Artificial Photosynthesis for Sustainable Fuel and Chemical Production Dohyung Kim, Kelsey K

Total Page:16

File Type:pdf, Size:1020Kb

Artificial Photosynthesis for Sustainable Fuel and Chemical Production Dohyung Kim, Kelsey K Angewandte. Minireviews P. Yang et al. DOI: 10.1002/anie.201409116 Heterogeneous Catalysis Special Issue 150 Years of BASF Artificial Photosynthesis for Sustainable Fuel and Chemical Production Dohyung Kim, Kelsey K. Sakimoto, Dachao Hong, and Peidong Yang* artificial photosynthesis · carbon dioxide reduction · heterogeneous catalysis · sustainable chemistry · water splitting The apparent incongruity between the increasing consumption of fuels and chemicals and the finite amount of resources has led us to seek means to maintain the sustainability of our society. Artificial photo- synthesis, which utilizes sunlight to create high-value chemicals from abundant resources, is considered as the most promising and viable method. This Minireview describes the progress and challenges in the field of artificial photosynthesis in terms of its key components: developments in photoelectrochemical water splitting and recent progress in electrochemical CO2 reduction. Advances in catalysis, face require an efficient method to concerning the use of renewable hydrogen as a feedstock for major convert raw materials into useful fuels chemical production, are outlined to shed light on the ultimate role of and chemicals, to make the flow of energy and matter bidirectional, and artificial photosynthesis in achieving sustainable chemistry. help maintain a balance between pro- duction and consumption. For the efficient and sustainable 1. Introduction production of fuels and chemicals, the method to be developed has to utilize energy and resources that are In every aspect of our lives, we rely on fuels and chemicals, naturally abundant and easily renewable. Artificial photo- whose usefulness is typically exhausted once consumed. With synthesis uses solar power, which can provide up to 105 TW of the growing population and technological advances, this energy, to convert raw materials like water and CO2 to useful [3] unidirectional flow of energy and matter has grown signifi- chemicals, e.g., H2, CO, and hydrocarbons. Therefore, the cantly to the extent that we face the threat of a dearth of success of this approach relies on two aspects; the efficient supply and rising costs. For instance, energy consumption is utilization of solar power and the enhancement of the expected to rise by 56% worldwide by 2040 with close to 80% catalytic conversion of water and carbon dioxide to fuels provided by fossil fuels.[1] The growing demand for fertilizers and chemicals. These two main challenges were the focus of caused by the increased rate of food consumption of our rising many ongoing scientific efforts and will have to be solved in population has necessitated the development of alternative the near future for the practical application of artificial routes to produce ammonia.[2] Considering that our average photosynthesis. If successful, the technology of artificial standard of living is likely to rise continuously, we must seek photosynthesis will be able to fundamentally transform the a drastic change in this consumption-oriented trend to current economy of fossil fuels into a sustainable economy of maintain the sustainability of our society. The challenges we “photons”. Artificial photosynthesis, as its name suggests, originated from the desire to mimic natures unique arsenal of photo- [*] K. K. Sakimoto, Dr. D. Hong, Prof. P. Yang synthetic processes to store energy from sunlight in high- Department of Chemistry, University of California energy chemical bonds. Ever since its first demonstration,[4] Berkeley, CA 94720 (USA) there have been numerous efforts to split water to H2 and O2 Prof. P. Yang with high conversion efficiency.