Congolli (Pseudaphritis Urvillii) and Australian Salmon (Arripis Truttaceus and A

Total Page:16

File Type:pdf, Size:1020Kb

Congolli (Pseudaphritis Urvillii) and Australian Salmon (Arripis Truttaceus and A Inland Waters and Catchment Ecology Diet and trophic characteristics of mulloway (Argyrosomus japonicus), congolli (Pseudaphritis urvillii) and Australian salmon (Arripis truttaceus and A. trutta) in the Coorong George Giatas and Qifeng Ye SARDI Publication No. F2015/000479-1 SARDI Research Report Series No. 858 SARDI Aquatics Sciences PO Box 120 Henley Beach SA 5022 September 2015 Giatas and Ye (2015) Diet of three fish species in the Coorong Diet and trophic characteristics of mulloway (Argyrosomus japonicus), congolli (Pseudaphritis urvillii) and Australian salmon (Arripis truttaceus and A. trutta) in the Coorong George Giatas and Qifeng Ye SARDI Publication No. F2015/000479-1 SARDI Research Report Series No. 858 September 2015 II Giatas and Ye (2015) Diet of three fish species in the Coorong This publication may be cited as: Giatas, G.C. and Ye, Q. (2015). Diet and trophic characteristics of mulloway (Argyrosomus japonicus), congolli (Pseudaphritis urvillii) and Australian salmon (Arripis truttaceus and A. trutta) in the Coorong. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2015/000479-1. SARDI Research Report Series No. 858. 81pp. South Australian Research and Development Institute SARDI Aquatic Sciences 2 Hamra Avenue West Beach SA 5024 Telephone: (08) 8207 5400 Facsimile: (08) 8207 5406 http://www.pir.sa.gov.au/research DISCLAIMER The authors warrant that they have taken all reasonable care in producing this report. The report has been through the SARDI internal review process, and has been formally approved for release by the Research Chief, Aquatic Sciences. Although all reasonable efforts have been made to ensure quality, SARDI does not warrant that the information in this report is free from errors or omissions. SARDI does not accept any liability for the contents of this report or for any consequences arising from its use or any reliance placed upon it. The SARDI Report Series is an Administrative Report Series which has not been reviewed outside the department and is not considered peer-reviewed literature. Material presented in these Administrative Reports may later be published in formal peer-reviewed scientific literature. © 2015 SARDI This work is copyright. Apart from any use as permitted under the Copyright Act 1968 (Cth), no part may be reproduced by any process, electronic or otherwise, without the specific written permission of the copyright owner. Neither may information be stored electronically in any form whatsoever without such permission. Cover photo: Congolli (Chris Bice) Printed in Adelaide: September 2015 SARDI Publication No. F2015/000479-1 SARDI Research Report Series No. 858 Author(s): George Giatas and A/Prof Qifeng Ye Reviewer(s): Chris Bice (SARDI) and Paul McEvoy (DEWNR) Approved by: Prof Xiaoxu Li - Science Leader - Aquaculture Signed: Date: 8 September 2015 Distribution: SAASC Library, University of Adelaide Library, Parliamentary Library, State Library and National Library Circulation: Public Domain III Giatas and Ye (2015) Diet of three fish species in the Coorong TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................................ IV ACKNOWLEDGEMENTS ....................................................................................................... VIII EXECUTIVE SUMMARY ........................................................................................................... 1 GENERAL INTRODUCTION ...................................................................................................... 4 PART 1 STOMACH-CONTENT ANALYSIS ........................................................................... 7 1.1 Mulloway ...................................................................................................................... 7 1.1.1 Biology and ecology .......................................................................................... 7 1.1.2 Species-specific aims and hypotheses .............................................................. 8 1.1.3 Methods ............................................................................................................ 8 1.1.4 Results .............................................................................................................14 1.1.5 Discussion ........................................................................................................19 1.2 Congolli .......................................................................................................................22 1.2.1 Biology and ecology .........................................................................................22 1.2.2 Species-specific aims and hypotheses .............................................................23 1.2.3 Methods ...........................................................................................................23 1.2.4 Results .............................................................................................................26 1.2.5 Discussion ........................................................................................................33 1.3 Australian salmon .......................................................................................................37 1.3.1 Biology and ecology .........................................................................................37 1.3.2 Species-specific aims and hypotheses .............................................................38 