Violaxanthin Is an Abscisic Acid Precursor in Water-Stressed Dark-Grown Bean Leaves'

Total Page:16

File Type:pdf, Size:1020Kb

Violaxanthin Is an Abscisic Acid Precursor in Water-Stressed Dark-Grown Bean Leaves' Plant Physiol. (1990) 92, 551-559 Received for publication June 22, 1989 0032-0889/90/92/0551 /09/$01 .00/0 and in revised form September 25, 1989 Violaxanthin Is an Abscisic Acid Precursor in Water-Stressed Dark-Grown Bean Leaves' Yi Li2 and Daniel C. Walton* Department of Biology, SUNY College of Environmental Science and Forestry, Syracuse, New York 13210 ABSTRACT one atom of 180 into the carboxyl group of ABA. One The leaves of dark-grown bean (Phaseolus vulgaris L.) seed- explanation for these latter results is that a preformed xantho- lings accumulate considerably lower quantities of xanthophylls phyll was cleaved by a dioxygenase to form an aldehyde that and carotenes than do leaves of light-grown seedlings, but they was converted to ABA by dehydrogenases. Li and Walton synthesize at least comparable amounts of abscisic acid (ABA) (12) suggested that at least a portion ofABA was derived from and its metabolites when water stressed. We observed a 1:1 violaxanthin in water-stressed bean leaves based on studies in relationship on a molar basis between the reduction in levels of which the violaxanthin epoxide oxygens were labeled in situ violaxanthin, 9'-cis-neoxanthin, and 9-cis-violaxanthin and the with 180 via the xanthophyll cycle. accumulation of ABA, phaseic acid, and dihydrophaseic acid, One ofthe difficulties in demonstrating a precursor role for when leaves from dark-grown plants were stressed for 7 hours. a major leaf xanthophyll is that these compounds are present Early in the stress period, reductions in xanthophylls were greater at high levels in green leaves compared with the levels to than the accumulation of ABA and its metabolites, suggesting the which ABA and its metabolites accumulate even under water accumulation of an intermediate which was subsequently con- verted to ABA. Leaves which were detached, but not stressed, stress. Small differences in xanthophyll levels between leaf did not accumulate ABA nor were their xanthophyll levels re- samples, either real or due to experimental error, can obscure duced. Leaves from plants that had been sprayed with cyclohex- any reductions that might result from ABA synthesis. Resyn- imide did not accumulate ABA when stressed, nor were their thesis of the precursors could also mask any reductions. xanthophyll levels reduced significantly. Incubation of dark-grown Gamble and Mullet (7) stressed dark-grown fluridone-treated stressed leaves in an '802-containing atmosphere resulted in the barley leaves which contained considerably lower xanthophyll synthesis of ABA with levels of 180 in the carboxyl group that levels than were present in untreated green leaves. They were virtually identical to those observed in light-grown leaves. observed that ABA production was still 25% of normal, even The results of these experiments indicate that violaxanthin is an when xanthophyll levels had been reduced by 99%. They also ABA precursor in stressed dark-grown leaves, and they are used reported that and antheraxanthin to suggest several possible pathways from violaxanthin to ABA. violaxanthin, neoxanthin, levels were reduced during the stress period. Their results were confounded, however, by the fact that xanthophyll levels were also reduced, albeit to a lesser extent, when leaves were detached but not stressed. Thus, they were unable to conclude what the stoichiometry was between xanthophyll reduction The details of the ABA biosynthetic pathway in higher and total ABA synthesis. We report on the results we have plants have remained obscure even though MVA3 is known obtained with bean leaves stressed after detachment from to be a precursor (19) and the stereochemistry of ABA for- dark-grown bean