[3] Hydrogen is a great energy Kavli Energy Nanosciences Institute carrier and easily convertible to electrical power without Berkeley, CA 94720 (USA) [5] E-mail: [email protected] generating byproducts that are harmful to the environment. More recently, due to the hope of renewably generating D. Kim Department of Materials Science and Engineering carbon fuels, efforts to reduce CO2 have gained much University of California attention. The production of carbon-based fuels from CO2 Berkeley, CA 94720 (USA) can help to alleviate the shortage of fossil fuels and reduce our 2 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2015, 54,2–10 Ü Ü These are not the final page numbers! Angewandte Artificial Photosynthesis Chemie [6] overall contribution to atmospheric CO2. Furthermore, the development of carbon-based fuels, or so called “drop-in fuels”, allows us to use renewable sources of energy without the need to modify our current energy infrastructure, alleviating some of the financial and logistical impediments to a fully renewable energy economy. Furthermore, when coupled with other areas of catalysis, renewable H2 produced from artificial photosynthesis can enable the synthesis of even more complex products that can be used in a wide range of applications currently dominated by petrochemical feedstocks. Carbon dioxide hydrogenation with renewable H2 can produce methanol for use as a fuel or a basic synthetic component for hundreds of chemicals.[7] Additionally, the application of H2 in the selective hydro- genation of carbon–carbon double and triple bonds is the basis for the industrial synthesis of many fine chemicals.[8] Hydrogen peroxide, well known as an environmentally Figure 1. The role of artificial photosynthesis in green chemistry. friendly oxidant in the chemical industry,[9] can be generated [10] directly from H2 and O2 using transition metal catalysts. Besides carbon-based chemicals, ammonia (NH3), which is the primary ingredient in agricultural fertilizers[11] and has efficiency, based on a thorough understanding of each [12] [13] potential use as a H2 storage material or directly as fuel, component and the interactions between them. Here, we can be produced from renewable H2 and N2. As evidenced by describe the status and challenges in the field of photo- the wide applicability of renewable H2, artificial photosyn- electrochemical water splitting. There has been much prog- thesis lies at the center of all chemical reactions implemented ress in its constituent parts such as light harvesting, charge in our society (Figure 1) and its success will determine transport, and catalytic conversion to H2 and O2, and its whether we can achieve green sustainable chemistry for design as a whole. Also, we discuss recent progress in carbon future generations. dioxide reduction which is expected to become an essential Since artificial photosynthesis is an integrated system, component of artificial photosynthesis. Some efforts to which consists of a light harvesting part and a catalytic further convert H2 into other chemicals are described briefly conversion part, it is important to maximize the performance to shed light on the ultimate role of artificial photosynthesis in of each unit and to design a combined system with optimum the achievement of green chemistry. Dohyung Kim received his B.S. in Materials Dachao Hong received his B.S. in Applied Science and Engineering from Seoul Na- Chemistry in 2010 and his Ph.D. in Materi- tional University in 2012, where he inves- al and Life Science in 2014 from Osaka tigated the synthesis of colloidal graphene University under the mentorship of Prof. sheets. He is currently a graduate student in Shunichi Fukuzumi. He has been a JSPS Materials Science and Engineering at UC research fellow at Osaka University since Berkeley under the guidance of Prof. Pei- 2012. He is currently a postdoctoral fellow dong Yang. His research areas include the with Prof. Peidong Yang in Chemistry at UC synthesis of nanoparticles and their electro- Berkeley. His research interests include catalytic and photocatalytic application in water oxidation, hydrogen evolution, oxygen carbon dioxide reduction. reduction, and CO2 reduction/hydrogena- tion. Kelsey K. Sakimoto received his B.S. in Peidong Yang received a B.S. in chemistry Chemical Engineering from Yale University, from University of Science and Technology undertaking research with Prof. Andr Taylor of China in 1993 and a Ph.D. in chemistry on carbon nanotube transparent conductive from Harvard University in 1997. He did electrodes for photovoltaic applications. As postdoctoral research at University of Cal- a Ph.D. candidate and NSF Graduate ifornia, Santa Barbara before joining the Research Fellow in the Department of faculty in the department of Chemistry at Chemistry at UC Berkeley under the guid- the University of California, Berkeley in ance of Prof. Peidong Yang, his