1.3.3 Methods ...........................................................................................................38 1.3.4 Results .............................................................................................................39 1.3.5 Discussion ........................................................................................................42 PART 2 STABLE ISOTOPE ANALYSIS OF COORONG FOOD-WEB ..................................44 2.1 Background.................................................................................................................44 2.2 Methods ......................................................................................................................44 2.3 Results ........................................................................................................................45 2.3.1 Food-web structure and trophic guilds ..............................................................45 2.3.2 Trophic position and fish diet estimation ...........................................................48 2.4 Discussion ..................................................................................................................50 2.4.1 Food-web structure and trophic guilds ..............................................................50 IV Giatas and Ye (2015) Diet of three fish species in the Coorong 2.4.2 Fish diet estimation ..........................................................................................51 2.4.3 Limitations and further research .......................................................................54 PART 3 GENERAL DISCUSSION ........................................................................................56 3.1 Summary of findings ...................................................................................................56 3.2 Comparison to drought ...............................................................................................56 3.2.1 Mulloway ..........................................................................................................56 3.2.2 Congolli ............................................................................................................58 3.2.3 Trophic structure ..............................................................................................58 3.3 Conclusions and management implications ................................................................59 REFERENCES .........................................................................................................................62 APPENDICES ...........................................................................................................................70 V Giatas and Ye (2015) Diet of three fish species in the Coorong LIST OF FIGURES Figure 1. Map of sampling sites in the Coorong and Lower Lakes.............................................. 9 Figure 2. Mid-water salinities of sampling sites in the Coorong during the different months. .....11 Figure 3. Two dimensional MDS ordination of the dietary compositions of three size classes (Small = <400 mm, Medium = 400–700 mm, Large = >700 mm) of mulloway from the Murray Estuary and North Lagoon of the Coorong.. ..............................................................................17 Figure 4. Two dimensional MDS ordination of the dietary compositions of two size classes (Small = <80 mm, Large = >80 mm) of congolli at three sites within the Coorong. ....................29 Figure 5. Importance of prey categories (% index of relative importance, IRI) in small (<80 mm) and large (>80 mm) congolli diet at three sites in the Coorong.. ................................................32 Figure 6. Importance of prey categories (% index of relative importance, IRI) for the two different species of Australian salmon in the Coorong.. ..........................................................................41 Figure 7. Stable nitrogen (δ15N) and carbon (δ13C) isotope signatures
Recommended publications
  • Download E-Book (PDF)
    African Journal of Biotechnology Volume 14 Number 33, 19 August, 2015 ISSN 1684-5315 ABOUT AJB The African Journal of Biotechnology (AJB) (ISSN 1684-5315) is published weekly (one volume per year) by Academic Journals. African Journal of Biotechnology (AJB), a new broad-based journal, is an open access journal that was founded on two key tenets: To publish the most exciting research in all areas of applied biochemistry, industrial microbiology, molecular biology, genomics and proteomics, food and agricultural technologies, and metabolic engineering. Secondly, to provide the most rapid turn-around time possible for reviewing and publishing, and to disseminate the articles freely for teaching and reference purposes. All articles published in AJB are peer- reviewed. Submission of Manuscript Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author Click here to Submit manuscripts online If you have any difficulty using the online submission system, kindly submit via this email [email protected]. With questions or concerns, please contact the Editorial Office at [email protected]. Editor-In-Chief Associate Editors George Nkem Ude, Ph.D Prof. Dr. AE Aboulata Plant Breeder & Molecular Biologist Plant Path. Res. Inst., ARC, POBox 12619, Giza, Egypt Department of Natural Sciences 30 D, El-Karama St., Alf Maskan, P.O. Box 1567, Crawford Building, Rm 003A Ain Shams, Cairo, Bowie State University Egypt 14000 Jericho Park Road Bowie, MD 20715, USA Dr. S.K Das Department of Applied Chemistry and Biotechnology, University of Fukui, Japan Editor Prof. Okoh, A. I. N.
