Solar and Fuel Cells Technology Fundamentals & Design
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Project Final Report
Project Final Report Grant Agreement Number: FP7 - 285098 Project acronym: SOLAR-JET Project title: Solar chemical demonstration and Optimization for Long-term Availability of Renewable JET fuel Funding Scheme: Collaborative Project (Small or medium-scale focused research project) Name, title and organisation of the scientific representative of the project's coordinator: Dr Andreas Sizmann, Bauhaus Luftfahrt e.V.(BHL), Willy-Messerschmitt-Straße 1, 85521 Ottobrun, Germany Tel: +49 89 307 4849-38 Fax: +49 89 307 4849-20 E-mail: [email protected] Table of Contents 1. Final Publishable Summary Report ................................................................................................... 6 1.1 Executive Summary ..................................................................................................................6 1.2 Context and Objectives .............................................................................................................7 1.3 Main Results / Foreground .................................................................................................... 11 1.4 Potential Impact ..................................................................................................................... 34 1.5 SOLAR-JET Consortium ........................................................................................................ 39 2. Bibliography ...................................................................................................................................... -
Digital Twin Modeling of a Solar Car Based on the Hybrid Model Method with Data-Driven and Mechanistic
applied sciences Article Digital Twin Modeling of a Solar Car Based on the Hybrid Model Method with Data-Driven and Mechanistic Luchang Bai, Youtong Zhang *, Hongqian Wei , Junbo Dong and Wei Tian Laboratory of Low Emission Vehicle, Beijing Institute of Technology, Beijing 100081, China; [email protected] (L.B.); [email protected] (H.W.); [email protected] (J.D.); [email protected] (W.T.) * Correspondence: [email protected] Featured Application: This technology is expected to be used in energy management of new energy vehicles. Abstract: Solar cars are energy-sensitive and affected by many factors. In order to achieve optimal energy management of solar cars, it is necessary to comprehensively characterize the energy flow of vehicular components. To model these components which are hard to formulate, this study stimulates a solar car with the digital twin (DT) technology to accurately characterize energy. Based on the hybrid modeling approach combining mechanistic and data-driven technologies, the DT model of a solar car is established with a designed cloud platform server based on Transmission Control Protocol (TCP) to realize data interaction between physical and virtual entities. The DT model is further modified by the offline optimization data of drive motors, and the energy consumption is evaluated with the DT system in the real-world experiment. Specifically, the energy consumption Citation: Bai, L.; Zhang, Y.; Wei, H.; error between the experiment and simulation is less than 5.17%, which suggests that the established Dong, J.; Tian, W. Digital Twin DT model can accurately stimulate energy consumption. Generally, this study lays the foundation Modeling of a Solar Car Based on the for subsequent performance optimization research. -
Liquid Solar Fuels—Fundamental Science to Enable Solar Fuels Beyond Hydrogen
Liquid Solar Fuels—Fundamental Science to Enable Solar Fuels Beyond Hydrogen Sunlight is Earth’s most abundant energy resource. Remarkable advances in photovoltaic technologies are allowing society to better capitalize on this resource for electricity generation. Harnessing the power of the sun to produce energy-rich chemicals directly from abundant feedstocks such as water, carbon dioxide (CO2), and nitrogen (N2) promises a plentiful supply of sustainable, transportable, and storable solar fuels to meet future US energy needs. Furthermore, solar fuels can provide pathways for efficient chemical energy storage to complement existing electrical energy storage. Solar fuels can also produce diverse chemicals, products, and materials with low environmental impact. Solar fuels generation—often termed artificial photosynthesis—involves the direct conversion of solar energy to chemical energy using man-made materials and chemical processes. Significant progress has been made to boost the efficiency of solar-driven hydrogen production. Much less progress has been made in the area of liquid solar fuel, an approach that requires chemically transforming CO2 and other small molecules into promising fuel targets. Hydrocarbons and/or oxygenates produced from CO2 conversion will be compatible with existing fuels infrastructure. They could also be valuable for production of commodity chemicals and materials. The generation of ammonia and other nitrogen-containing species, which can be used as fuels, fertilizers, and other commodities, presents an opportunity -
