Stock Assessment of Australian Herring

Total Page:16

File Type:pdf, Size:1020Kb

Stock Assessment of Australian Herring CORE Metadata, citation and similar papers at core.ac.uk Provided by Research Repository FRDC Project 96/105 STOCK ASSESSMENT OF AUSTRALIAN HERRING S. G. Ayvazian, G. K. Jones, D. Fairclough, I. C. Potter, B. S. Wise and W. F. Dimmlich 2000 Fisheries Western Australia – Research Division PO Box 20, North Beach, Western Australia 6020 South Australian Research and Development Institute (SARDI) PO Box 120, Henley Beach, South Australia 5022 INSTITUTE Murdoch University South St Murdoch, Perth, Western Australia 6150 ISBN 0 7309 8447 8 1 TABLE OF CONTENTS NON-TECHNICAL SUMMARY..........................................................................................................1 BACKGROUND.....................................................................................................................................3 NEED.......................................................................................................................................................4 OBJECTIVES.........................................................................................................................................6 RATIONALE AND APPROACH.........................................................................................................6 CHAPTER 1. A DESCRIPTION OF THE COMMERCIAL AND RECREATIONAL FISHERY FOR AUSTRALIAN HERRING (ARRIPIS GEORGIANA) IN SOUTHERN AUSTRALIAN WATERS – HISTORY OF DEVELOPMENT, METHODS OF CAPTURE AND VALUES ........7 Western Australia...............................................................................................................................7 Description of the commercial fishery and its history of development.............................................7 Methods and areas of capture ......................................................................................................9 Description of the recreational fishery and its history of development ..........................................10 Methods and areas of capture ....................................................................................................11 Recreational catch, effort and CPUE.........................................................................................11 Value of the recreational fishery ................................................................................................13 South Australia .................................................................................................................................13 Description of the commercial fishery and its history of development...........................................13 Methods and areas of capture in 1996-98..................................................................................17 Gross value of production of the commercial fishery.................................................................19 Description of the recreational fishery and its history of development ..........................................20 Current methods and areas of capture .......................................................................................21 Recreational catch, effort and CPUE.........................................................................................22 Expenditure in the recreational fishery ......................................................................................23 Victoria..............................................................................................................................................23 The commercial fishery ..................................................................................................................23 Gross value of production of the fishery.....................................................................................24 The recreational fishery.................................................................................................................. 24 Expenditure in the recreational fishery ......................................................................................24 References .........................................................................................................................................25 CHAPTER 2. REPRODUCTION, AGE AND GROWTH OF AUSTRALIAN HERRING (ARRIPIS GEORGIANA).....................................................................................................................28 Introduction ......................................................................................................................................28 Materials and methods.....................................................................................................................31 Sampling locations and methods ....................................................................................................31 Sea surface temperatures................................................................................................................ 31 Reproduction ..................................................................................................................................32 Gonadal variables .......................................................................................................................32 Length and age at first maturity..................................................................................................33 Fecundity....................................................................................................................................34 Age and growth...............................................................................................................................34 Determination of the appropriate structure for ageing Arripis georgiana...................................34 Analysis of data ..........................................................................................................................35 Results................................................................................................................................................36 Sea surface temperatures................................................................................................................ 36 Reproduction ..................................................................................................................................36 South-western Australia .............................................................................................................36 i Gonadosomatic indices and maturity stages...............................................................................36 Oocyte stages and diameter frequencies.....................................................................................39 Length and age at maturity .........................................................................................................42 Fecundity....................................................................................................................................44 Eastern south coast region of Western Australia and South Australia........................................ 