    [Show full text]
  • Population Monitoring of Glenelg Spiny Crayfish (Euastacus Bispinosus ) in Rising-Spring Habitats of Lower South East, South Australia
    Population monitoring of Glenelg Spiny Crayfish (Euastacus bispinosus ) in rising-spring habitats of lower south east, South Australia Nick Whiterod and Michael Hammer Aquasave Consultants, Adelaide May 2012 Report to Friends of Mt Gambier Area Parks (Friends of Parks Inc.) Citation Whiterod, N. and Hammer, M. (2012). Population monitoring of Glenelg Spiny Crayfish (Euastacus bispinosus ) in rising-spring habitats of lower south east, South Australia. Report to Friends of Mt Gambier Area Parks (Friends of Parks Inc.). Aquasave Consultants, Adelaide. p. 27. Correspondence in relation to this report contact Dr Nick Whiterod Aquasave Consultants Tel: +61 409 023 771 Email: [email protected] Photographs © N. Whiterod, O. Sweeney, D. Mossop and M. Hammer Cover (clockwise from top): underwater view of aquatic vegetation in the Ewens Pond system; female Glenelg Spiny Crayfish with eggs (in berry); and Glenelg Spiny Crayfish amongst aquatic vegetation. Disclaimer This report was commissioned by Friends of Mt Gambier Area Parks (Friends of Parks Inc.). It was based on the best information available at the time and while every effort has been made to ensure quality, no warranty express or implied is provided for any errors or omissions, nor in the event of its use for any other purposes or by any other parties. ii Table of Contents 1.0 Introduction ........................................................................................................................... 1 2.0 Methods ..................................................................................................................................
    [Show full text]
  • Recreational Boating As a Major Vector of Spread of Nonindigenous Species Around the Mediterranean Aylin Ulman
    Recreational boating as a major vector of spread of nonindigenous species around the Mediterranean Aylin Ulman To cite this version: Aylin Ulman. Recreational boating as a major vector of spread of nonindigenous species around the Mediterranean. Ecosystems. Sorbonne Université, 2018. English. NNT : 2018SORUS222. tel- 02483397 HAL Id: tel-02483397 https://tel.archives-ouvertes.fr/tel-02483397 Submitted on 18 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sorbonne Université Università di Pavia Ecole doctorale CNRS, Laboratoire d'Ecogeochimie des Environments Benthiques, LECOB, F-66650 Banyuls-sur-Mer, France Recreational boating as a major vector of spread of non- indigenous species around the Mediterranean La navigation de plaisance, vecteur majeur de la propagation d’espèces non-indigènes autour des marinas Méditerranéenne Par Aylin Ulman Thèse de doctorat de Philosophie Dirigée par Agnese Marchini et Jean-Marc Guarini Présentée et soutenue publiquement le 6 Avril, 2018 Devant un jury composé de : Anna Occhipinti (President, University
    [Show full text]
  • A New Freshwater Crab of the Family Hymenosomatidae Macleay, 1838
    A new freshwater crab of the family Hymenosomatidae MacLeay, 1838 (Crustacea, Decapoda, Brachyura) and an updated review of the hymenosomatid fauna of New Caledonia Danièle Guinot, Valentin de Mazancourt To cite this version: Danièle Guinot, Valentin de Mazancourt. A new freshwater crab of the family Hymenosomatidae MacLeay, 1838 (Crustacea, Decapoda, Brachyura) and an updated review of the hymenosomatid fauna of New Caledonia. European Journal of Taxonomy, Consortium of European Natural History Museums, 2020, pp.1-29. 10.5852/ejt.2020.671. hal-02885460 HAL Id: hal-02885460 https://hal.archives-ouvertes.fr/hal-02885460 Submitted on 30 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. European Journal of Taxonomy 671: 1–29 ISSN 2118-9773 https://doi.org/10.5852/ejt.2020.671 www.europeanjournaloftaxonomy.eu 2020 · Guinot D. & Mazancourt V. de This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:9EF19154-D2FE-4009-985C-1EB62CC9ACB0 A new freshwater crab of the family Hymenosomatidae MacLeay, 1838 from New Caledonia (Crustacea, Decapoda, Brachyura) and an updated review of the hymenosomatid fauna of New Caledonia Danièle GUINOT 1,* & Valentin de MAZANCOURt 2 1 ISYEB (CNRS, MNHN, EPHE, Sorbonne Université), Institut Systématique Évolution Biodiversité, Muséum national d’histoire naturelle, case postale 53, 57 rue Cuvier, 75231 Paris cedex 05, France.
