Fabrication & Modification of a Solar
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Solar Car Faqs Day 1, 7:00 AM – Batteries Are Released from ASC 2010 Would Not Be Possible Without Our Volunteers
www.americansolarchallenge.org INNOVATORS EDUCATIONAL FOUNDATION The Innovators Educational Foundation (IEF) is a non-profit 501c3 organization Become a Sponsor Now that was formed in the fall of 2009 to carry on the American Solar Challenge for the 2011-2012 season mission. IEF currently hosts two events: Formula Sun Grand Prix, a solar car track * Multiple corporate donation event, and the American Solar Challenge, levels and opportunities the solar car road event. * Host the start / finish line A core group of dedicated volunteers, dinner to speak to all the teams mostly former competitors, provide the engine for IEF. They know first-hand the * Showcase your company on value of a hands-on, multidisciplinary, in-kind product donations innovative project to the education experience. * Individual donations accepted securely through the website In addition to experiential learning, www.americansolarchallenge.org these solar car events promote energy efficiency and raise public awareness of the capabilities of solar power. Contact Us Innovators Educational Foundation We appreciate your interest in the sport PO Box 2368 of solar car “raycing” and look forward to Rolla, MO 65402 seeing you on the road! [email protected] Support all of the teams with your donation to IEF! On behalf of the teams, staff, and sponsors, “Tour of the Midwest” FINISH welcome to the 2010 Naperville Sunday, June 20 – Saturday, June 26 American Solar Challenge! Broken Arrow, OK to Naperville, IL Normal Beginning with Sunrayce 1990, this year marks the 20th anniversary of solar car raycing events in North America. Designs and Topeka technologies have evolved over the years Jefferson Alton and these teams continue to show just how far City a solar car can go. -
Mit Solar Electric Vehicle Team
MIT SOLAR ELECTRIC VEHICLE TEAM The MIT Solar Electric Vehicle Team (SEVT) TEAM GOALS: is a student organization dedicated to • Facilitate continuous demonstrating the viability of alternative innovation and deve- energy-based transportation. The team was lopment in all fields founded in 1985 and since 1993 has worked related to solar under the auspices of MIT’s Edgerton electric vehicles Center. through international participation and We build each vehicle from the ground competition up, allowing us to apply our theoretical knowledge while gaining hands-on • Give our sponsors manufacturing experience and project publicity through management skills. Team members work positive exposure and with professors and industry to overcome press coverage. the design and fabrication challenges • Provide members of inherent to this complex project. Since the MIT community its creation, the SEVT has built nearly 15 with incomparable vehicles and competed successfully in experience in engin- national and international races, most eering, management, recently the 2015 World Solar Challenge in marketing, and Austrailia. We are currently constructing business. our newest race vehicle for competition in the 2017 World Solar Challenge. • Be active in the com- munity, promoting We share our enthusiasm for applied alternative energy and engineering and renewable technologies by transportation. actively reaching out to local schools and • Inspire children the Greater Boston community. Through to pursue careers our interactions, we hope to educate in science and the public about alternative energy and engineering. transportation, as well as inspire the next generations of innovators. WHAT IS SOLAR RACING? In a solar car race, highly specialized Each solar car is accompanied by provement in efficiency and perfor- vehicles that run entirely on solar lead and chase vehicles to provide mance of their vehicles. -
VIPV Position Paper Final Version.Pdf
VIPV Position Paper Vehicle-integrated Photovoltaics (VIPV) as a core source for electricity in road transport Lightyear One, 2019 Content 1. Political Context............................................................................................................................... 1 2. Introduction to the VIPV Market ..................................................................................................... 2 2.1 Passenger Cars ............................................................................................................................... 3 2.2 Light- and Heavy-Duty Vehicles ..................................................................................................... 5 3. The Motivation for VIPV .................................................................................................................. 6 3.1 General Benefits of VIPV ............................................................................................................... 6 3.2 VIPV Energy Flow Model ............................................................................................................... 8 3.3 Environmental Benefits in Comparison to the German Grid Mix ................................................. 9 4. Requirements and To-Dos for VIPV ............................................................................................... 11 4.1 Important Selection Criteria for VIPV .......................................................................................... 11 4.2 Technological Requirements -
