicins (salicylic acid). Many 55 genera, 1000+ species of shrubs/trees - 450 are willows members of the tropical “Flacourtiaceae” with showy flowers (Salix), less numerous are poplars, aspens (Populus). also have salicins and are now part of the Salicaceae Populus deltoides - Salix babylonica - Dovyalis hebecarpa Oncoba spinosa American cottonwood weeping willow 1 *Salicaceae - willows, poplars *Salicaceae - willows, poplars Willows (Salix) are dioecious trees of temperate regions with female male • nectar glands at base of bract allows reduced flowers in aments - both insect and wind pollinated insect as well as wind pollination • fruit is a capsule with cottony seeds for wind dispersal female male Salix babylonica - weeping willow *Salicaceae - willows, poplars *Salicaceae - willows, poplars • species vary from large trees, shrubs, to tiny tundra subshrubs • many species are “precocious” - flower before leaves flush in spring Salix discolor - pussy willow Salix herbacea - Salix pedicellaris - Salix fragilis - dwarf willow bog willow crack willow 2 *Salicaceae - willows, poplars *Salicaceae - willows, poplars Populus - poplars, cottonwood, aspens male • flowers possess a disk • cottony seeds in capsule female Populus deltoides American cottonwood Populus deltoides - American cottonwood *Salicaceae - willows, poplars *Salicaceae - willows, poplars Populus balsamifera Balsam poplar, balm-of-gilead P. tremuloides P. grandidentata trrembling aspen bigtooth aspen • aspens are clonal from root sprouts, fast growing, light Populus alba wooded, and important for White poplar pulp in the paper industry Introduced from Europe 3 *Euphorbiaceae - spurges *Euphorbiaceae - spurges Euphorbiaceae s.l.
    [Show full text]
  • Dovyalis Hebecarpa (Salicaceae), Or “Ceylon Gooseberry”, Is a Shrub Or Small Tree Usually Cultivated for Its Sour Fruits (Staples and Herbst 2005)
    Invasive KISC Feasibility Combined Kauai Status HPWRA Impacts Status Score Score Score Dovyalis EARLY HIGH RISK PRESENT hebecarpa DETECTION (7) 4 7 11 (Ceylon gooseberry) Initial PFC report completed: October 2017 PFC report updated as of: N/A Current Recommendation for KISC: Accept as KISC Target pending scoring rank and committee review Knowledge Gaps and Contingencies: 1) Early detection surveys should be conducted at the nursery indicated in a herbarium voucher location. 2) Delimiting surveys surrounding known locations are required to gain knowledge of the extent of populations. 3) An assessment of outreach effort towards private residences to increase detection on private lands is necessary. 4) An invasive plant prevention plan designed to encourage collaboration between Botanical Gardens and local conservation agencies should be considered. Background Dovyalis hebecarpa (Salicaceae), or “Ceylon gooseberry”, is a shrub or small tree usually cultivated for its sour fruits (Staples and Herbst 2005). D. hebecarpa has not been considered for control by KISC in the past, although it was first detected during surveys in 2010. Thus, the purpose of this prioritization assessment report is to evaluate whether KISC should attempt eradication (i.e. accept “Target” status). This decision be informed by scoring and comparing D. hebecarpa to other “Early Detection” species known to Kauai (See Table 5 in KISC Plant Early Detection Report for status terminology). Detection and Distribution D. hebecarpa is said to have been brought to Hawaii in the 1920’s where it was used as a spiny, living fence to keep cattle out of sugarcane and also as a source of tart fruit for jelly-making.
    [Show full text]
  • Perennial Edible Fruits of the Tropics: an and Taxonomists Throughout the World Who Have Left Inventory
    United States Department of Agriculture Perennial Edible Fruits Agricultural Research Service of the Tropics Agriculture Handbook No. 642 An Inventory t Abstract Acknowledgments Martin, Franklin W., Carl W. Cannpbell, Ruth M. Puberté. We owe first thanks to the botanists, horticulturists 1987 Perennial Edible Fruits of the Tropics: An and taxonomists throughout the world who have left Inventory. U.S. Department of Agriculture, written records of the fruits they encountered. Agriculture Handbook No. 642, 252 p., illus. Second, we thank Richard A. Hamilton, who read and The edible fruits of the Tropics are nnany in number, criticized the major part of the manuscript. His help varied in form, and irregular in distribution. They can be was invaluable. categorized as major or minor. Only about 300 Tropical fruits can be considered great. These are outstanding We also thank the many individuals who read, criti- in one or more of the following: Size, beauty, flavor, and cized, or contributed to various parts of the book. In nutritional value. In contrast are the more than 3,000 alphabetical order, they are Susan Abraham (Indian fruits that can be considered minor, limited severely by fruits), Herbert Barrett (citrus fruits), Jose Calzada one or more defects, such as very small size, poor taste Benza (fruits of Peru), Clarkson (South African fruits), or appeal, limited adaptability, or limited distribution. William 0. Cooper (citrus fruits), Derek Cormack The major fruits are not all well known. Some excellent (arrangements for review in Africa), Milton de Albu- fruits which rival the commercialized greatest are still querque (Brazilian fruits), Enriquito D.
    [Show full text]