    [Show full text]
  • List of Marine Alien and Invasive Species
    Table 1: The list of 96 marine alien and invasive species recorded along the coastline of South Africa. Phylum Class Taxon Status Common name Natural Range ANNELIDA Polychaeta Alitta succinea Invasive pile worm or clam worm Atlantic coast ANNELIDA Polychaeta Boccardia proboscidea Invasive Shell worm Northern Pacific ANNELIDA Polychaeta Dodecaceria fewkesi Alien Black coral worm Pacific Northern America ANNELIDA Polychaeta Ficopomatus enigmaticus Invasive Estuarine tubeworm Australia ANNELIDA Polychaeta Janua pagenstecheri Alien N/A Europe ANNELIDA Polychaeta Neodexiospira brasiliensis Invasive A tubeworm West Indies, Brazil ANNELIDA Polychaeta Polydora websteri Alien oyster mudworm N/A ANNELIDA Polychaeta Polydora hoplura Invasive Mud worm Europe, Mediterranean ANNELIDA Polychaeta Simplaria pseudomilitaris Alien N/A Europe BRACHIOPODA Lingulata Discinisca tenuis Invasive Disc lamp shell Namibian Coast BRYOZOA Gymnolaemata Virididentula dentata Invasive Blue dentate moss animal Indo-Pacific BRYOZOA Gymnolaemata Bugulina flabellata Invasive N/A N/A BRYOZOA Gymnolaemata Bugula neritina Invasive Purple dentate mos animal N/A BRYOZOA Gymnolaemata Conopeum seurati Invasive N/A Europe BRYOZOA Gymnolaemata Cryptosula pallasiana Invasive N/A Europe BRYOZOA Gymnolaemata Watersipora subtorquata Invasive Red-rust bryozoan Caribbean CHLOROPHYTA Ulvophyceae Cladophora prolifera Invasive N/A N/A CHLOROPHYTA Ulvophyceae Codium fragile Invasive green sea fingers Korea CHORDATA Actinopterygii Cyprinus carpio Invasive Common carp Asia CHORDATA Ascidiacea
    [Show full text]
  • Role of Reef-Building, Ecosystem Engineering Polychaetes in Shallow Water Ecosystems
    diversity Review Role of Reef-Building, Ecosystem Engineering Polychaetes in Shallow Water Ecosystems Martín Bruschetti 1,2 1 Instituto de Investigaciones Marinas y Costeras (IIMyC)-CONICET, Mar del Plata 7600, Argentina; [email protected] 2 Laboratorio de Ecología, Universidad Nacional de Mar del Plata, FCEyN, Laboratorio de Ecología 7600, Argentina Received: 15 June 2019; Accepted: 15 September 2019; Published: 17 September 2019 Abstract: Although the effect of ecosystem engineers in structuring communities is common in several systems, it is seldom as evident as in shallow marine soft-bottoms. These systems lack abiotic three-dimensional structures but host biogenic structures that play critical roles in controlling abiotic conditions and resources. Here I review how reef-building polychaetes (RBP) engineer their environment and affect habitat quality, thus regulating community structure, ecosystem functioning, and the provision of ecosystem services in shallow waters. The analysis focuses on different engineering mechanisms, such as hard substrate production, effects on hydrodynamics, and sediment transport, and impacts mediated by filter feeding and biodeposition. Finally, I deal with landscape-level topographic alteration by RBP. In conclusion, RBP have positive impacts on diversity and abundance of many species mediated by the structure of the reef. Additionally, by feeding on phytoplankton and decreasing water turbidity, RBP can control primary production, increase light penetration, and might alleviate the effects of eutrophication
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • Annotated Checklist of New Zealand Decapoda (Arthropoda: Crustacea)
    Tuhinga 22: 171–272 Copyright © Museum of New Zealand Te Papa Tongarewa (2011) Annotated checklist of New Zealand Decapoda (Arthropoda: Crustacea) John C. Yaldwyn† and W. Richard Webber* † Research Associate, Museum of New Zealand Te Papa Tongarewa. Deceased October 2005 * Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, New Zealand ([email protected]) (Manuscript completed for publication by second author) ABSTRACT: A checklist of the Recent Decapoda (shrimps, prawns, lobsters, crayfish and crabs) of the New Zealand region is given. It includes 488 named species in 90 families, with 153 (31%) of the species considered endemic. References to New Zealand records and other significant references are given for all species previously recorded from New Zealand. The location of New Zealand material is given for a number of species first recorded in the New Zealand Inventory of Biodiversity but with no further data. Information on geographical distribution, habitat range and, in some cases, depth range and colour are given for each species. KEYWORDS: Decapoda, New Zealand, checklist, annotated checklist, shrimp, prawn, lobster, crab. Contents Introduction Methods Checklist of New Zealand Decapoda Suborder DENDROBRANCHIATA Bate, 1888 ..................................... 178 Superfamily PENAEOIDEA Rafinesque, 1815.............................. 178 Family ARISTEIDAE Wood-Mason & Alcock, 1891..................... 178 Family BENTHESICYMIDAE Wood-Mason & Alcock, 1891 .......... 180 Family PENAEIDAE Rafinesque, 1815 ..................................