current work 1999. He is currently Professor in the focuses on nano-biohybrid systems for ad- Department of Chemistry, Materials Science vanced solar fuel production. and Engineering, and a senior faculty scien- tist at the Lawrence Berkeley National Laboratory. He is S. K. and Angela Chan Distinguished Chair Professor in Energy. Angew. Chem. Int. Ed. 2015, 54, 2 – 10 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org 3 These are not the final page numbers! Ü Ü . Angewandte P. Yang et al. Minireviews 2. Photoelectrochemical Water Splitting mobility (meaning only holes generated within a few nano- meters will make it to the catalytically active site) and the Fundamental to the production of solar-based fuels is the long absorption depth required.[22] Nonetheless, nanostructur- transduction of energy from sunlight to chemical bonds. In ing has provided a solution by enhancing the current density artificial photosynthesis, this energy transduction can be
Recommended publications
  • Liquid Solar Fuels—Fundamental Science to Enable Solar Fuels Beyond Hydrogen
    Liquid Solar Fuels—Fundamental Science to Enable Solar Fuels Beyond Hydrogen Sunlight is Earth’s most abundant energy resource. Remarkable advances in photovoltaic technologies are allowing society to better capitalize on this resource for electricity generation. Harnessing the power of the sun to produce energy-rich chemicals directly from abundant feedstocks such as water, carbon dioxide (CO2), and nitrogen (N2) promises a plentiful supply of sustainable, transportable, and storable solar fuels to meet future US energy needs. Furthermore, solar fuels can provide pathways for efficient chemical energy storage to complement existing electrical energy storage. Solar fuels can also produce diverse chemicals, products, and materials with low environmental impact. Solar fuels generation—often termed artificial photosynthesis—involves the direct conversion of solar energy to chemical energy using man-made materials and chemical processes. Significant progress has been made to boost the efficiency of solar-driven hydrogen production. Much less progress has been made in the area of liquid solar fuel, an approach that requires chemically transforming CO2 and other small molecules into promising fuel targets. Hydrocarbons and/or oxygenates produced from CO2 conversion will be compatible with existing fuels infrastructure. They could also be valuable for production of commodity chemicals and materials. The generation of ammonia and other nitrogen-containing species, which can be used as fuels, fertilizers, and other commodities, presents an opportunity
    [Show full text]
  • Our Choice from the Recent Literature
    research highlights OPTICAL CLOAKING layer that increases the overall reflectivity of rather than by the Stark effect. It is, in A phase compensation trick their metasurface. This design, which can in fact, known that in charged nanocrystals, Science 349, 1310–1314 (2015) principle be scaled up, works for incoming the recombination of electrons and holes light within 30° angles with respect to the happens primarily through a non-radiative perpendicular direction. AM phenomenon known as the Auger effect. Delehanty and colleagues also simulated NANOCRYSTALS a realistic neuron firing event by applying Getting on your nerves to the device an electric voltage pulse Nano Lett. 15, 6848–6854 (2015) recorded independently from a murine cortical neuron. The intensity of the Semiconductor nanocrystals could luminescence followed the voltage profile potentially be used to study the electrical accurately, with a total variation of up to 5% activity of neurons by monitoring their in luminescence. FP luminescence during a firing event. The basic principle is that an electric field affects CONTRAST AGENTS AAAS the spatial separation of electrons and holes Nanobubbles that don’t pop in nanocrystals (a phenomenon known as Angew. Chem. Int. Ed. http://doi.org/f3ggns (2015) A cloak is a device that makes objects the quantum confined Stark effect) and, invisible to an external observer. The first therefore, affects the time it takes for these Microbubbles, which are typically made cloaks that could work with visible light charges to recombine and ultimately the up of a lipid or protein shell and contain air used bulky containers with special optical intensity of the luminescence emitted.