seedlings. In this system, only leaves that mation has been shown to be identical to that of the carote- have been stressed show significant changes in xanthophyll noids (21). Most investigators have been unwilling to conclude content, the levels of ABA produced are at least comparable whether ABA is derived directly from farnesyl pyrophosphate to those in light-grown plants, and the total amount of ABA or from the cleavage ofa xanthophyll (28). Recently, however, produced is closely matched by reductions in the levels of evidence has accumulated that the ABA biosynthetic pathway several xanthophylls. These results enable us to draw infer- involves xanthophyll intermediates. Various corn mutants ences about the origin of ABA. have been described that lack the ability to synthesize carot- enoids and that accumulate little or no ABA (16, 17). Inhib- MATERIALS AND METHODS itors of carotenoid biosynthesis, such as norflurazon and fluridone, also inhibit the accumulation of ABA under some Plant Materials conditions (10, 12, 15, 20). Creelman and Zeevaart (3) re- Phaseolus vulgaris L. cv Blue Lake seeds were surface- ported that leaves stressed in the presence of 1802 incorporated sterilized with a 10% Clorox solution for 30 min and then ' Supported by U.S. Department of Agriculture Competitive Re- imbibed in sterile water for 7 h. The seeds were planted in search Grant 86CRCR 12078. flats in a soil:vermiculite mixture (1:1) and grown in complete 2Current address: Biochemistry Department, University of Mis- darkness at about 23°C for 8 or 9 d. Unless otherwise indi- souri, Columbia, MO 6521 1. cated, plants were sprayed with fluridone (13 mg L-') twice 3Abbreviations: MVA, mevalonic acid; PA, phaseic acid; DPA, daily from d 4 to the end ofthe experiment. Water stress was dihydrophaseic acid. initiated by allowing detached primary leaves to lose 18% of 551 552 Li AND WALTON Plant Physiol. Vol. 92, 1990 their fresh weight. The leaves were wrapped in aluminum foil 100 I and incubated for varying periods oftime at ambient temper- 3 atures. All manipulations were carried out under a photo- graphic safe light. At the end of the treatment period, the 80 - leaves were stored in liquid N2 until extracted. All experiments o< 8 >1 were repeated at least once with two to four replicates per :t- (n 60 - U, treatment. C a) a) Chemicals 10 - Fluridone (98%) was obtained from the Eli Lilly Company, fr 2 Indianapolis, IN. 1802 (96.5%) was purchased from MSD, 20 - 1 ~6 7 Montreal, Canada. [3H]ABA (10 Ci mmol-') was synthesized 4 5 9 (26). [3H]PA and [3H]DPA were purified from bean leaves which had been fed [3H]ABA. Cycloheximide was purchased 0 - from Sigma Chemical Co., St. Louis, MO. 0 1 0 20 30 Time (min) 1802, N2, and Cycloheximide Treatments Figure 1. HPLC chromatogram of xanthophylls from 8 d, dark- For the 1802 experiments detached leaves were placed in a grown, fluridone-treated bean leaves. Solvent system A. 1, Neoxan- desiccator that was evacuated 4 times with alternate additions thin; 2, 9'-cis-neoxanthin; 3, violaxanthin; 4, 9-cis-violaxanthin; 5, (?) of N2. After the fourth N2 addition, approximately 20% of cis-violaxanthin; 6, lutein-5,6-epoxide; 7, antheraxanthin; 8, lutein; 9, the N2 was replaced with l802. Four evacuations and additions zeaxanthin. of N2 were also used in the experiments designed to test the effects of an N2 atmosphere on ABA production. Cyclohexi- known concentrations of authentic standards using an inte- mide solutions (50 ,ug mL-') were sprayed on plants 14 h grating unit of the ISCO-Chem Research Main Program, prior to harvesting in the experiments used to test the effect version 2. We found that recoveries of the various xantho- of cycloheximide on ABA production and xanthophyll loss. phylls were at least 95% as estimated from the recoveries of unlabeled purified xanthophylls subjected to the same purifi- cation procedures. Estimated