48 Gonadosomatic indices and maturity stages...............................................................................48 Sex ratios for Western Australia and South Australia ................................................................48 Age and growth...............................................................................................................................51 Validation of the ageing technique .............................................................................................51 Length and age composition and growth curves for Arripis georgiana in south-western Australia .................................................................................................................................................... 53 Length and age compositions of Arripis georgiana in the eastern south coast region of Western Australia and the South Australian region..................................................................................57 Patterns of growth in different regions .......................................................................................60 Discussion ..........................................................................................................................................60 Reproduction ..................................................................................................................................60 Spawning location and timing ....................................................................................................60 Relationship between spawning time and water temperature.....................................................62 Spawning frequency and fecundity............................................................................................. 64 Sex ratios ....................................................................................................................................64 Length and age at maturity and management implications......................................................... 64 Age and growth...............................................................................................................................65 Validation of the use of otoliths for ageing Arripis georgiana.................................................... 65 Dispersal of larval and juvenile Arripis georgiana .....................................................................66 Spawning
Recommended publications
  • Chapter 14. Northern Shelf Region
    Chapter 14. Northern Shelf Region Queen Charlotte Sound, Hecate Strait, and Dixon canoes were almost as long as the ships of the early Spanish, Entrance form a continuous coastal seaway over the conti- and British explorers. The Haida also were gifted carvers nental shelfofthe Canadian west coast (Fig. 14.1). Except and produced a volume of art work which, like that of the for the broad lowlands along the northwest side ofHecate mainland tribes of the Kwaluutl and Tsimshian, is only Strait, the region is typified by a highly broken shoreline now becoming appreciated by the general public. of islands, isolated shoals, and countless embayments The first Europeans to sail the west coast of British which, during the last ice age, were covered by glaciers Columbia were Spaniards. Under the command of Juan that spread seaward from the mountainous terrain of the Perez they reached the vicinity of the Queen Charlotte mainland coast and the Queen Charlotte Islands. The Islands in 1774 before returning to a landfall at Nootka irregular countenance of the seaway is mirrored by its Sound on Vancouver Island. Quadra followed in 1775, bathymetry as re-entrant troughs cut landward between but it was not until after Cook’s voyage of 1778 with the shallow banks and broad shoals and extend into Hecate Resolution and Discovery that the white man, or “Yets- Strait from northern Graham Island. From an haida” (iron men) as the Haida called them, began to oceanographic point of view it is a hybrid region, similar explore in earnest the northern coastal waters. During his in many respects to the offshore waters but considerably sojourn at Nootka that year Cook had received a number modified by estuarine processes characteristic of the of soft, luxuriant sea otter furs which, after his death in protected inland coastal waters.
    [Show full text]
  • Download E-Book (PDF)
    African Journal of Biotechnology Volume 14 Number 33, 19 August, 2015 ISSN 1684-5315 ABOUT AJB The African Journal of Biotechnology (AJB) (ISSN 1684-5315) is published weekly (one volume per year) by Academic Journals. African Journal of Biotechnology (AJB), a new broad-based journal, is an open access journal that was founded on two key tenets: To publish the most exciting research in all areas of applied biochemistry, industrial microbiology, molecular biology, genomics and proteomics, food and agricultural technologies, and metabolic engineering. Secondly, to provide the most rapid turn-around time possible for reviewing and publishing, and to disseminate the articles freely for teaching and reference purposes. All articles published in AJB are peer- reviewed. Submission of Manuscript Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author Click here to Submit manuscripts online If you have any difficulty using the online submission system, kindly submit via this email [email protected]. With questions or concerns, please contact the Editorial Office at [email protected]. Editor-In-Chief Associate Editors George Nkem Ude, Ph.D Prof. Dr. AE Aboulata Plant Breeder & Molecular Biologist Plant Path. Res. Inst., ARC, POBox 12619, Giza, Egypt Department of Natural Sciences 30 D, El-Karama St., Alf Maskan, P.O. Box 1567, Crawford Building, Rm 003A Ain Shams, Cairo, Bowie State University Egypt 14000 Jericho Park Road Bowie, MD 20715, USA Dr. S.K Das Department of Applied Chemistry and Biotechnology, University of Fukui, Japan Editor Prof. Okoh, A. I. N.
    [Show full text]
  • Congolli (Pseudaphritis Urvillii) and Australian Salmon (Arripis Truttaceus and A
    Inland Waters and Catchment Ecology Diet and trophic characteristics of mulloway (Argyrosomus japonicus), congolli (Pseudaphritis urvillii) and Australian salmon (Arripis truttaceus and A. trutta) in the Coorong George Giatas and Qifeng Ye SARDI Publication No. F2015/000479-1 SARDI Research Report Series No. 858 SARDI Aquatics Sciences PO Box 120 Henley Beach SA 5022 September 2015 Giatas and Ye (2015) Diet of three fish species in the Coorong Diet and trophic characteristics of mulloway (Argyrosomus japonicus), congolli (Pseudaphritis urvillii) and Australian salmon (Arripis truttaceus and A. trutta) in the Coorong George Giatas and Qifeng Ye SARDI Publication No. F2015/000479-1 SARDI Research Report Series No. 858 September 2015 II Giatas and Ye (2015) Diet of three fish species in the Coorong This publication may be cited as: Giatas, G.C. and Ye, Q. (2015). Diet and trophic characteristics of mulloway (Argyrosomus japonicus), congolli (Pseudaphritis urvillii) and Australian salmon (Arripis truttaceus and A. trutta) in the Coorong. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2015/000479-1. SARDI Research Report Series No. 858. 81pp. South Australian Research and Development Institute SARDI Aquatic Sciences 2 Hamra Avenue West Beach SA 5024 Telephone: (08) 8207 5400 Facsimile: (08) 8207 5406 http://www.pir.sa.gov.au/research DISCLAIMER The authors warrant that they have taken all reasonable care in producing this report. The report has been through the SARDI internal review process, and has been formally approved for release by the Research Chief, Aquatic Sciences. Although all reasonable efforts have been made to ensure quality, SARDI does not warrant that the information in this report is free from errors or omissions.