    [Show full text]
  • Table of Fishes of Sydney Harbour 2019
    Table of Fishes of Sydney Harbour 2019 Family Family/Com Species Species Common Notes mon Name Name Acanthuridae Surgeonfishe Acanthurus Eyestripe close s dussumieri Surgeonfish to southern li mit Acanthuridae Acanthurus Orangebloch close to olivaceus Surgeonfish southern limit Acanthuridae Acanthurus Convict close to triostegus Surgeonfish southern limit Acanthuridae Acanthurus Yellowmask xanthopterus Surgeonfish Acanthuridae Paracanthurus Blue Tang not included hepatus in species count Acanthuridae Prionurus Spotted Sawtail maculatus Acanthuridae Prionurus Australian Sawtail microlepidotus Ambassidae Glassfishes Ambassis Port Jackson jacksoniensis glassfish Ambassidae Ambassis marianus Estuary Glassfish Anguillidae Freshwater Anguilla australis Shortfin Eel Eels Anguillidae Anguilla reinhardtii Longfinned Eel Antennariidae Anglerfishes Antennarius Freckled Anglerfish southern limit coccineus Antennariidae Antennarius Giant Anglerfish close to commerson southen limit Antennariidae Antennarius Shaggy Anglerfish southern limit hispidus Antennariidae Antennarius pictus Painted Anglerfish Antennariidae Antennarius striatus Striate Anglerfish Table of Fishes of Sydney Harbour 2019 Antennariidae Histrio histrio Sargassum close to Anglerfish southen limit Antennariidae Porophryne Red-fingered erythrodactylus Anglerfish Aploactinidae Velvetfishes Aploactisoma Southern Velvetfish milesii Aploactinidae Cocotropus Patchwork microps Velvetfish Aploactinidae Paraploactis Bearded Velvetfish trachyderma Aplodactylidae Seacarps Aplodactylus Rock Cale
    [Show full text]
  • HEBERLE FISHING Western Australia 1929-2004 by Greg Heberle “Heberle Fishing Western Australia 1929-2004” by Greg Heberle, Submitted to Publisher February 2006
    HEBERLE FISHING Western Australia 1929-2004 By Greg Heberle “Heberle Fishing Western Australia 1929-2004” by Greg Heberle, submitted to publisher February 2006. CONTENTS Cover photos: Top: Salmon in net at Reef Beach. Hank Scheepers, Ron Heberle senior, Walter Collingwood, John Cleary, John Scheepers. Bottom: “Forby” and Buff Ford at rear of house at House Beach. Ron Heberle senior, Pauline, Merilyn, Patricia, Greg, Grant, Ron junior. Both photos taken in 1963 by Graham Bowden. Persons in all photos listed from left to right. (Unknown persons = X). Page Introduction 1 Acknowledgements 2 Heberle family fishing seasons 1929-2004 2 Australian salmon 5 Research 7 West Australian salmon fishery 10 Bremer Bay human history 11 Land management 13 Bremer Bay natural history 14 Salmon prices 14 Whale strandings 14 Factors determining the annual catch 14 Fishing stories 15 Annual summaries 1929-2004 21 References 42 Index 43 Appendices Appendix 1: Salmon beaches 1982 Appendix 2: Salmon distribution Appendix 3: Salmon catches Appendix 4: Herring catches Appendix 5: Map showing camps Appendix 6: Daily salmon catches Appendix 7: Land tenure Appendix 8: Vegetation, soils Appendix 9: Salmon prices Appendix 10: Salmon season summaries Appendix 11: Daily salmon catches Appendix 12: Time caught Appendix 13: Prevailing winds Appendix 14: Salmon catches by moon phases Appendix 15: Catches by water temperature Appendix 16: Salmon catches by wind direction & strength Appendix 17: Heberle Pallinup catches INTRODUCTION This book covers professional fishing activities by the Heberle family in the SW of West Australia. Few details are presented for general fishing (other than salmon season fishing) as the family holds few records for these activities.