xanthophyll concentrations Carotenoid Analysis were not corrected for losses. Frozen leaf samples were ground with a mortar and pestle Analysis of ABA, PA, and DPA in acetone containing 15 mg L-' (w/v) butylated hydroxyto- luene. The extract was filtered and the filtrate taken to dryness The aqueous acetone homogenate obtained from frozen in vacuo at 30°C. The residue was dissolved in 25 to 50 mL leaves was taken to dryness in vacuo at 30C. The residue was of 80% aqueous acetone, and 100 ,uL aliquots were chromat- taken up in 1% NaHCO3, then partitioned 3 times with equal ographed by HPLC on a 4.6 x 250 mm 5 ,um Spherisorb volumes of ether. For some samples, the aqueous fractions ODS-2 column. Two solvent systems were used to quantitate were adjusted to pH 11 and kept at 65°C for 2 h to hydrolyze the xanthophylls and carotenes. System A consisted ofa linear any ABA, PA, or DPA glucose esters. The aqueous fractions gradient of water and a mixture of acetonitrile and isopropa- containing ABA, PA, and DPA were adjusted to pH 2.5 with nol (85.5:4) from 88% to 100% of the organic mixture over HCI, then added to a C18Sep-Pak column. ABA, PA, and 25 min at 1.2 mL min-'. This system separated the various DPA were eluted with 75% aqueous methanol. The solutions xanthophylls but was not useful for the carotenes (Fig. 1). were taken to dryness in vacuo at 30C and the residues System B was a linear gradient of aqueous acetone from 75% dissolved in 50% aqueous methanol containing 0.05 N acetic to 100% acetone over 20 min at 0.9 mL min-'. This system acid. This solution was chromatographed by HPLC on a 10 was useful for the carotenes, but did not separate lutein-5,6- x 150 mm 10 ,um ODS Spherisorb column. ABA and its two epoxide from antheraxanthin or lutein from zeaxanthin. Elu- metabolites were separated by a linear gradient of from 25% tion of the various compounds was monitored by their ab- aqueous methanol to 100% methanol over 25 min at 2 mL sorbance at 436 nm.
Recommended publications
  • Can Xanthophyll-Membrane Interactions Explain Their Selective Presence in the Retina and Brain?
    foods Review Can Xanthophyll-Membrane Interactions Explain Their Selective Presence in the Retina and Brain? Justyna Widomska 1,*, Mariusz Zareba 2 and Witold Karol Subczynski 3 Received: 14 December 2015; Accepted: 5 January 2016; Published: 12 January 2016 Academic Editor: Billy R. Hammond 1 Department of Biophysics, Medical University of Lublin, 20-090 Lublin, Poland 2 Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; [email protected] 3 Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; [email protected] * Correspondence: [email protected]; Tel.: +48-81-479-7169 Abstract: Epidemiological studies demonstrate that a high dietary intake of carotenoids may offer protection against age-related macular degeneration, cancer and cardiovascular and neurodegenerative diseases. Humans cannot synthesize carotenoids and depend on their dietary intake. Major carotenoids that have been found in human plasma can be divided into two groups, carotenes (nonpolar molecules, such as β-carotene, α-carotene or lycopene) and xanthophylls (polar carotenoids that include an oxygen atom in their structure, such as lutein, zeaxanthin and β-cryptoxanthin). Only two dietary carotenoids, namely lutein and zeaxanthin (macular xanthophylls), are selectively accumulated in the human retina. A third carotenoid, meso-zeaxanthin, is formed directly in the human retina from lutein. Additionally, xanthophylls account for about 70% of total carotenoids in all brain regions. Some specific properties of these polar carotenoids must explain why they, among other available carotenoids, were selected during evolution to protect the retina and brain. It is also likely that the selective uptake and deposition of macular xanthophylls in the retina and brain are enhanced by specific xanthophyll-binding proteins.