    [Show full text]
  • Sample Assessment Tasks
    SAMPLE ASSESSMENT TASKS MARINE AND MARITIME STUDIES GENERAL YEAR 11 Copyright © School Curriculum and Standards Authority, 2014 This document – apart from any third party copyright material contained in it – may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority’s moral rights are not infringed. Copying or communication for any other purpose can be done only within the terms of the Copyright Act 1968 or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the Copyright Act 1968 or with permission of the copyright owners. Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons Attribution 4.0 International licence. Disclaimer Any resources such as texts, websites and so on that may be referred to in this document are provided as examples of resources that teachers can use to support their learning programs. Their inclusion does not imply that they are mandatory or that they are the only resources relevant to the course. 2014/18740v5 1 Sample assessment task Marine and Maritime Studies – General Year 11 Task 3 — Unit 1 Assessment type: Extended response Conditions Period allowed for completion of the task – three weeks; a combination of in-class and out-of-class time Task weighting: 2.5% of the school mark for this pair of units __________________________________________________________________________________ Marine resource management research (25 marks) Background Commercial fishing is an important contributor to the Western Australian economy.
    [Show full text]
  • The Biology and Ecology of Samson Fish Seriola Hippos
    The biology of Samson Fish Seriola hippos with emphasis on the sportfishery in Western Australia. By Andrew Jay Rowland This thesis is presented for the degree of Doctor of Philosophy at Murdoch University 2009 DECLARATION I declare that the information contained in this thesis is the result of my own research unless otherwise cited. ……………………………………………………. Andrew Jay Rowland 2 Abstract This thesis had two overriding aims. The first was to describe the biology of Samson Fish Seriola hippos and therefore extend the knowledge and understanding of the genus Seriola. The second was to uses these data to develop strategies to better manage the fishery and, if appropriate, develop catch-and-release protocols for the S. hippos sportfishery. Trends exhibited by marginal increment analysis in the opaque zones of sectioned S. hippos otoliths, together with an otolith of a recaptured calcein injected fish, demonstrated that these opaque zones represent annual features. Thus, as with some other members of the genus, the number of opaque zones in sectioned otoliths of S. hippos are appropriate for determining age and growth parameters of this species. Seriola hippos displayed similar growth trajectories to other members of the genus. Early growth in S. hippos is rapid with this species reaching minimum legal length for retention (MML) of 600mm TL within the second year of life. After the first 5 years of life growth rates of each sex differ, with females growing faster and reaching a larger size at age than males. Thus, by 10, 15 and 20 years of age, the predicted fork lengths (and weights) for females were 1088 (17 kg), 1221 (24 kg) and 1311 mm (30 kg), respectively, compared with 1035 (15 kg), 1124 (19 kg) and 1167 mm (21 kg), respectively for males.
    [Show full text]
  • Are Signals of Prey Variability Present in the Demographic Characteristics of Crested Tern (Sterna Bergii) Populations in South Australia?
    Are signals of prey variability present in the demographic characteristics of crested tern (Sterna bergii) populations in South Australia? Final Report to the South Australian Wildlife Conservation Fund Project No 0256 Authors: L.J. McLeay1,2, *, B. Page1, S.D. Goldsworthy1 and T.M. Ward1 1 South Australian Research and Development Institute, Aquatic Sciences, 2 Hamra avenue West Beach. PO Box 120, Henley Beach, South Australia 5022, Australia. 2 The University of Adelaide, School of Earth and Environmental Sciences, Adelaide, South Australia 5005, Australia. Correspondence to L.J. McLeay: tel: +61 08 8207 5439; fax: +61 08 8207 5406; Email: [email protected] SARDI Aquatic Sciences Publication No. F2008/000964 SARDI Research Report Series No. 312 Disclaimer The authors warrant that they have taken all reasonable care in producing this report. The report has been through the SARDI Aquatic Sciences internal review process, and has been formally approved for release by the Chief Scientist. Although all reasonable efforts have been made to ensure quality, SARDI Aquatic Sciences does not warrant that the information in this report is free from errors or omissions. SARDI Aquatic Sciences does not accept any liability for the contents of this report or for any consequences arising from its use or any reliance placed upon it. © 2008 SARDI AQUATIC SCIENCES This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the author. Authors: L.J. McLeay, B. Page, S.D. Goldsworthy and T.M. Ward Reviewers: Mr P.