Sevscience - Physical Science Summer Series #1
SevScience - Physical Science Summer Series #1 Message from Mr. Severino: CK-12 Welcome to your study of Physical Science! This course serves as a solid foundation for courses in Jeanphysics, Brainard, chemistry, Ph.D. technology, and design-process learning. Through these introductory readings, you will gain insight into some of the careers and fields of human endeavor characterized by the physical sciences. For your summer assignment, please complete the following points: 1) Thoroughly read each chapter. 2) Complete the review questions at the end of each chapter.These review questions are to be completed electronically. To share your answers with me, you may use Google Docs, your Microsoft Office school account, or email. 3) Later this summer, you will receive links for online quizzes related to the readings in this textbook. These quizzes will be compiled as a major test grade. 4) The due date for all summer assignments is Tuesday, September 1, 2020. Say Thanks to the Authors If you have any questionsClick about http://www.ck12.org/saythanks this assignment, please do not hesitate to contact me at [email protected].(No sign in required) I look forward to seeing you in the Fall. Have a safe, enjoyable Summer! Contents www.ck12.org Contents 1 Introduction to Physical Science1 1.1 Nature of Science.......................................... 2 1.2 Scientific Theory .......................................... 6 1.3 Scientific Law............................................ 9 1.4 History of Science.......................................... 11 1.5 Ethics in Science .......................................... 15 1.6 Scope of Physical Science...................................... 18 1.7 Scope of Chemistry......................................... 20 1.8 Scope of Physics........................................... 23 1.9 Physical Science Careers ..................................... -
Ankara University Department of Energy Engineering Solar Energy
ANKARA UNIVERSITY DEPARTMENT OF ENERGY ENGINEERING SOLAR ENERGY INSTRUCTOR DR. ÖZGÜR SELİMOĞLU CONTENTS Solar Energy a. Photovoltaics b. Space applications c. Energy distribution/transmission – electricity & smart technologies: d. Electric car 2 PHOTOVOLTAIC Photovoltaic generation of power is caused by electromagnetic radiation separating positive and negative charge carriers in absorbing material. If an electric field is present, these charges can produce a current for use in an external circuit. A solar cell is nothing but a PN junction diode under light illumination. Sun light can be converted into electricity due to photovoltaic effect. Sun light composed of photons (packets of energy). These photons contain various amount of energy corresponding to different wave lengths of light. When photons strike a solar cell they may be reflected or absorbed or pass through the cell. 3 How Do Silicon Solar Cells Work? The most common PV cells are made of single-crystal silicon. An atom of silicon in the crystal lattice absorbs a photon of the incident solar radiation, and if the energy of the photon is high enough, an electron from the outer shell of the atom is freed. This process thus results in the formation of a hole–electron pair, a hole where there is a lack of an electron and an electron out in the crystal structure. 4 Incident solar radiation can be considered as discrete ‘‘energy units’’ called photons. The energy of a photon is a function of the frequency of the radiation (and thus also of the wavelength) and is given in terms of Planck’s constant h by The most energetic photons are those of high frequency and short wavelength. -
Design, Construction and Performance Study of a Solar
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Periodica Polytechnica (Budapest University of Technology and Economics) PP Periodica Polytechnica Design, Construction and Mechanical Engineering Performance Study of a Solar Assisted Tri-cycle 61(3), pp. 234-241, 2017 https://doi.org/10.3311/PPme.10240 Mahadi Hasan Masud1*, Md. Shamim Akhter1, Sadequl Islam1, Creative Commons Attribution b Abdul Mojid Parvej1, Sazzad Mahmud1 research article Received 04 November 2016; accepted after revision 06 March 2017 Abstract 1 Introduction Solar energy is one of the important sources of renewable From the beginning of the industrial revolution, the rate of energy which can be a feasible alternative to fossil fuels. There energy consumption has increased at an alarming rate due to are many works has been done in order to incorporate solar the synergistic effect of individual energy consumption and energy to everyday transportation including tricycle. However, population. This situation can be overcome with mass produc- most of the tricycle develops are expensive and not feasible tion of the photovoltaic (PV) cell which uses solar energy with for developing countries. In this study, a cheaper solar tricycle low fluctuation converted into electrical energy. The electrical with more capability of utilizing the solar energy is designed energy is obtained by converting the Sun’s energy by the pho- for developing countries. The main content of the tricycle is tovoltaic (PV) cell. By using this method, solar vehicles can Solar PV panel, Brushless PMDC motor, controller, and bat- be run which reduce the pressure on the energy sector as well tery. -