    [Show full text]
  • Genetics and Molecular Biology of Carotenoid Pigment Biosynthesis
    SERIAL REVIEW CAROTENOIDS 2 Genetics and molecular biology of carotenoid pigment biosynthesis GREGORY A. ARMSTRONG,’1 AND JOHN E. HEARSTt 5frtitute for Plant Sciences, Plant Genetics, Swiss Federal Institute of Technology, CH-8092 Zurich, Switzerland; and tDePai.tment of Chemistry, University of California, and Structural Biology Division, Lawrence Berkeley Laboratory, Berkeley, California 94720, USA The two major functions of carotenoids in photosyn- carotenoid biosynthesis from a molecular genetic thetic microorganisms and plants are the absorption of standpoint.-Armstrong, G. A., Hearst, J. E. Genet- energy for use in photosynthesis and the protection of ics and molecular biology of carotenoid pigment chlorophyll from photodamage. The synthesis of vari- biosynthesis. F14SEBJ. 10, 228-237 (1996) ous carotenoids, therefore, is a crucial metabolic proc- ess underlying these functions. In this second review, Key Words: phytoene lycopene cyclization cyclic xanthophylLs the nature of these biosynthetic pathways is discussed xanlhophyll glycosides’ 3-carotene provitamin A in detail. In their elucidation, molecular biological techniques as well as conventional enzymology have CAROTENOIDS REPRESENT ONE OF THE most fascinating, played key roles. The reasons for some of the ci.s-t Tans abundant, and widely distributed classes of natural pig- isomerizations in the pathway are obscure, however, ments. Photosynthetic organisms from anoxygenic photo- and much still needs to be learned about the regula- synthetic bacteria through cyanobacteria, algae, and tion of carotenoid biosynthesis. Recent important find- higher plants, as well as numerous nonphotosynthetic ings, as summarized in this review, have laid the bacteria and fungi, produce carotenoids (1). Among groundwork for such studies. higher plants, these pigments advertise themselves in flowers, fruits, and storage roots exemplified by the yel- -James Olson, Coordinating Editor low, orange, and red pigments of daffodils, carrots and to- matoes, respectively.
    [Show full text]
  • Function and Mechanism of WRKY Transcription Factors in Abiotic Stress Responses of Plants
    plants Review Function and Mechanism of WRKY Transcription Factors in Abiotic Stress Responses of Plants Weixing Li y , Siyu Pang y, Zhaogeng Lu and Biao Jin * College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; [email protected] (W.L.); [email protected] (S.P.); [email protected] (Z.L.) * Correspondence: [email protected] Contributed equally to this work. y Received: 26 September 2020; Accepted: 4 November 2020; Published: 8 November 2020 Abstract: The WRKY gene family is a plant-specific transcription factor (TF) group, playing important roles in many different response pathways of diverse abiotic stresses (drought, saline, alkali, temperature, and ultraviolet radiation, and so forth). In recent years, many studies have explored the role and mechanism of WRKY family members from model plants to agricultural crops and other species. Abiotic stress adversely affects the growth and development of plants. Thus, a review of WRKY with stress responses is important to increase our understanding of abiotic stress responses in plants. Here, we summarize the structural characteristics and regulatory mechanism of WRKY transcription factors and their responses to abiotic stress. We also discuss current issues and future perspectives of WRKY transcription factor research. Keywords: WRKY transcription factor; abiotic stress; gene structural characteristics; regulatory mechanism; drought; salinity; heat; cold; ultraviolet radiation 1. Introduction As a fixed-growth organism, plants are exposed to a variety of environmental conditions and may encounter many abiotic stresses, for example, drought, waterlogging, heat, cold, salinity, and Ultraviolet-B (UV-B) radiation. To adapt and counteract the effects of such abiotic stresses, plants have evolved several molecular mechanisms involving signal transduction and gene expression [1,2].