    [Show full text]
  • Hydrogen Production from Water on Heterogeneous Photocatalysts
    May 26, 2011; Renaissance Washington DC The Science for Our Nation’s Energy Future: EFRC Summit & Forum Basic solar energy research in Japan Kazunari Domen Chemical System Engineering The University of Tokyo Chemical System Engineering The University of Tokyo Government Energy Technology R&D Budgets 2395 Million US$ 846 340 12000 1272 1228 4202 0 1457 10000 145 165 2762 8000 154 157 Total Other Technologies or Research 10 354 68 457 Other Power and Storage Technologies 246 Hydrogen and Fuel Cells 6000 200 545 Nuclear Fission and Fusion 45 4000 Renewable Energy Sources Fossil Fuels Energy Efficiency 2000 0 Germany Japan US IEA (International Energy Agency) Energy Technology R&D Statistics 2009 Ratios of Energy R&D Budgets 100% 90% 80% Total Other Technologies or Research 70% Other Power and Storage Technologies 60% Hydrogen and Fuel Cells Nuclear Fission and Fusion 50% Renewable Energy Sources 40% Fossil Fuels 30% Energy Efficiency 20% 10% 0% Germany Japan US IEA (International Energy Agency) Energy Technology R&D Statistics 2009 2011 Great East Japan Earthquake and Tsunami Attack on Fukushima Daiichi Nuclear Power Plant 11 March 11 March 11 March 11 March Copyright: The Yomiuri Shinbun, The Asahi Shinbun Co. Nuclear Meltdown at Fukushima Daiichi Nuclear Power Plant 12 March, at 15:30 12 March, before 15:30 15 March 15 March Copyright: The Yomiuri Shinbun, The Asahi Shinbun Co. 24 March Production of PVs in Japan Single-Si Poly-Si Japan Photovoltaic Energy Association 104-kW a-Si Others http://www.jpea.gr.jp/04doc01.html Governmental Financial
    [Show full text]
  • “Highly Crystalline Multimetallic Nanoframes with Three
    Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces Chen Chen et al. Science 343, 1339 (2014); DOI: 10.1126/science.1249061 This copy is for your personal, non-commercial use only. If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here. Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here. The following resources related to this article are available online at www.sciencemag.org (this information is current as of June 10, 2014 ): Updated information and services, including high-resolution figures, can be found in the online on June 10, 2014 version of this article at: http://www.sciencemag.org/content/343/6177/1339.full.html Supporting Online Material can be found at: http://www.sciencemag.org/content/suppl/2014/02/26/science.1249061.DC1.html A list of selected additional articles on the Science Web sites related to this article can be found at: http://www.sciencemag.org/content/343/6177/1339.full.html#related www.sciencemag.org This article cites 38 articles, 9 of which can be accessed free: http://www.sciencemag.org/content/343/6177/1339.full.html#ref-list-1 This article has been cited by 1 articles hosted by HighWire Press; see: http://www.sciencemag.org/content/343/6177/1339.full.html#related-urls This article appears in the following subject collections: Chemistry http://www.sciencemag.org/cgi/collection/chemistry Downloaded from Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005.
    [Show full text]
  • Fenex: Indicative Projects List for Program 2
    Prospective FEnEx CRC R&D Projects for Program 2: Hydrogen Export & Value Chains. R&D Project Category Description Optimum method to transport Efficient Hydrogen Storage and A number of potential options present themselves for the export of renewable hydrogen such renewable hydrogen Transport as liquefaction, using a liquid carrier (ammonia, methyl cyclohexane etc.) and in the form of a solid state hydrogen storage material. The research will focus on identifying the most suitable method for the various potential global hydrogen markets and uses. Materials Compatibility and Materials Testing for Export Multiple extensive studies of the compatibility & degradation of key materials under extreme Longevity with Hydrogen Under Applications operating conditions (high pressure H2 gas, cryogenic liquid H2 temperatures, high‐process Extreme Conditions temperatures associated with conversion) including the effects