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • The Response of the Upper Ocean to Solar Heating II
    Quart. J. R. Met. Soc. (1986). 112, pp. 29-42 55 1.465.553:ss 1.365.7 1 The response of the upper ocean to solar heating. 11: The wind-driven current By J. D. WOODS and V. STRASS 1n.Ytitrtt ,fuer Meereskunde an der Unioer,rituet Kiel, F. R. G. (Received 28 February lYX?: revised 30 July 1985) SUMMARY The current profile generated by a steady wind stress is disturbed by the diurnal variation of mixed layer depth forced by solar heating. Momentum diffused deep at night is abandoned to rotate incrtially during the day when the mixed layer is shallow and then re-entrained next night when it deepens. The resulting variation of current profile has been calculated with a one-dimcnsional model in which power supply to turhulencc determines the profile of eddy viscosity. The resulting variations of current velocity at fixed depths are so complicated that it is not surprising that current meter nieasurenients have seldom yielded the classical Ekmaii solution. However, the progressive vector diagrams do exhibit an Ekman-like response (albeit with superimposed inertial disturbances) suggesting that the model might be tested by tracking drifters designed to follow the flow at fixed depths. The inertial rotation of the current in the diurnal thermocline leads to a diurnal jet. the dynamical equivalent of the nocturnal jet in the atmospheric boundary layer over land. The role of inertial currents in deepening the mixed layer is clarified, leading to proposals for improving the turbulence parametrizations used in models of the upper ocean. The model predicts that the diurnal thermocline contains two layers of persistent vigorous turbulence separated by a thicker band of patchy turbulence in otherwise laminar flow.
    [Show full text]
  • Turbulent Flow Structure in Experimental Laboratory Wind
    Coastal Engineering 64 (2012) 1–15 Contents lists available at SciVerse ScienceDirect Coastal Engineering journal homepage: www.elsevier.com/locate/coastaleng Turbulent flow structure in experimental laboratory wind-generated gravity waves Sandro Longo a,⁎, Dongfang Liang b, Luca Chiapponi a, Laura Aguilera Jiménez c a Department of Civil Engineering, University of Parma, Parco Area delle Scienze, 181/A, 43100 Parma, Italy b Department of Engineering, Trumpington Street, Cambridge CB2 1PZ, UK c Instituto Interuniversitario de Investigación del Sistema Tierra, Universidad de Granada, Avda. del Mediterráneo s/n, 18006 Granada, Spain article info abstract Article history: This paper is the third part of a report on systematic measurements and analyses of wind-generated water Received 1 December 2011 waves in a laboratory environment. The results of the measurements of the turbulent flow on the water Received in revised form 7 February 2012 side are presented here, the details of which include the turbulence structure, the correlation functions, Accepted 8 February 2012 and the length and velocity scales. It shows that the mean turbulent velocity profiles are logarithmic, and Available online xxxx the flows are hydraulically rough. The friction velocity in the water boundary layer is an order of magnitude smaller than that in the wind boundary layer. The level of turbulence is enhanced immediately beneath the Keywords: fl 2 Free surface turbulence water surface due to micro-breaking, which re ects that the Reynolds shear stress is of the order u*w. The ver- Wind-generated waves tical velocities of the turbulence are related to the relevant velocity scale at the still-water level.
    [Show full text]
  • Port Spencer Grain Export Facility Peninsula Ports
    Port Spencer Grain Export Facility Peninsula Ports Amendment to Public Environmental Report IW219900-0-NP-RPT-0003 | 2 8 November 2019 Amend ment to Pu blic Envir onm ental Rep ort Peninsula P orts Amendment to Public Environmental Report Port Spencer Grain Export Facility Project No: IW219900 Document Title: Amendment to Public Environmental Report Document No.: IW219900-0-NP-RPT-0003 Revision: 2 Date: 8 November 2019 Client Name: Peninsula Ports Client No: Client Reference Project Manager: Scott Snedden Author: Alana Horan File Name: J:\IE\Projects\06_Central West\IW219900\21 Deliverables\AMENDMENT TO THE PER\Amendment to PER_Rev 2.docx Jacobs Group (Australia) Pty Limited ABN 37 001 024 095 Level 3, 121 King William Street Adelaide SA 5000 Australia www.jacobs.com © Copyright 2020 Jacobs Group (Australia) Pty Limited. The concepts and information contained in this document are the property of Jacobs. Use or copying of this document in whole or in part without the written permission of Jacobs constitutes an infringement of copyright. Limitation: This document has been prepared on behalf of, and for the exclusive use of Jacobs’ client, and is subject to, and issued in accordance with, the provisions of the contract between Jacobs and the client. Jacobs accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this document by any third party. Document history and status Revision Date Description By Review Approved H 31.10.2019 Draft AH NB SS 0 1.11.2019 Draft issued to DPTI AH SS DM 1 8.11.2019 Issued to DPTI AH SS DM 2 13.1.2020 Re-issued Volume 1 to DPTI.