    [Show full text]
  • Altered Xanthophyll Compositions Adversely Affect Chlorophyll Accumulation and Nonphotochemical Quenching in Arabidopsis Mutants
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 13324–13329, October 1998 Plant Biology Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants BARRY J. POGSON*, KRISHNA K. NIYOGI†,OLLE BJO¨RKMAN‡, AND DEAN DELLAPENNA§¶ *Department of Plant Biology, Arizona State University, Tempe, AZ 85287-1601; †Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102; ‡Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305-4101; and §Department of Biochemistry, University of Nevada, Reno, NV 89557-0014 Contributed by Olle Bjo¨rkman, September 4, 1998 ABSTRACT Collectively, the xanthophyll class of carote- thin, are enriched in the LHCs, where they contribute to noids perform a variety of critical roles in light harvesting assembly, light harvesting, and photoprotection (2–8). antenna assembly and function. The xanthophyll composition A summary of the carotenoid biosynthetic pathway of higher of higher plant photosystems (lutein, violaxanthin, and neox- plants and relevant chemical structures is shown in Fig. 1. anthin) is remarkably conserved, suggesting important func- Lycopene is cyclized twice by the enzyme lycopene b-cyclase tional roles for each. We have taken a molecular genetic to form b-carotene. The two beta rings of b-carotene are approach in Arabidopsis toward defining the respective roles of subjected to identical hydroxylation reactions to yield zeaxan- individual xanthophylls in vivo by using a series of mutant thin, which in turn is epoxidated once to form antheraxanthin lines that selectively eliminate and substitute a range of and twice to form violaxanthin. Neoxanthin is derived from xanthophylls. The mutations, lut1 and lut2 (lut 5 lutein violaxanthin by an additional rearrangement (9).
    [Show full text]
  • Identification of Distinct Ph- and Zeaxanthin-Dependent Quenching
    RESEARCH ARTICLE Identification of distinct pH- and zeaxanthin-dependent quenching in LHCSR3 from Chlamydomonas reinhardtii Julianne M Troiano1†, Federico Perozeni2†, Raymundo Moya1, Luca Zuliani2, Kwangyrul Baek3, EonSeon Jin3, Stefano Cazzaniga2, Matteo Ballottari2*, Gabriela S Schlau-Cohen1* 1Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States; 2Department of Biotechnology, University of Verona, Verona, Italy; 3Department of Life Science, Hanyang University, Seoul, Republic of Korea Abstract Under high light, oxygenic photosynthetic organisms avoid photodamage by thermally dissipating absorbed energy, which is called nonphotochemical quenching. In green algae, a chlorophyll and carotenoid-binding protein, light-harvesting complex stress-related (LHCSR3), detects excess energy via a pH drop and serves as a quenching site. Using a combined in vivo and in vitro approach, we investigated quenching within LHCSR3 from Chlamydomonas reinhardtii. In vitro two distinct quenching processes, individually controlled by pH and zeaxanthin, were identified within LHCSR3. The pH-dependent quenching was removed within a mutant LHCSR3 that lacks the residues that are protonated to sense the pH drop. Observation of quenching in zeaxanthin-enriched LHCSR3 even at neutral pH demonstrated zeaxanthin-dependent quenching, which also occurs in other light-harvesting complexes. Either pH- or zeaxanthin-dependent quenching prevented the formation of damaging reactive oxygen species, and thus the two *For correspondence: quenching processes may together provide different induction and recovery kinetics for [email protected] (MB); photoprotection in a changing environment. [email protected] (GSS-C) †These authors contributed equally to this work Competing interests: The Introduction authors declare that no Sunlight is the essential source of energy for most photosynthetic organisms, yet sunlight in excess competing interests exist.
    [Show full text]
  • Identification of 1 Distinct Ph- and Zeaxanthin-Dependent Quenching in LHCSR3 from Chlamydomonas Reinhardtii
    Identification of 1 distinct pH- and zeaxanthin-dependent quenching in LHCSR3 from chlamydomonas reinhardtii The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Troiano, Julianne M. et al. “Identification of 1 distinct pH- and zeaxanthin-dependent quenching in LHCSR3 from chlamydomonas reinhardtii.” eLife, 10 (January 2021): e60383 © 2021 The Author(s) As Published 10.7554/eLife.60383 Publisher eLife Sciences Publications, Ltd Version Final published version Citable link https://hdl.handle.net/1721.1/130449 Terms of Use Creative Commons Attribution 4.0 International license Detailed Terms https://creativecommons.org/licenses/by/4.0/ RESEARCH ARTICLE Identification of distinct pH- and zeaxanthin-dependent quenching in LHCSR3 from Chlamydomonas reinhardtii Julianne M Troiano1†, Federico Perozeni2†, Raymundo Moya1, Luca Zuliani2, Kwangyrul Baek3, EonSeon Jin3, Stefano Cazzaniga2, Matteo Ballottari2*, Gabriela S Schlau-Cohen1* 1Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States; 2Department of Biotechnology, University of Verona, Verona, Italy; 3Department of Life Science, Hanyang University, Seoul, Republic of Korea Abstract Under high light, oxygenic photosynthetic organisms avoid photodamage by thermally dissipating absorbed energy, which is called nonphotochemical quenching. In green algae, a chlorophyll and carotenoid-binding protein, light-harvesting complex stress-related (LHCSR3), detects excess energy via a pH drop and serves as a quenching site. Using a combined in vivo and in vitro approach, we investigated quenching within LHCSR3 from Chlamydomonas reinhardtii. In vitro two distinct quenching processes, individually controlled by pH and zeaxanthin, were identified within LHCSR3. The pH-dependent quenching was removed within a mutant LHCSR3 that lacks the residues that are protonated to sense the pH drop.
