Design, Construction and Performance Study of a Solar
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A HISTORY of the SOLAR CELL, in PATENTS Karthik Kumar, Ph.D
A HISTORY OF THE SOLAR CELL, IN PATENTS Karthik Kumar, Ph.D., Finnegan, Henderson, Farabow, Garrett & Dunner, LLP 901 New York Avenue, N.W., Washington, D.C. 20001 [email protected] Member, Artificial Intelligence & Other Emerging Technologies Committee Intellectual Property Owners Association 1501 M St. N.W., Suite 1150, Washington, D.C. 20005 [email protected] Introduction Solar cell technology has seen exponential growth over the last two decades. It has evolved from serving small-scale niche applications to being considered a mainstream energy source. For example, worldwide solar photovoltaic capacity had grown to 512 Gigawatts by the end of 2018 (representing 27% growth from 2017)1. In 1956, solar panels cost roughly $300 per watt. By 1975, that figure had dropped to just over $100 a watt. Today, a solar panel can cost as little as $0.50 a watt. Several countries are edging towards double-digit contribution to their electricity needs from solar technology, a trend that by most accounts is forecast to continue into the foreseeable future. This exponential adoption has been made possible by 180 years of continuing technological innovation in this industry. Aided by patent protection, this centuries-long technological innovation has steadily improved solar energy conversion efficiency while lowering volume production costs. That history is also littered with the names of some of the foremost scientists and engineers to walk this earth. In this article, we review that history, as captured in the patents filed contemporaneously with the technological innovation. 1 Wiki-Solar, Utility-scale solar in 2018: Still growing thanks to Australia and other later entrants, https://wiki-solar.org/library/public/190314_Utility-scale_solar_in_2018.pdf (Mar. -
Digital Twin Modeling of a Solar Car Based on the Hybrid Model Method with Data-Driven and Mechanistic
applied sciences Article Digital Twin Modeling of a Solar Car Based on the Hybrid Model Method with Data-Driven and Mechanistic Luchang Bai, Youtong Zhang *, Hongqian Wei , Junbo Dong and Wei Tian Laboratory of Low Emission Vehicle, Beijing Institute of Technology, Beijing 100081, China; [email protected] (L.B.); [email protected] (H.W.); [email protected] (J.D.); [email protected] (W.T.) * Correspondence: [email protected] Featured Application: This technology is expected to be used in energy management of new energy vehicles. Abstract: Solar cars are energy-sensitive and affected by many factors. In order to achieve optimal energy management of solar cars, it is necessary to comprehensively characterize the energy flow of vehicular components. To model these components which are hard to formulate, this study stimulates a solar car with the digital twin (DT) technology to accurately characterize energy. Based on the hybrid modeling approach combining mechanistic and data-driven technologies, the DT model of a solar car is established with a designed cloud platform server based on Transmission Control Protocol (TCP) to realize data interaction between physical and virtual entities. The DT model is further modified by the offline optimization data of drive motors, and the energy consumption is evaluated with the DT system in the real-world experiment. Specifically, the energy consumption Citation: Bai, L.; Zhang, Y.; Wei, H.; error between the experiment and simulation is less than 5.17%, which suggests that the established Dong, J.; Tian, W. Digital Twin DT model can accurately stimulate energy consumption. Generally, this study lays the foundation Modeling of a Solar Car Based on the for subsequent performance optimization research. -
Solar Decathlon 2009 Hours