    [Show full text]
  • The Distribution and Unexpected Genetic Diversity of the Non-Indigenous Annelid Ficopomatus Enigmaticus in California
    Aquatic Invasions (2019) Volume 14, Issue 2: 250–266 CORRECTED PROOF Research Article The distribution and unexpected genetic diversity of the non-indigenous annelid Ficopomatus enigmaticus in California Alison Yee1, Joshua Mackie2 and Bruno Pernet1,* 1Department of Biological Sciences, California State University Long Beach,1250 Bellflower Blvd, Long Beach, CA 90840, USA 2Gilmac P/L, Suite G04, 1 Havelock Street, West Perth 6005, Australia Author e-mails: [email protected] (AY), [email protected] (JM), [email protected] (BP) *Corresponding author Citation: Yee A, Mackie J, Pernet B (2019) The distribution and unexpected Abstract genetic diversity of the non-indigenous annelid Ficopomatus enigmaticus in The non-indigenous annelid Ficopomatus enigmaticus has been established in San California. Aquatic Invasions 14(2): 250– Francisco Bay since at least 1921, but in the past 30 years it has also been found in 266, https://doi.org/10.3391/ai.2019.14.2.06 other parts of California. In the summer of 2017 we surveyed 136 sites to determine Received: 25 October 2018 its current distribution in the state. We found F. enigmaticus at 23 sites ranging Accepted: 23 January 2019 from San Francisco Bay in the north to Newport Bay in the south. Populations were concentrated in four regions: San Francisco Bay, Monterey Bay, Santa Barbara, and Published: 29 March 2019 sites in Los Angeles and Orange Counties. Presence sites did not differ systematically Handling editor: Maiju Lehtiniemi in salinity or temperature from absence sites, but all presence sites appeared to have Thematic editor: Charles W. Martin restricted exchange of water with nearby oceanic habitats.
    [Show full text]
  • The Raffles Bulletin of Zoology an International Journal of Southeast Asian Zoology Published by the Department of Zoology, National University of Singapore
    The Raffles Bulletin of Zoology An International Journal of Southeast Asian Zoology Published by the Department of Zoology, National University of Singapore THE DENNIS H. MURPHY VALEDICTORY ISSUE Cancrocaeca xenomorpha, new genus and species, a blind troglobitic freshwater hymenosomatid (Crustacea: Decapoda: Brachyura) from Sulawesi, Indonesia. by Peter K. L. Ng Vol. 39 No. 1, pp. 59-73 May 1991 RAFFLES BULLETIN OF ZOOLOGY 1991 39(1): 59-73. CANCROCAECA XENOMORPHA, NEW GENUS AND SPECIES, A BLIND TROGLOBITIC FRESHWATER HYMENOSOMATID (CRUSTACEA: DECAPODA: BRACHYURA) FROM SULAWESI, INDONESIA Peter K. L. Ng ABSTRACT. - A new genus and species of blind troglobitic freshwater hymenosomatid crab, Cancrocaeca xenomorpha, new genus, new species, is described from a cave in Maros, Sulawesi. This is the first cave-dwelling as well as the first blind hymenosomatid known; possessing all the characters (pale coloration, blindness, long legs) associated with troglobitic crabs. The ocular structures oi Cancrocaeca are completely absent; and the orbits have degen­ erated into very shallow depressions. This is the most extreme case of ocular degeneration known for any brachyuran crab. The eggs are few and relatively large which suggest semi- or completely abbreviated larval development. INTRODUCTION During the 1989 expedition to Sulawesi (Celebes) by the French Association Pyreneene de Speleologie, various brachyuran crabs were collected from caves. As in earlier expeditions, the material was kindly referred to the author for study (see Ng, 1988a). While most of the recent material were mainly epigeal species {Parathelphusa), one male specimen proved to be a very unusual hymenosomatid. Not only was this the first record of a freshwater hymenosomatid from caves, the specimen also proved to be a true troglobite (obligate cave dweller), with pale colouration and being completely blind (see Holthuis, 1986; Ng & Goh, 1987; Guinot, 1988).
    [Show full text]