Thin Film Silicon Solar Cells: Advanced Processing and Characterization - 26 101191 / 151399
April 2008 Photovoltaic Programme Edition 2008 Summary Report, Project List, Annual Project Reports 2007 (Abstracts) elaborated by: NET Nowak Energy & Technology Ltd. Cover: Zero-Energy Building: Support Office of Marché International, Kemptthal / ZH 44,6 kWp Solar Power System with Thin Film Solar Cells (Photos: Front cover: SunTechnics Fabrisolar, Back cover: Büro für Architektur Beat Kämpfen, Photo Willi Kracher) Prepared by: NET Nowak Energy & Technology Ltd. Waldweg 8, CH - 1717 St. Ursen (Switzerland) Phone: +41 (0) 26 494 00 30, Fax. +41 (0) 26 494 00 34, [email protected] on behalf of: Swiss Federal Office of Energy SFOE Mühlestrasse 4, CH - 3063 Ittigen postal addresse: CH- 3003 Bern Phone: 031 322 56 11, Fax. 031 323 25 00 [email protected] www.bfe.admin.ch Photovoltaic Programme Edition 2008 Summary Report, Project List, Annual Project Reports 2007 (Abstracts) Contents S. Nowak Summary Report Edition 2008 Page 5 Annual Project Reports 2007 (Abstracts) Page C. Ballif, J. Bailat, F.J. Haug, S. Faÿ, R. Tscharner Thin film silicon solar cells: advanced processing and characterization - 26 101191 / 151399 F.J. Haug, C. Ballif Flexible photovoltaics: next generation high efficiency and low cost thin 27 film silicon modules - CTI 8809 S. Olibet, C. Ballif High efficiency thin-film passivated silicon solar cells and modules - 28 THIFIC: Thin film on crystalline Si - Axpo Naturstrom Fonds 0703 C. Ballif, F. J. Haug, V. Terrazzoni-Daudrix FLEXCELLENCE: Roll-to-roll technology for the production of high efficiency 29 low cost thin film silicon photovoltaic modules - SES-CT-019948 N. Wyrsch, C. Ballif ATHLET: Advanced Thin Film Technologies for Cost Effective Photovoltaics - 30 IP 019670 A. -
Solar Photochemistry: Twenty Years of Progress ,What's Been
January 1995 • NRELffP-433-7209 Solar Ph -Twenty Years of Progress, Been Accomplished, an Where Does It Lead? Daniel M. Blake .r1t••�=!.• ·-· • National Renewable Energy Laboratory 1617 Cole Boulevard Golden, CO 80401-3393 A national laboratory of the U.S. Department of Energy Managed by the Midwest Research Institute for the U.S. Department of Energy Under Contract No. DE-AC 36-83CH10093 NREL!TP-433-7209 • UC Category: 1400 • DE95004007 &!i!F'' of Progress Whal1�s Been Does It Daniel M. Blake National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 A national laboratory of the U.S. Department of Energy Managed by Midwest Research Institute for the Department of Energy under contract No. DE-AC36-83CH10093 Prepared under Subcontract No. SI41.3040 January 1995 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. -
Hydrogen Production from Water on Heterogeneous Photocatalysts
May 26, 2011; Renaissance Washington DC The Science for Our Nation’s Energy Future: EFRC Summit & Forum Basic solar energy research in Japan Kazunari Domen Chemical System Engineering The University of Tokyo Chemical System Engineering The University of Tokyo Government Energy Technology R&D Budgets 2395 Million US$ 846 340 12000 1272 1228 4202 0 1457 10000 145 165 2762 8000 154 157 Total Other Technologies or Research 10 354 68 457 Other Power and Storage Technologies 246 Hydrogen and Fuel Cells 6000 200 545 Nuclear Fission and Fusion 45 4000 Renewable Energy Sources Fossil Fuels Energy Efficiency 2000 0 Germany Japan US IEA (International Energy Agency) Energy Technology R&D Statistics 2009 Ratios of Energy R&D Budgets 100% 90% 80% Total Other Technologies or Research 70% Other Power and Storage Technologies 60% Hydrogen and Fuel Cells Nuclear Fission and Fusion 50% Renewable Energy Sources 40% Fossil Fuels 30% Energy Efficiency 20% 10% 0% Germany Japan US IEA (International Energy Agency) Energy Technology R&D Statistics 2009 2011 Great East Japan Earthquake and Tsunami Attack on Fukushima Daiichi Nuclear Power Plant 11 March 11 March 11 March 11 March Copyright: The Yomiuri Shinbun, The Asahi Shinbun Co. Nuclear Meltdown at Fukushima Daiichi Nuclear Power Plant 12 March, at 15:30 12 March, before 15:30 15 March 15 March Copyright: The Yomiuri Shinbun, The Asahi Shinbun Co. 24 March Production of PVs in Japan Single-Si Poly-Si Japan Photovoltaic Energy Association 104-kW a-Si Others http://www.jpea.gr.jp/04doc01.html Governmental Financial -
A New Direction for Renewable Energy