FSGP 2019 Event Program
The Innovators Educational Foundation (IEF) is a 501c3 non-profit organization that organizes the collegiate US solar car events. In 2019, IEF is celebrating its 10 year anniversary of organizing the Formula Sun Grand Prix and the American Solar Challenge, continuing these events that began with Sunrayce in 1990. IEF is made up of a core group of dedicated volunteers, mostly former competitors, that know first-hand the value of the solar car project and these “brainsport” events to both the educational experience and public awareness of the capabilities of solar power. Thank you to all of the teams, sponsors, and volunteers that have made it possible to continue these solar car events for the past decade! With your continued Experiential Learning support, these events will continue to Promoting STEM and hands-on problem challenge the next generation of solving, the Formula Sun Grand Prix is a engineers and business leaders. collegiate student design competition that @asc_solarracing explores the possibilities of solar energy. @americansolarchallenge Contact us to get involved! University teams design and build a solar /americansolarchallenge [email protected] powered vehicle for either the single-occupant PO Box 2368, Rolla, MO 65402 or multi-occupant vehicle class. Scrutineering | July 1-3 Before the solar cars are allowed on the track, each vehicle must complete a series of inspections, including mechanical and electrical systems, body and sizing, and dynamic testing. This detailed process Thank you to our sponsors checks for safety concerns and regulation compliance. for their generous support! Contact us to get involved Solar Raycing | July 4-6 with future events or make Teams have 24 hours of drive time spread across 3 days a donation at any time (8 hours per day) to complete as many laps as possible on the through our website via track, using only the power of the sun and any stored energy in PayPal. -
The East African Regional Handbook on Solar Taxation the East African Regional Handbook on Solar Taxation Iii
The East African Regional Handbook on Supported by Developed by SOLAR TAXATION OCT. 2020 The East African region has renewable energy associations (NREAs) in all countries; namely; BUREA-Burundi, EPD – Rwanda, KEREA About us – Kenya, TAREA-Tanzania and UNREEEA/USEA-Uganda. NREAs in EAC have played a critical role in advocating for a conducive policy environment in their various countries. Over the last decade, several efforts have been put in place to promote the use of off-grid energy as an affordable and inclusive energy source; these efforts include policy decisions on rural electrification, tax exemptions on solar equipment, improvement of quality standards, subsidy programmes and awareness raising of renewable energy as a more energy efficient alternative. This handbook is a continuation of these efforts and is a result of a coalition composed of three associations, namely, UNREEEA (Uganda National Renewable Energy and Energy Efficiency Alliance, Uganda Solar Energy Association (USEA), and Kenya Renewable Energy Association (KEREA). We share a common vision of achieving a dynamic and well-established Renewable sector that contributes to sustainable development in East Africa. This handbook is made possible by the generous support of the people of the United Kingdom through UKAID. Its development has been supported by GOGLA and TEA. The contents are the responsibility of KEREA, USEA and do not necessarily reflect the views of UKAID or the UK government. USEA, KEREA, UNREEEA, accept no responsibility for any liability arising from -
Analysis and Optimization of Electrical Systems in a Solar Car with Applications to Gato Del Sol Iii-Iv
University of Kentucky UKnowledge University of Kentucky Master's Theses Graduate School 2010 ANALYSIS AND OPTIMIZATION OF ELECTRICAL SYSTEMS IN A SOLAR CAR WITH APPLICATIONS TO GATO DEL SOL III-IV Krishna Venkatesh Prayaga University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Prayaga, Krishna Venkatesh, "ANALYSIS AND OPTIMIZATION OF ELECTRICAL SYSTEMS IN A SOLAR CAR WITH APPLICATIONS TO GATO DEL SOL III-IV" (2010). University of Kentucky Master's Theses. 29. https://uknowledge.uky.edu/gradschool_theses/29 This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF THESIS ANALYSIS AND OPTIMIZATION OF ELECTRICAL SYSTEMS IN A SOLAR CAR WITH APPLICATIONS TO GATO DEL SOL III-IV Gato del Sol III, was powered by a solar array of 480 Silicon mono-crystalline photovoltaic cells. Maximum Power Point trackers efficiently made use of these cells and tracked the optimal load. The cells were mounted on a fiber glass and foam core composite shell. The shell rides on a lightweight aluminum space frame chassis, which is powered by a 95% efficient brushless DC motor. Gato del Sol IV was the University of Kentucky Solar Car Team’s (UKSCT) entry into the American Solar Car Challenge (ASC) 2010 event. The car makes use of 310 high density lithium-polymer batteries to account for a 5 kWh pack, enough to travel over 75 miles at 40 mph without power generated by the array. -