    [Show full text]
  • Abscisic Acid Induced Protection Against Photoinhibition of PSII Correlates with Enhanced Activity of the Xanthophyll Cycle
    FEBS 15944 FEBS Letters 371 (1995) 61-64 Abscisic acid induced protection against photoinhibition of PSII correlates with enhanced activity of the xanthophyll cycle A.G. Ivanov a'*, M. Krol b, D. Maxwell b, N.P.A. Huner b alnstitute of Biophysics, Bulgarian Academy of Sciences, Aead. (7. Bonchev Street, bl. 21, 1113 Sofia, Bulgaria bDepartment of Plant Sciences, University of Western Ontario, London, Ont. N6A 5B7, Canada Received 22 June 1995; revised version received 24 July 1995 applied ABA on the light-dependent zeaxanthin formation, the Abstract The exogenous application of abscisic acid (ABA) to related capacity for non-photochemical chlorophyll fluores- barley seedlings resulted in partial protection of the PSII photo- cence quenching and the possible involvement of ABA in the chemistry against photoinhibition at low temperature, the effect protection of PSII photochemistry from excessive radiation at being most pronounced at 10 -s M ABA. This was accompanied low temperatures. by higher photochemical quenching (qP) in ABA-treated leaves. A considerable increase (122%) in the amount of total carotenoids 2. Materials and methods and xanthophylls (antheraxanthin, violaxanthin and zeaxanthin) was also found in the seedlings subjected to ABA. The activity Seeds of barley (Hordeum vulgare L. var. cadette) were germinated of the xanthophyll cycle measured by the epoxidation state of for 3 days and grown in aqueous solutions of ABA (10 -5 M and 10-6 M) xanthophyUs under high-light treatment was higher in ABA- as in [23]. ABA treatments lasted 7 days. The solutions were changed treated plants compared with the control. This corresponds to a daily.
    [Show full text]
  • Level of Xanthophyll, Lutein and Zeaxanthin in Selected Thai Fruits Determined by HPLC
    2012 International Conference on Nutrition and Food Sciences IPCBEE vol. 39 (2012) © (2012) IACSIT Press, Singapore Level of Xanthophyll, Lutein and Zeaxanthin in Selected Thai Fruits Determined by HPLC Nittaya Khonsarn 1 and Siriporn Lawan 2 1Department of biotechnology, Faculty of Technology, Mahasarakham University, Thailand 2 Department of Food technology, Faculty of Technology, Mahasarakham University, Thailand Abstract. In this study 12 selected Thai summer fruits were determined xanthophyll, lutein and zeaxanthin content by high performance liquid chromatography (HPLC). The result shown that there were xanthophyll in 11 kinds of selected fruits except banana. The highest of average xanthophyll level was found in cantaloupe (1.31±0.07 mg/100g edible portion), meanwhile barbados cherry was the second (1.18±0.03 mg/100g edible portion). Among fruits analysed, lutein content was the highest in papaya (23.74±0.46 mg/100g edible portion), follow by cantaloupe (21.82±1.60 mg/100g edible portion). Whereas lutein was not detected in star gooseberry, java apple, dragon fruit, guava, salak plum, water melon, banana and satol. Cantaloupe was the highest source of zeaxanthin (1.72±0.07 mg/100g edible portion), zeaxanthin was not however detected in star gooseberry, java apple, dragon fruit, salak plum, banana and satol. These results are suggested that some kinds of summer fruits including papaya and cantaloupe, have potential as rich sources of xanthophyll, lutein and zeaxanthin for consumer health. Keywords: Xanthophyll, Lutein, Zeaxanthin, Thai Fruit, HPLC. 1. Introduction Xanthophyll, lutein and zeaxanthin are some kinds of carotenoid that not only play important role in organic pigments in fruits and vegetables but also important in the prevention of various diseases associated with oxidative stress.