A New Direction For Renewable Energy . Conserving the worlds carbon . At our current usage of carbon their will be no carbon left on this planet in approx 7000 years time. Carbon is the building block of life. This is why we need renewable energy & electric propulsion. AUSI, Australien Universal Space Industries have developed the latest state of the art robotic systems for constructing renewable energy infrastructure. Robotic Renewable Energy Infrastructure Construction . Evolutionary swarm robotics basics . In days gone by & still in these days & hopefully for many years into the future the demoscene has stamped its way into computer immortality. Using complex discrete mathamatics computer programmers are able to push the limits of computational power & produce awe inspiring display hacks. http://www.demoscene.tv/ What started out as abit of tinkering with computers by enthusiasts & hobbyists resulted in attaining government & corporate sponsorship, however has government & corporate sponsorship reduced the creativity of the demoscene ? The demoscene was around before youtube or googlevid & even the internet. What makes the Demoscene stand out from the rest is that computer generated music was blended with computer generated graphics. Three types of ppl make a demo work. [1] coders [2] graphicians [3] musicians And these days many old demo group groupies now work with mathematicians, data miners, scientists & engineers to create EEA Exploratory Engineering Applications . The Magical Seven These Days Comprise Of . [1] coders [2] graphicians [3] musicians [4] mathematicians [5] data miners [6] scientists [7] engineers EEA Exploratory Engineering Applications are still esoteric but do provide humanity a possible alternative reality apart from the traditional highway to hell. -
A Critical Review on Thermal Energy Storage Materials and Systems for Solar Applications
AIMS Energy, 7(4): 507–526. DOI: 10.3934/energy.2019.4.507 Received: 05 July 2019 Accepted: 14 August 2019 Published: 23 August 2019 http://www.aimspress.com/journal/energy Review A critical review on thermal energy storage materials and systems for solar applications D.M. Reddy Prasad1,*, R. Senthilkumar2, Govindarajan Lakshmanarao2, Saravanakumar Krishnan2 and B.S. Naveen Prasad3 1 Petroleum and Chemical Engineering Programme area, Faculty of Engineering, Universiti Teknologi Brunei, Gadong, Brunei Darussalam 2 Department of Engineering, College of Applied Sciences, Sohar, Sultanate of Oman 3 Sathyabama Institute of Science and Technology, Chennai, India * Correspondence: Email: [email protected]; [email protected]. Abstract: Due to advances in its effectiveness and efficiency, solar thermal energy is becoming increasingly attractive as a renewal energy source. Efficient energy storage, however, is a key limiting factor on its further development and adoption. Storage is essential to smooth out energy fluctuations throughout the day and has a major influence on the cost-effectiveness of solar energy systems. This review paper will present the most recent advances in these storage systems. The manuscript aims to review and discuss the various types of storage that have been developed, specifically thermochemical storage (TCS), latent heat storage (LHS), and sensible heat storage (SHS). Among these storage types, SHS is the most developed and commercialized, whereas TCS is still in development stages. The merits and demerits of each storage types are discussed in this review. Some of the important organic and inorganic phase change materials focused in recent years have been summarized. The key contributions of this review article include summarizing the inherent benefits and weaknesses, properties, and design criteria of materials used for storing solar thermal energy, as well as discussion of recent investigations into the dynamic performance of solar energy storage systems. -
Chemical Reactions: Flying on Sunshine
Chemistry Chemical Reactions: Flying on sunshine Can we make jet fuel from industrialised photosynthesis? In this lesson you will explore this question and others such as: • What molecules are involved in the process of photosynthesis? • How can the similarities between photosynthesis and syngas production be used to make clean, green jet fuel? • What is syngas and how is it made? • What do the public think about alternative energies? So, let’s take off on a jet propelled investigation into the latest and greatest alternative energy investigation! This is a print version of an interactive online lesson. To sign up for the real thing or for curriculum details about the lesson go to www.cosmosforschools.com Introduction: Reactions (P1) The Sun could be the source of a huge amount of the energy we use here on Earth. But usually when we talk about “solar power” we mean the electricity that is generated using solar panels that convert the Sun’s energy to electricity. Now scientists have come up with a brand new way of using sunlight to make fuel to drive aeroplanes and cars, and the inspiration comes from nature. Plants convert sunshine to usable energy in a process called photosynthesis. In a process that is similar, scientists have combined carbon dioxide and water, driving the reaction with concentrated energy from the Sun, to make carbon monoxide and hydrogen, a combination known as syngas, that can be used to make jet fuel. At the moment the process is too expensive to be used by airlines, but the important thing is that it has been proven possible. -