Vehicle-Integrated Photovoltaics (VIPV) As a Core Source for Electricity in Road Transport
VIPV POSITION PAPER Vehicle-integrated Photovoltaics (VIPV) as a core source for electricity in road transport www.etip-pv.eu Table of Contents 1. POLITICAL CONTEXT . 5 2. INTRODUCTION TO THE VIPV MARKET. 6 Edited by 2.1. Passenger Cars . 7 Kaining Ding, Forschungszentrum Jülich GmbH 2.2. Light- and Heavy-Duty Vehicles . 9 Written by 3. THE MOTIVATION FOR VIPV. 11 Olga Kanz, Forschungszentrum Jülich GmbH 3.1. General Benefits of VIPV. 11 Bianca Lim, Institut für Solarenergieforschung GmbH 3.2 VIPV Energy Flow Model . 13 3.3 Environmental Benefits in Comparison to the German Grid Mix. 14 Acknowledgement for Input by 4. REQUIREMENTS AND TO-DOS FOR VIPV . 16 Martin Heinrich (FhG-ISE) 4.1. Important Selection Criteria for VIPV . 16 Bonna Newman (TNO) 4.2 Technological Requirements of the Integration Process . 17 Eduardo Román (TECNALIA) 4.3 To-Dos for R&D . 18 Uwe Rau (JÜLICH) 4.4 Strategic Targets. 19 Rutger Schlatmann (HZB) 5. CONCLUSIONS. 20 Layout and Printing Secretariat of the European Technology and Innovation Platform for Photovoltaics Tel: +49-89-720 12 722 Fax: +49-89-720 12 791 [email protected] Disclaimer The opinions expressed in this document are the sole responsibility of the European Photovoltaic Technology and Innovation Platform and do not necessarily represent the official position of the European Commission. “The project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 825669” 2 3 SCOPE AND MISSION POLITICAL CONTEXT SCOPE AND MISSION 1. POLITICAL CONTEXT The growing awareness of the global need for sustainable mobility empowers the application of new technological innovations to the road transport sector. -
2020 Regulations
2020 Regulations Revision D June 30, 2020 Organized by Innovators Educational Foundation RELEASE D FSGP 2020 2 of 72 Contents SECTION 1 – ADMINISTRATION.......................................................................... 8 1. Purpose .......................................................................................................... 9 1.1 Fundamental Vision ............................................................................................................................... 9 1.2 Missions ................................................................................................................................................ 9 2. Administration ............................................................................................... 9 2.1 Formula Sun Grand Prix Organizers....................................................................................................... 9 2.2 Headquarters ......................................................................................................................................... 9 2.3 Officials.................................................................................................................................................. 9 2.3.A Event Director ................................................................................................................................. 9 2.3.B Regulations Manager ...................................................................................................................... 9 2.3.C Chief Inspector -
Histoire Des Véhicules Et Des Aventures Solaires
Histoire des véhicules et des aventures solaires Un récit des origines et des développements des véhicules terrestres, nautiques et aéronautiques propulsés à l’énergie solaire Auteure : Raphaëlle JAVET Rapport réalisé en 2016 par la Fondation SolarPlanet, en partenariat avec l’ADNV et De Witt. 2 Sommaire Prémices ................................................................................................................................. 3 Le moteur électrique ....................................................................................................................... 3 L’énergie photovoltaïque ................................................................................................................. 4 I) Les véhicules solaires terrestres ........................................................................................... 6 Les débuts de la mobilité solaire ...................................................................................................... 6 Les premiers exploits et un intérêt accru pour les véhicules solaires ................................................ 8 Courses et records de vitesse : un engouement mondial ................................................................ 10 Les premières tentatives de conversion à l’usage quotidien ........................................................... 12 Depuis l’an 2000 : tentatives de renouveau ................................................................................... 13 Développements actuels : quelques projets prometteurs .............................................................