of hydrogen embrittlement on containment materials. The materials will be verified for use under transient design duty cycles through understanding of degradation mechanisms and normal and transient failure modes. Hydrogen Production from Novel Large‐scale Blue Hydrogen Pyrolysis allows for the efficient production of hydrogen from biomass or even coal at large scale Pyrolysis‐Reforming Production with the benefit of carbon sequestration through the return of biochar into the soil to deliver Technologies carbon‐negative hydrogen. Tests will also investigate the ability of mobile pyrolysers to reform bio‐oil to produce hydrogen: mobile
    [Show full text]
  • Pathways to Hydrogen Production Using Solar Heat
    Pathways to Hydrogen Production Using Solar Heat Unlocking Solar Thermochemical Potential: Receivers, Reactors, and Heat Exchangers SETO webinar-workshop December 3, 2020 PRESENTED BY Anthony McDaniel([email protected]) Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. 1 SAND2020-13487 PE This presentation does not contain any proprietary, confidential, or otherwise restricted information Thermochemical Water Splitting is a Simple Concept: 2 Heat + H2O In, H2 + O2 Out R. Perret, SAND Report (SAND2011-3622), Sandia National Laboratories, 2011. G. J. Kolb, R. B. Diver, SAND Report (SAND2008-1900), Sandia National Laboratories, 2008. S. Abanades, P. Charvin, G. Flamant, P. Neveu, Energy. 31, 2805–2822 (2006). Direct storage of solar energy in a reduced metal oxide. Hundreds of cycles proposed. ➢Multi-phase, multi-step, thermochemical-electrochemical hybrids Multinational R&D efforts have gravitated towards two-step, non-volatile MOx 3 STC H2 Materials Theme: Oxygen Exchange and Transport Challenge: decrease TR and increase OX Oxygen storage materials with a twist. ➢O-atom “harvested” from H2O not air ➢Bulk phenomena largely govern O-atom exchange with environment ➢Understanding thermodynamics, kinetics, transport, gas-solid interactions, solid-solid interactions is important Material subject to extreme environments. ➢Redox cycling on the order of seconds ➢Large thermal stress per cycle o o o • 800 C< T <1500 C; ∆TRATE ~100 C/sec ➢Large chemical stress per cycle -14 -1 • 10 atm< pO2 <10 atm Water splitting at extremely low pO2.
    [Show full text]
  • Metal Oxides Applied to Thermochemical Water-Splitting for Hydrogen Production Using Concentrated Solar Energy
    chemengineering Review Metal Oxides Applied to Thermochemical Water-Splitting for Hydrogen Production Using Concentrated Solar Energy Stéphane Abanades Processes, Materials, and Solar Energy Laboratory, PROMES-CNRS, 7 Rue du Four Solaire, 66120 Font Romeu, France; [email protected]; Tel.: +33-0468307730 Received: 17 May 2019; Accepted: 2 July 2019; Published: 4 July 2019 Abstract: Solar thermochemical processes have the potential to efficiently convert high-temperature solar heat into storable and transportable chemical fuels such as hydrogen. In such processes, the thermal energy required for the endothermic reaction is supplied by concentrated solar energy and the hydrogen production routes differ as a function of the feedstock resource. While hydrogen production should still rely on carbonaceous feedstocks in a transition period, thermochemical water-splitting using metal oxide redox reactions is considered to date as one of the most attractive methods in the long-term to produce renewable H2 for direct use in fuel cells or further conversion to synthetic liquid hydrocarbon fuels. The two-step redox cycles generally consist of the endothermic solar thermal reduction of a metal oxide releasing oxygen with concentrated solar energy used as the high-temperature heat source for providing reaction enthalpy; and the exothermic oxidation of the reduced oxide with H2O to generate H2. This approach requires the development of redox-active and thermally-stable oxide materials able to split water with both high fuel productivities and chemical conversion rates. The main relevant two-step metal oxide systems are commonly based on volatile (ZnO/Zn, SnO2/SnO) and non-volatile redox pairs (Fe3O4/FeO, ferrites, CeO2/CeO2 δ, perovskites).