Fenex: Indicative Projects List for Program 2
Prospective FEnEx CRC R&D Projects for Program 2: Hydrogen Export & Value Chains. R&D Project Category Description Optimum method to transport Efficient Hydrogen Storage and A number of potential options present themselves for the export of renewable hydrogen such renewable hydrogen Transport as liquefaction, using a liquid carrier (ammonia, methyl cyclohexane etc.) and in the form of a solid state hydrogen storage material. The research will focus on identifying the most suitable method for the various potential global hydrogen markets and uses. Materials Compatibility and Materials Testing for Export Multiple extensive studies of the compatibility & degradation of key materials under extreme Longevity with Hydrogen Under Applications operating conditions (high pressure H2 gas, cryogenic liquid H2 temperatures, high‐process Extreme Conditions temperatures associated with conversion) including the effects of hydrogen embrittlement on containment materials. The materials will be verified for use under transient design duty cycles through understanding of degradation mechanisms and normal and transient failure modes. Hydrogen Production from Novel Large‐scale Blue Hydrogen Pyrolysis allows for the efficient production of hydrogen from biomass or even coal at large scale Pyrolysis‐Reforming Production with the benefit of carbon sequestration through the return of biochar into the soil to deliver Technologies carbon‐negative hydrogen. Tests will also investigate the ability of mobile pyrolysers to reform bio‐oil to produce hydrogen: mobile -
NREL Information Resources Catalogue 1999
About the Catalogue The National Renewable Energy Laboratory’s (NREL) sixth annual Information Resources Catalogue can help keep you up-to-date on the research, development, opportunities, and National Renewable Energy Laboratory available technologies in energy efficiency and renewable energy. The catalogue includes 1617 Cole Boulevard five main sections with entries grouped according to subject area. Golden, Colorado 80401-3393 Most of the publications in this catalogue—and many others on energy efficiency and NREL is a U.S. Department of Energy National Laboratory renewable energy—can be found on Web sites developed and/or maintained by NREL. The first Operated by Midwest Research Institute • Battelle • Bechtel section provides a listing of these “Internet Resources,” which is especially helpful if you’d like to access information quickly. You can also access the latest information using these resources. NREL/BK-310-27838 March 2000 A good place to start a search for information is on NREL’s Publications Database at www.nrel.gov/publications/. The second section provides concise descriptions of the “General Interest Publications” produced by NREL during its 1999 fiscal year. These publications highlight the advances in energy NOTICE: This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States efficiency and renewable energy technologies, as well as the NREL and U.S. Department of Energy government nor any agency thereof, nor any of their employees, makes (DOE) programs that encourage their advancement and use. any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its The last three sections in the catalogue—“Technical Reports,” “Conference Papers, Journal use would not infringe privately owned rights. -
Pathways to Hydrogen Production Using Solar Heat
Pathways to Hydrogen Production Using Solar Heat Unlocking Solar Thermochemical Potential: Receivers, Reactors, and Heat Exchangers SETO webinar-workshop December 3, 2020 PRESENTED BY Anthony McDaniel([email protected]) Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. 1 SAND2020-13487 PE This presentation does not contain any proprietary, confidential, or otherwise restricted information Thermochemical Water Splitting is a Simple Concept: 2 Heat + H2O In, H2 + O2 Out R. Perret, SAND Report (SAND2011-3622), Sandia National Laboratories, 2011. G. J. Kolb, R. B. Diver, SAND Report (SAND2008-1900), Sandia National Laboratories, 2008. S. Abanades, P. Charvin, G. Flamant, P. Neveu, Energy. 31, 2805–2822 (2006). Direct storage of solar energy in a reduced metal oxide. Hundreds of cycles proposed. ➢Multi-phase, multi-step, thermochemical-electrochemical hybrids Multinational R&D efforts have gravitated towards two-step, non-volatile MOx 3 STC H2 Materials Theme: Oxygen Exchange and Transport Challenge: decrease TR and increase OX Oxygen storage materials with a twist. ➢O-atom “harvested” from H2O not air ➢Bulk phenomena largely govern O-atom exchange with environment ➢Understanding thermodynamics, kinetics, transport, gas-solid interactions, solid-solid interactions is important Material subject to extreme environments. ➢Redox cycling on the order of seconds ➢Large thermal stress per cycle o o o • 800 C< T <1500 C; ∆TRATE ~100 C/sec ➢Large chemical stress per cycle -14 -1 • 10 atm< pO2 <10 atm Water splitting at extremely low pO2.