Small Molecule Probes of ABA Biosynthesis and Signaling Special Focus Issue Wim Dejonghe1,4, Masanori Okamoto2,3,4 and Sean R. Cutler1,* 1Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA 2Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-cho, Utsunomiya, Tochigi, 321-8505 Japan 3PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012 Japan 4These authors contributed equally to this work. *Corresponding author: E-mail,
[email protected]; Fax, +1-951-827-4437. Downloaded from https://academic.oup.com/pcp/article-abstract/59/8/1490/5050794 by Technical Services - Serials user on 27 June 2019 (Received April 6, 2018; Accepted June 26, 2018) The phytohormone ABA mediates many physiological and signal transduction pathway to alter physiological outputs. ABA developmental responses, and its key role in plant water acts through a negative regulatory pathway to regulate the activity relations has fueled efforts to improve crop water product- of subclass III Snf1-related protein kinases2 (SnRK2s), which in turn – Mini Review ivity by manipulating ABA responses. ABA’s core signaling control the activities of numerous downstream factors. Genetic components are encoded by large gene families, which has studies uncovered several key components in both the ABA meta- hampered functional studies using classical genetic bolic pathway and signal transduction, but have been comple- approaches due to redundancy. Chemical approaches