The National Mall Washington, D.C. Oct. 9–13 and Oct. 15–18, 2009 www.solardecathlon.org 2009 U.S. Capitol Workshops Smithsonian Castle Natural History Museum University of Wisconsin-Milwaukee University of Louisiana at Lafayette Team Missouri (Missouri University of Science & Technology, The University of Arizona University of Missouri) Team Alberta (University of Calgary, SAIT Rice University Polytechnic, Alberta College of Art + Design, Team Ontario/BC (University of Mount Royal College) Waterloo, Ryerson University, Simon Iowa State University Fraser University) Penn State Team Spain (Universidad Politécnica de Madrid) 12th Street Metro Tent 12th Street University of Kentucky The Ohio State University Team Boston (Boston Architectural Team Germany (Technische Universität College, Tufts University) Darmstadt) Virginia Tech Cornell University Universidad de Puerto Rico DECATHLETE WAY University of Minnesota Team California (Santa Clara University, University of Illinois at Urbana-Champaign California College of the Arts) American History Museum Department of Agriculture Main Tent Information 14th Street Smithsonian Metro Station Restrooms Washington Picnic Area Washington, D.C. Monument First Aid SOLAR DECATHLON 2009 HOURS Oct. 9–13 and Oct. 15–18 11 a.m.–3 p.m., Weekdays 10 a.m.–5 p.m., Weekends Houses are closed Oct. 14 for competition purposes. Message From the Secretary of Energy Table of Contents Welcome to Solar Decathlon 2009.............................................2 Exhibits and Events .....................................................................3 -
Thin Film Silicon Solar Cells: Advanced Processing and Characterization - 26 101191 / 151399
April 2008 Photovoltaic Programme Edition 2008 Summary Report, Project List, Annual Project Reports 2007 (Abstracts) elaborated by: NET Nowak Energy & Technology Ltd. Cover: Zero-Energy Building: Support Office of Marché International, Kemptthal / ZH 44,6 kWp Solar Power System with Thin Film Solar Cells (Photos: Front cover: SunTechnics Fabrisolar, Back cover: Büro für Architektur Beat Kämpfen, Photo Willi Kracher) Prepared by: NET Nowak Energy & Technology Ltd. Waldweg 8, CH - 1717 St. Ursen (Switzerland) Phone: +41 (0) 26 494 00 30, Fax. +41 (0) 26 494 00 34, [email protected] on behalf of: Swiss Federal Office of Energy SFOE Mühlestrasse 4, CH - 3063 Ittigen postal addresse: CH- 3003 Bern Phone: 031 322 56 11, Fax. 031 323 25 00 [email protected] www.bfe.admin.ch Photovoltaic Programme Edition 2008 Summary Report, Project List, Annual Project Reports 2007 (Abstracts) Contents S. Nowak Summary Report Edition 2008 Page 5 Annual Project Reports 2007 (Abstracts) Page C. Ballif, J. Bailat, F.J. Haug, S. Faÿ, R. Tscharner Thin film silicon solar cells: advanced processing and characterization - 26 101191 / 151399 F.J. Haug, C. Ballif Flexible photovoltaics: next generation high efficiency and low cost thin 27 film silicon modules - CTI 8809 S. Olibet, C. Ballif High efficiency thin-film passivated silicon solar cells and modules - 28 THIFIC: Thin film on crystalline Si - Axpo Naturstrom Fonds 0703 C. Ballif, F. J. Haug, V. Terrazzoni-Daudrix FLEXCELLENCE: Roll-to-roll technology for the production of high efficiency 29 low cost thin film silicon photovoltaic modules - SES-CT-019948 N. Wyrsch, C. Ballif ATHLET: Advanced Thin Film Technologies for Cost Effective Photovoltaics - 30 IP 019670 A. -
Letting in the Light: How Solar Photovoltaics Will Revolutionise The
LETTING IN THE LIGHT HOW SOLAR PHOTOVOLTAICS WILL REVOLUTIONISE THE ELECTRICITY SYSTEM Copyright © IRENA 2016 ISBN 978-92-95111-95-0 (Print), ISBN 978-92-95111-96-7 (PDF) Unless otherwise stated, this publication and material herein are the property of the International Renewable Energy Agency (IRENA) and are subject to copyright by IRENA. Material in this publication may be freely used, shared, copied, reproduced, printed and/or stored, provided that all such material is clearly attributed to IRENA and bears a notation of copyright (© IRENA) with the year of copyright. Material contained in this publication attributed to third parties may be subject to third-party copyright and separate terms of use and restrictions, including restrictions in relation to any commercial use. This publication should be cited as: IRENA (2016), ‘Letting in the Light: How solar PV will revolutionise the electricity system,’ Abu Dhabi. About IRENA The International Renewable Energy Agency (IRENA) is an intergovernmental organisation that supports countries in their transition to a sustainable energy future and serves as the principal platform for international co-operation, a