    [Show full text]
  • Table of Fishes of Sydney Harbour 2019
    Table of Fishes of Sydney Harbour 2019 Family Family/Com Species Species Common Notes mon Name Name Acanthuridae Surgeonfishe Acanthurus Eyestripe close s dussumieri Surgeonfish to southern li mit Acanthuridae Acanthurus Orangebloch close to olivaceus Surgeonfish southern limit Acanthuridae Acanthurus Convict close to triostegus Surgeonfish southern limit Acanthuridae Acanthurus Yellowmask xanthopterus Surgeonfish Acanthuridae Paracanthurus Blue Tang not included hepatus in species count Acanthuridae Prionurus Spotted Sawtail maculatus Acanthuridae Prionurus Australian Sawtail microlepidotus Ambassidae Glassfishes Ambassis Port Jackson jacksoniensis glassfish Ambassidae Ambassis marianus Estuary Glassfish Anguillidae Freshwater Anguilla australis Shortfin Eel Eels Anguillidae Anguilla reinhardtii Longfinned Eel Antennariidae Anglerfishes Antennarius Freckled Anglerfish southern limit coccineus Antennariidae Antennarius Giant Anglerfish close to commerson southen limit Antennariidae Antennarius Shaggy Anglerfish southern limit hispidus Antennariidae Antennarius pictus Painted Anglerfish Antennariidae Antennarius striatus Striate Anglerfish Table of Fishes of Sydney Harbour 2019 Antennariidae Histrio histrio Sargassum close to Anglerfish southen limit Antennariidae Porophryne Red-fingered erythrodactylus Anglerfish Aploactinidae Velvetfishes Aploactisoma Southern Velvetfish milesii Aploactinidae Cocotropus Patchwork microps Velvetfish Aploactinidae Paraploactis Bearded Velvetfish trachyderma Aplodactylidae Seacarps Aplodactylus Rock Cale
    [Show full text]
  • HEBERLE FISHING Western Australia 1929-2004 by Greg Heberle “Heberle Fishing Western Australia 1929-2004” by Greg Heberle, Submitted to Publisher February 2006
    HEBERLE FISHING Western Australia 1929-2004 By Greg Heberle “Heberle Fishing Western Australia 1929-2004” by Greg Heberle, submitted to publisher February 2006. CONTENTS Cover photos: Top: Salmon in net at Reef Beach. Hank Scheepers, Ron Heberle senior, Walter Collingwood, John Cleary, John Scheepers. Bottom: “Forby” and Buff Ford at rear of house at House Beach. Ron Heberle senior, Pauline, Merilyn, Patricia, Greg, Grant, Ron junior. Both photos taken in 1963 by Graham Bowden. Persons in all photos listed from left to right. (Unknown persons = X). Page Introduction 1 Acknowledgements 2 Heberle family fishing seasons 1929-2004 2 Australian salmon 5 Research 7 West Australian salmon fishery 10 Bremer Bay human history 11 Land management 13 Bremer Bay natural history 14 Salmon prices 14 Whale strandings 14 Factors determining the annual catch 14 Fishing stories 15 Annual summaries 1929-2004 21 References 42 Index 43 Appendices Appendix 1: Salmon beaches 1982 Appendix 2: Salmon distribution Appendix 3: Salmon catches Appendix 4: Herring catches Appendix 5: Map showing camps Appendix 6: Daily salmon catches Appendix 7: Land tenure Appendix 8: Vegetation, soils Appendix 9: Salmon prices Appendix 10: Salmon season summaries Appendix 11: Daily salmon catches Appendix 12: Time caught Appendix 13: Prevailing winds Appendix 14: Salmon catches by moon phases Appendix 15: Catches by water temperature Appendix 16: Salmon catches by wind direction & strength Appendix 17: Heberle Pallinup catches INTRODUCTION This book covers professional fishing activities by the Heberle family in the SW of West Australia. Few details are presented for general fishing (other than salmon season fishing) as the family holds few records for these activities.
    [Show full text]