    [Show full text]
  • S-Abscisic Acid
    CLH REPORT FOR[S-(Z,E)]-5-(1-HYDROXY-2,6,6-TRIMETHYL-4-OXOCYCLOHEX-2-EN- 1-YL)-3-METHYLPENTA-2,4-DIENOIC ACID; S-ABSCISIC ACID CLH report Proposal for Harmonised Classification and Labelling Based on Regulation (EC) No 1272/2008 (CLP Regulation), Annex VI, Part 2 International Chemical Identification: [S-(Z,E)]-5-(1-hydroxy-2,6,6-trimethyl-4-oxocyclohex-2- en-1-yl)-3-methylpenta-2,4-dienoic acid; S-abscisic acid EC Number: 244-319-5 CAS Number: 21293-29-8 Index Number: - Contact details for dossier submitter: Bureau REACH National Institute for Public Health and the Environment (RIVM) The Netherlands [email protected] Version number: 1 Date: August 2018 Note on confidential information Please be aware that this report is intended to be made publicly available. Therefore it should not contain any confidential information. Such information should be provided in a separate confidential Annex to this report, clearly marked as such. [04.01-MF-003.01] CLH REPORT FOR[S-(Z,E)]-5-(1-HYDROXY-2,6,6-TRIMETHYL-4-OXOCYCLOHEX-2-EN- 1-YL)-3-METHYLPENTA-2,4-DIENOIC ACID; S-ABSCISIC ACID CONTENTS 1 IDENTITY OF THE SUBSTANCE........................................................................................................................1 1.1 NAME AND OTHER IDENTIFIERS OF THE SUBSTANCE...............................................................................................1 1.2 COMPOSITION OF THE SUBSTANCE..........................................................................................................................1 2 PROPOSED HARMONISED
    [Show full text]
  • Genetic Modification of Tomato with the Tobacco Lycopene Β-Cyclase Gene Produces High Β-Carotene and Lycopene Fruit
    Z. Naturforsch. 2016; 71(9-10)c: 295–301 Louise Ralley, Wolfgang Schucha, Paul D. Fraser and Peter M. Bramley* Genetic modification of tomato with the tobacco lycopene β-cyclase gene produces high β-carotene and lycopene fruit DOI 10.1515/znc-2016-0102 and alleviation of vitamin A deficiency by β-carotene, Received May 18, 2016; revised July 4, 2016; accepted July 6, 2016 which is pro-vitamin A [4]. Deficiency of vitamin A causes xerophthalmia, blindness and premature death, espe- Abstract: Transgenic Solanum lycopersicum plants cially in children aged 1–4 [5]. Since humans cannot expressing an additional copy of the lycopene β-cyclase synthesise carotenoids de novo, these health-promoting gene (LCYB) from Nicotiana tabacum, under the control compounds must be taken in sufficient quantities in the of the Arabidopsis polyubiquitin promoter (UBQ3), have diet. Consequently, increasing their levels in fruit and been generated. Expression of LCYB was increased some vegetables is beneficial to health. Tomato products are 10-fold in ripening fruit compared to vegetative tissues. the most common source of dietary lycopene. Although The ripe fruit showed an orange pigmentation, due to ripe tomato fruit contains β-carotene, the amount is rela- increased levels (up to 5-fold) of β-carotene, with negli- tively low [1]. Therefore, approaches to elevate β-carotene gible changes to other carotenoids, including lycopene. levels, with no reduction in lycopene, are a goal of Phenotypic changes in carotenoids were found in vegeta- plant breeders. One strategy that has been employed to tive tissues, but levels of biosynthetically related isopre- increase levels of health promoting carotenoids in fruits noids such as tocopherols, ubiquinone and plastoquinone and vegetables for human and animal consumption is were barely altered.