centre of excellence, and a repository of policy, technology, resource and financial knowledge on renewable energy. IRENA promotes the widespread adoption and sustainable use of all forms of renewable energy, including bioenergy, geothermal, hydropower, ocean, solar and wind energy, in the pursuit of sustainable development, energy access, energy security and low-carbon economic growth and prosperity. www.irena.org Acknowledgements IRENA is grateful for the valuable contributions of Mark Turner in the preparation of this study. This report benefited from the reviews and comments of numerous experts, including Morgan Bazilian (World Bank), John Smirnow (Global Solar Council), Tomas Kåberger (Renewable Energy Institute), Paddy Padmanathan (ACWA Power), Linus Mofor (UNECA), DK Khare (Ministry of New and Renewable Energy, India), Maurice Silva (Ministry of Energy, Chile), Eicke Weber (Fraunhofer ISE). -
Optimization of Thin-Film Solar Cells for Lunar Surface Operations
Optimization of Thin-Film Solar Cells for Lunar Surface Operations Shawn Breeding∗ and William E. Johnson† NASA Marshall Space Flight Center, AL, 35812 Thin-film solar cells have been in production for decades, but technology has only recently advanced enough to allow for comparable efficiencies to traditional rigid cells. Some of the benefits of thin-films, such as lighter weight and being foldable, are particularly advantageous to space applications since mass and volume are key considerations of any flight project. Using these thin-film cells in space, however, is outside of their ground-based design criteria. This requires special care to be taken in designing the power generation system of a spacecraft around a thin-film solar cell, particularly in regards to thermal management. Without the diffusion of an atmosphere to mitigate solar load, the temperature of the panels can rapidly exceed their design specification. In this paper a design solution is presented that allows for thin-film solar cells to be used in a robotic lunar lander. Due to the low thermal mass and in-plane conductivity of thin films, it is difficult to remove waste heat by any other method than radiation. On the lunar surface this means angling the arrays to increase their view factor to space, which has the negative consequence of decreasing their power generation. An optimization was developed to balance the heat rejection and power generation of the cells, using constraints on the maximum cell temperature and minimum spacecraft power requirements. The resulting solar panel angle was then used as an input to the Thermal Desktop model to verify the final panel temperatures. -
Integrated Solar Lighting for Pedestrian Crosswalk Visibility
Integrated Solar Lighting for Pedestrian Crosswalk Visibility A report written for the Florida Department of Transportation Authored by Jonathan Scheffe University of Florida Department of Mechanical and Aerospace Engineering Gainesville, FL 32611 October 31st, 2016 Task Order # 977-62 Master Agreement Order # BDV31 PI: Jonathan Scheffe PM: Ronald Chin Co-PM: Trey Tillander III 1 Contents Abstract ........................................................................................................................................... 3 Background and Motivation ........................................................................................................... 4 Description of Relevant Commercial Technologies ....................................................................... 5 Solar Roadways® ......................................................................................................................... 5 Structural Analysis .................................................................................................................. 7 Wattway ...................................................................................................................................... 8 SolaRoad ..................................................................................................................................... 9 Hejimans - Studio Roosegaarde ................................................................................................ 11 Other Possible Solutions .......................................................................................................... -