    [Show full text]
  • SEMINAR Peidong Yang
    Institute for Collaborative Biotechnologies SEMINAR Tuesday, May 22, 2007 3:00 pm / Refreshments at 2:45 pm 1001 Engineering Science Building Peidong Yang Associate Professor, Department of Chemistry and Materials Science and Engineering, University of California, Berkeley Nanowire Photonics The manipulation of optical energy in structures smaller than the wavelength of light is key to the development of integrated photonic devices for computing, communications and sensing. Wide band gap semiconductor nanostructures with near-cylindrical geometry and large dielectric constants exhibit two- dimensional ultraviolet and visible photonic confinement (i.e. waveguiding). Combined with optical gain, the waveguiding behavior facilitates highly directional lasing at room temperature in controlled-growth nanowires with suitable resonant feedback. We have further explored the properties and functions of individual ultralong crystalline oxide nanoribbons that act as subwavelength optical waveguides, nonlinear frequency converter and assess their applicability as nanoscale photonic elements and scanning probes. Semiconductor nanowires offer a versatile photonic platform due to the ability to specify material size, shape, and composition. The integration of multiple unique materials with distinct thermal, optoelectronic, and mechanical properties promises to enable advances for several applications ranging from information processing to biochemical sensing. Biography Professor Peidong Yang received a B.S. in chemistry from University of Science and Technology of China in 1993 and a Ph.D. in chemistry from Harvard University in 1997 for work on flux line pinning in the laboratory of Professor Charles Lieber. He then did postdoctoral research in the area of mesoporous materials with Professor Galen Stucky at University of California, Santa Barbara. He began his faculty appointment in the Department of Chemistry at the University of California, Berkeley on July 1, 1999.
    [Show full text]
  • Solar Fuel Production for a Sustainable Energy Future: Highlights of a Symposium on Renewable Fuels from Sunlight and Electricity by Heli Wang, Deryn Chu, and Eric L
    Solar Fuel Production for a Sustainable Energy Future: Highlights of a Symposium on Renewable Fuels from Sunlight and Electricity by Heli Wang, Deryn Chu, and Eric L. Miller ynthesis of fuels from sunlight, water 222nd ECS Meeting in Honolulu in October. In this paper, an emphasis is placed on and carbon dioxide, without competing Over 130 abstracts were received for this the summary of the presentations for solar Swith food production, is an important symposium. The symposium attendees came fuels production. We will highlight some of route for sustainable development beyond from North America, Europe, and Asia. The the presentations that reflected the research fossil fuels. The magnitude of the challenge research theme of this symposium focused progress in this field. is very significant that requires scientific on the development of materials and devices Metal oxides are the most studied breakthroughs in materials and processing for hydrogen generation and CO2 conversion semiconductor material group. While metal for creating economic opportunities.1 to fuels. One approach is to utilize the solar oxides are more stable in aqueous solutions, There are two straightforward conversion energy to produce fuels. Another approach key issues are wide band gap, band-edge pathways for conversion of solar energy is to utilize the electrical energy to generate mismatch and their intrinsic low STH to fuels.2 The most important one is the fuels with electrochemical devices. The efficiencies. A combinatorial screening might photoelectrochemical (PEC) hydrogen symposium presentations covered the be a relevant approach to search for metal production via water splitting, which following topics in both approaches: oxides with suitable band gap.4 Different combines the electrical generation and tandem cells5-9 have been developed to solve • solar energy materials; electrolysis into a single system.