    [Show full text]
  • Carotenoid Composition of Strawberry Tree (Arbutus Unedo L.) Fruits
    Accepted Manuscript Carotenoid composition of strawberry tree (Arbutus unedo L.) fruits Raúl Delgado-Pelayo, Lourdes Gallardo-Guerrero, Dámaso Hornero-Méndez PII: S0308-8146(15)30273-9 DOI: http://dx.doi.org/10.1016/j.foodchem.2015.11.135 Reference: FOCH 18476 To appear in: Food Chemistry Received Date: 25 May 2015 Revised Date: 21 November 2015 Accepted Date: 28 November 2015 Please cite this article as: Delgado-Pelayo, R., Gallardo-Guerrero, L., Hornero-Méndez, D., Carotenoid composition of strawberry tree (Arbutus unedo L.) fruits, Food Chemistry (2015), doi: http://dx.doi.org/10.1016/j.foodchem. 2015.11.135 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Carotenoid composition of strawberry tree (Arbutus unedo L.) fruits. Raúl Delgado-Pelayo, Lourdes Gallardo-Guerrero, Dámaso Hornero-Méndez* Group of Chemistry and Biochemistry of Pigments. Food Phytochemistry Department. Instituto de la Grasa (CSIC). Campus Universidad Pablo de Olavide, Ctra. de Utrera km. 1. 41013 - Sevilla (Spain). * Corresponding author. Telephone: +34 954611550; Fax: +34 954616790; e-mail: [email protected] 1 Abstract The carotenoid composition of strawberry tree (A. unedo) fruits has been characterised in detail and quantified for the first time. According to the total carotenoid content (over 340 µg/g dw), mature strawberry tree berries can be classified as fruits with very high carotenoid content (> 20 µg/g dw).
    [Show full text]
  • Vitamins a and E and Carotenoids
    Fat-Soluble Vitamins & Micronutrients: Vitamins A and E and Carotenoids Vitamins A (retinol) and E (tocopherol) and the carotenoids are fat-soluble micronutrients that are found in many foods, including some vegetables, fruits, meats, and animal products. Fish-liver oils, liver, egg yolks, butter, and cream are known for their higher content of vitamin A. Nuts and seeds are particularly rich sources of vitamin E (Thomas 2006). At least 700 carotenoids—fat-soluble red and yellow pigments—are found in nature (Britton 2004). Americans consume 40–50 of these carotenoids, primarily in fruits and vegetables (Khachik 1992), and smaller amounts in poultry products, including egg yolks, and in seafoods (Boylston 2007). Six major carotenoids are found in human serum: alpha-carotene, beta-carotene, beta-cryptoxanthin, lutein, trans-lycopene, and zeaxanthin. Major carotene sources are orange-colored fruits and vegetables such as carrots, pumpkins, and mangos. Lutein and zeaxanthin are also found in dark green leafy vegetables, where any orange coloring is overshadowed by chlorophyll. Trans-Lycopene is obtained primarily from tomato and tomato products. For information on the carotenoid content of U.S. foods, see the 1998 carotenoid database created by the U.S. Department of Agriculture and the Nutrition Coordinating Center at the University of Minnesota (http://www.nal.usda.gov/fnic/foodcomp/Data/car98/car98.html). Vitamin A, found in foods that come from animal sources, is called preformed vitamin A. Some carotenoids found in colorful fruits and vegetables are called provitamin A; they are metabolized in the body to vitamin A. Among the carotenoids, beta-carotene, a retinol dimer, has the most significant provitamin A activity.
    [Show full text]