A New Direction for Renewable Energy
A New Direction For Renewable Energy . Conserving the worlds carbon . At our current usage of carbon their will be no carbon left on this planet in approx 7000 years time. Carbon is the building block of life. This is why we need renewable energy & electric propulsion. AUSI, Australien Universal Space Industries have developed the latest state of the art robotic systems for constructing renewable energy infrastructure. Robotic Renewable Energy Infrastructure Construction . Evolutionary swarm robotics basics . In days gone by & still in these days & hopefully for many years into the future the demoscene has stamped its way into computer immortality. Using complex discrete mathamatics computer programmers are able to push the limits of computational power & produce awe inspiring display hacks. http://www.demoscene.tv/ What started out as abit of tinkering with computers by enthusiasts & hobbyists resulted in attaining government & corporate sponsorship, however has government & corporate sponsorship reduced the creativity of the demoscene ? The demoscene was around before youtube or googlevid & even the internet. What makes the Demoscene stand out from the rest is that computer generated music was blended with computer generated graphics. Three types of ppl make a demo work. [1] coders [2] graphicians [3] musicians And these days many old demo group groupies now work with mathematicians, data miners, scientists & engineers to create EEA Exploratory Engineering Applications . The Magical Seven These Days Comprise Of . [1] coders [2] graphicians [3] musicians [4] mathematicians [5] data miners [6] scientists [7] engineers EEA Exploratory Engineering Applications are still esoteric but do provide humanity a possible alternative reality apart from the traditional highway to hell. -
ROBERT C.N. PILAWA-PODGURSKI Assistant Professor, Department of Electrical and Computer Engineering University of Illinois Urbana-Champaign 4042 ECE Building • 306 N
Robert Pilawa-Podgurski Curriculum Vitae, October 2016 1 of 18 ROBERT C.N. PILAWA-PODGURSKI Assistant Professor, Department of Electrical and Computer Engineering University of Illinois Urbana-Champaign 4042 ECE Building • 306 N. Wright Street • Urbana, IL 61801 Tel. +1 (217) 244-0181 • E-mail: [email protected] • Web: http://pilawa.ece.illinois.edu EDUCATION Massachusetts Institute of Technology Electrical Engineering Ph.D. 2012 Massachusetts Institute of Technology Electrical Engineering and Computer Science M.Eng. 2007 Massachusetts Institute of Technology Electrical Engineering and Computer Science B.S. 2005 Massachusetts Institute of Technology Physics B.S. 2005 ACADEMIC POSITIONS 2012 - present Assistant Professor Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign, Urbana, IL 2012 – present Affiliate Faculty Information Trust Institute, University of Illinois at Urbana-Champaign, Urbana, IL 2016 (summer) Visiting Professor KTH – Royal Institute of Technology, Stockholm, Sweden 2007 – 2011 Research Assistant Laboratory for Electromagnetic and Electronic Systems, Research Laboratory of Electronics, MIT, Cambridge, MA SELECTED HONORS AND AWARDS 2016 IEEE Energy Conversion Congress & Exposition (ECCE) Best Paper Award 2016 Top Innovation Award, IEEE International Future Energy Challenge (Advisor) 2016 UIUC List of Teachers Ranked as Excellent by Their Students (with distinction of ‘outstanding’) – ECE 598RPP Advanced Power Electronics 2016 IEEE Workshop on Control and Modeling for Power Electronics -
Next-Generation Solar Power Dutch Technology for the Solar Energy Revolution Next-Generation High-Tech Excellence