    [Show full text]
  • Molecular Engineering of Organic Photosensitizes for P-Type Dye
    Molecular Engineering of Organic Photosensitizes for P-type Dye-Sensitized Solar Cells and the Immobilization of Molecular Catalyst for the Hydrogen Evolution Reaction THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Damian Richard Beauchamp Graduate Program in Chemistry The Ohio State University 2016 Master's Examination Committee: Yiying Wu Ph.D., Advisor James Cowan Ph.D. Copyright by Damian Richard Beauchamp 2016 Abstract Solar energy has become an important component in the clean energy mix. There are several different kinds of solar cells that have been developed over decades. The focus of the first three chapters will be p-type dye-sensitized solar cells (DSSCs), which are omnipotent for obtaining high efficiency and cost effective tandem DSSCs. The efficiency of p-type DSSCs lags behind their n-type counterpart due to being less investigated. Herein, the attempts to increase performance of the p-type component via molecular engineering of organic photosensitizers is described. Through the addition of bulky hydrophobic alkyl chains performance can be enhanced, though it was found that the location of these alkyl chains is a critical factor. Additionally, by adopting a double- acceptor single-donor design, as described in chapter 3, when employing the commonly used triphenylamine donor moiety, one can simultaneously increase the molar extinction coefficient while reducing the synthetic steps yielding one the fields top performing photosensitzers. In addition to the conversion of solar energy to electrical energy, the storage of intermittent renewable energy is important. Energy can be stored mechanically (e.g.
    [Show full text]
  • Can S Olar Energy Fuel Th E W Orld ?
    Photo: Anders Karlqvist Anders Photo: Can Solar Energy Fuel the World? Paul Hudson and Mathias Uhlen Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden The primary motivation for developing renewable energy is to slow the accumulation of harmful greenhouse gases caused by combusting fossil fuels. A secondary motivation is to create a sustainable supply of energy for future societies. Though peak oil or peak gas is unlikely to occur soon, supplies of these are often unevenly distributed and at the whim of other nation states. In contrast, solar energy is plentiful enough everywhere, even in Northern Europe. Solar energy has developed rapidly in OECD countries as a significant component of electricity generation in the form of photovoltaics (PV), wind turbines, and biomass combustion. Complementary energy storage technologies have also rapidly expanded. An important question is whether these renewables, in particular low-cost solar photovoltaics, can provide a significant amount of world energy in the medium-term future (by 2050). In this essay, we highlight the advances of solar energy to produce liquid, fungible fuels. 34 35 The world used 162,000 TWh of energy in 2015 (1), which is three times upgraded to methane or other motor fuels. In Sweden, GoBiGas (Göteborg more energy than it did in 1965. Estimates are that by 2050 the world’s most Energi) collects waste biomass for thermal gasification to synthesis gas, which populous countries will have slowed growth, and world energy usage will is then catalytically upgraded to methane. A similar project was initiated by begin to level off at approximately 250,000 TWh (2).
    [Show full text]
  • Public Lecture
    Queensland Micro- and Nanotechnology Centre PUBLIC LECTURE Speaker: Professor Peidong Yang Department of Chemistry and Department of Materials Science Engineering, University of California, Berkeley; Materials Science Division, Lawrence Berkeley National Lab, Berkeley CA, USA http://nanowires.berkeley.edu/ Date: Friday 15 December 2017 Time: 11:00 am – 12:00 pm Venue: Sir Samuel Griffith Centre (N78) Room 1.19, Griffith University, Nathan Campus Title: CO2 + H2O + Sunlight = Chemical Fuels + O2 Abstract Solar-to-chemical (STC) production using a fully integrated system is an attractive goal, but to-date there has yet to be a system that can demonstrate the required efficiency, durability, or be manufactured at a reasonable cost. One can learn a great deal from the natural photosynthesis where the conversion of carbon dioxide and water to carbohydrates is routinely carried out at a highly coordinated system level. There are several key features worth mentioning in these systems: spatial and directional arrangement of the light-harvesting components, charge separation and transport, as well as the desired chemical conversion at catalytic sites in compartmentalized spaces. In order to design an efficient artificial photosynthetic materials system, at the level of the individual components: better catalysts need to be developed, new light-absorbing semiconductor materials will need to be discovered, architectures will need to be designed for effective capture and conversion of sunlight, and more importantly, processes need to be developed for the efficient coupling and integration of the components into a complete artificial photosynthetic system. In this talk, I will begin by discussing the challenges associated with fixing CO2 through traditional chemical catalytic means, contrasted with the advantages and strategies that biology employs through enzymatic catalysts to produce more complex molecules at higher selectivity and efficiency.
    [Show full text]