Next-generation solar power Dutch technology for the solar energy revolution Next-generation high-tech excellence Harnessing the potential of solar energy calls for creativity and innovative strength. The Dutch solar sector has been enabling breakthrough innovations for decades, thanks in part to close collaboration with world-class research institutes and by fostering the next generation of high-tech talent. For example, Dutch student teams have won a record ten titles in the World Solar Challenge, a biennial solar-powered car race in Australia, with students from Delft University of Technology claiming the title seven out of nine times. 2 Solar Energy Guide 3 Index The sunny side of the Netherlands 6 Breeding ground of PV technology 10 Integrating solar into our environment 16 Solar in the built environment 18 Solar landscapes 20 Solar infrastructure 22 Floating solar 24 Five benefits of doing business with the Dutch 26 Dutch solar expertise in brief 28 Company profiles 30 4 Solar Energy Guide The Netherlands, a true solar country If there’s one thing the Dutch are remarkably good at, it’s making the most of their natural circumstances. That explains how a country with a relatively modest amount of sunshine has built a global reputation as a leading innovator in solar energy. For decades, Dutch companies and research institutes have been among the international leaders in the worldwide solar PV sector. Not only with high-level fundamental research, but also with converting this research into practical applications. Both by designing and refining industrial production processes, and by developing and commercialising innovative solutions that enable the integration of solar PV into a product or environment with another function. -
Supersonic Speed Also in This Issue: a Model for Sustainability Crystal Orientation Mapping Nustar Looks at Neutron Stars About the Cover
Lawrence Livermore National Laboratory December 2014 A Weapon Test at Supersonic Speed Also in this issue: A Model for Sustainability Crystal Orientation Mapping NuSTAR Looks at Neutron Stars About the Cover A team of Lawrence Livermore engineers and scientists helped design and develop a new warhead for the U.S. Air Force. This five-year effort culminated in a highly successful sled test on October 23, 2013, at Holloman Air Force Base in New Mexico. The test achieved speeds greater than Mach 3 and assessed how the new warhead responded to simulated flight conditions. The success of the sled test also demonstrated the value of using advanced computational and manufacturing technologies to develop complex conventional munitions for aerospace systems. The artist’s rendering on the cover shows a supersonic conventional weapon as it emerges from its rocket nose cone and prepares to reenter Earth’s atmosphere. (Courtesy of Defense Advanced Research Projects Agency.) Cover design: Tom Reason Tom design: Cover About S&TR At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world. The Laboratory is operated by Lawrence Livermore National Security, LLC (LLNS), for the Department of Energy’s National Nuclear Security Administration. -
Flexible Perovskite Hybrid Solar Cells Through Organic
FLEXIBLE PEROVSKITE HYBRID SOLAR CELLS THROUGH ORGANIC SALT TREATED CONDUCTING POLYMER AS THE TRANSPARENT ELECTRODE A Thesis Presented to The Department of Polymer Engineering of the University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Zixu Huang April 2018 i FLEXIBLE PEROVSKITE HYBRID SOLAR CELLS THROUGH ORGANIC SALT TREATED CONDUCTING POLYMER AS THE TRANSPARENT ELECTRODE Zixu Huang Thesis Approved: Accepted: _________________________ ________________________ Advisor Dean of College Dr. Xiong Gong Dr. Eric J. Amis _________________________ _________________________ Faculty Reader Dean of the Graduate School Dr. Ruel McKenzie Dr. Chand K. Midha _________________________ _________________________ Department Chair Date Dr. Sadhan C. Jana ii FLEXIBLE PEROVSKITE HYBRID SOLAR CELLS THROUGH ORGANIC SALT TREATED CONDUCTING POLYMER AS THE TRANSPARENT ELECTRODE Zixu Huang Thesis Approved: Accepted: _________________________ _________________________ Advisor Department Chair Dr. Xiong Gong Dr. Sadhan C. Jana _________________________ _________________________ Committee Member Dean of College Dr. Ruel McKenzie Dr. Eric J. Amis _________________________ _________________________ Committee Member Dean of the Graduate School Dr. Jiahua Zhu Dr. Chand K. Midha _________________________ Date iii ABSTRACT Organic-inorganic hybrid perovskite solar cells (PSCs) have been widely researched due to its low fabrication cost and impressive power conversion efficiency (PCE) in the past 9 years. However, most of the PSCs