Technology for Small Spacecraft (1994)

Total Page:16

File Type:pdf, Size:1020Kb

Technology for Small Spacecraft (1994) THE NATIONAL ACADEMIES PRESS This PDF is available at http://nap.edu/2351 SHARE Technology for Small Spacecraft (1994) DETAILS 156 pages | 8.5 x 11 | PAPERBACK ISBN 978-0-309-05075-3 | DOI 10.17226/2351 CONTRIBUTORS GET THIS BOOK Panel on Small Spacecraft Technology, National Research Council FIND RELATED TITLES SUGGESTED CITATION National Research Council 1994. Technology for Small Spacecraft. Washington, DC: The National Academies Press. https://doi.org/10.17226/2351. Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Copyright © National Academy of Sciences. All rights reserved. Technology for Small Spacecraft i Technology for Small Spacecraft Panel on Small Spacecraft Technology Committee on Advanced Space Technology Aeronautics and Space Engineering Board Commission on Engineering and Technical Systems National Research Council National Academy Press Washington, D.C. 1994 Copyright National Academy of Sciences. All rights reserved. Technology for Small Spacecraft ii NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose mem- bers are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the panel responsible for the report were chosen for their special competencies and with regard for appropriate balance. This report has been reviewed by a group other than the authors according to procedures approved by a Report Review Committee con- sisting of members of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Bruce Alberts is president of the National Academy of Sciences. The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineer- ing programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. Robert M. White is president of the National Academy of Engineering. The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initia- tive, to identify issues of medical care, research, and education. Dr. Kenneth I. Shine is president of the Institute of Medicine. The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of sci- ence and technology with the Academy’s purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Bruce Alberts and Dr. Robert M. White are chairman and vice-chairman, respectively, of the National Research Council. This study was supported by Contract NASW-4003 between the National Academy of Sciences and the National Aeronautics and Space Administration. Library of Congress Catalog Card Number 94–67334 International Standard Book Number 0-309-05075-8 Available in limited supply from: The Aeronautics and Space Engineering Board 2101 Constitution Avenue, N.W. Washington, D.C. 20418 Additional copies available for sale from: National Academy Press 2101 Constitution Avenue, N.W., Box 285 Washington, D.C. 20055 1-800-624-6242 or (202) 334-3313 Copyright 1994 by the National Academy of Sciences. All rights reserved. Printed in the United States of America Copyright National Academy of Sciences. All rights reserved. Technology for Small Spacecraft iii PANEL ON SMALL SPACECRAFT TECHNOLOGY Laurence J. Adams, Martin Marietta (Ret.), Consultant, Potomac, MD, Chair Steven Aftergood, Senior Research Analyst, Federation of American Scientists, Washington, DC Jay E. Boudreau, President, Ballena Systems Corporation, Los Alamos, NM Bernard Budiansky, Gordon McKay Professor of Structural Mechanics and Abbot and James Lawrence Professor of Engineering, Harvard University, Cambridge, MA Robert S. Cooper, President and Chief Executive Officer, Atlantic Aerospace Electronics Corporation, Greenbelt, MD Fred E. Culick, Professor, Mechanical Engineering and Jet Propulsion, California Institute of Technology, Altadena, CA Wolfgang H. Demisch, Managing Director, Bankers Trust, New York, NY Emanuel J. Fthenakis, Fairchild Industries (Ret.), Potomac, MD Clark W. Hawk, Director, Propulsion Research Center, Professor, Mechanical Engineering, University of Alabama, Huntsville, Huntsville, AL John M. Hedgepeth, President, Digisim Corporation, Santa Barbara, CA Mary V. Jones, Director, Engineering Support, Atlantic Research Corporation, Gainesville, VA Frank E. Marble, Richard L. Hayman and Dorothy M. Hayman Professor of Mechanical Engineering, and Professor of Jet Propulsion, California Institute of Technology, Pasadena, CA Franklin D. Martin, Director, Scientific Space Programs, NASA Space Flight Programs, Space Systems Division, Lockheed Missiles and Space Company, Inc., Sunnyvale, CA (Term ended 2/28/94) John H. McElroy, Dean of Engineering, University of Texas, Arlington, Arlington, TX Duane T. McRuer, Chair, Aeronautics and Space Engineering Board, Chairman, Systems Technology, Inc., Hawthorne, CA Norman F. Parker, Varian Associates (Ret.), Cardiff by the Sea, CA Robert O. Ritchie, Director, Center for Advanced Materials, Lawrence Berkeley Laboratory, Berkeley, CA William C. Schneider, Consultant, Silver Spring, MD Alfred Schock, Director, Energy System Dept., Fairchild Space and Defense Corporation, Germantown, MD Richard R. Weiss, Sr. Staff Specialist, Office of the Undersecretary of Defense (Acquisitions), Arlington, VA John B. West, Professor of Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA William L. Whittaker, Director & Senior Research Scientist, Carnegie Mellon University, Pittsburgh, PA Advisor Wiley J. Larson, Associate Professor, U. S. Air Force Academy, Department of Astronautics, Colorado Springs, CO Staff JoAnn Clayton, Director Allison C. Sandlin, Study Director William E. Campbell, Senior Project Assistant Maryann Shanesy, Project Assistant Copyright National Academy of Sciences. All rights reserved. Technology for Small Spacecraft iv COMMITTEE ON ADVANCED SPACE TECHNOLOGY Laurence J. Adams, Martin Marietta (Ret.), Consultant, Potomac, MD, Chair Jay E. Boudreau, President, Ballena Systems Corporation, Los Alamos, NM Bernard Budiansky, Gordon McKay Professor of Structural Mechanics and Abbot and James Lawrence Professor of Engineering, Harvard University, Cambridge, MA Robert S. Cooper, President and Chief Executive Officer, Atlantic Aerospace Electronics Corporation, Greenbelt, MD Fred E. Culick, Professor, Mechanical Engineering and Jet Propulsion, California Institute of Technology, Altadena, CA Emanuel J. Fthenakis, Fairchild Industries (Ret.), Potomac, MD Clark W. Hawk, Director, Propulsion Research Center, Professor, Mechanical Engineering, University of Alabama, Huntsville, Huntsville, AL Mary V. Jones, Director, Engineering Support, Atlantic Research Corporation, Gainesville, VA Franklin D. Martin, Director, Scientific Space Programs, NASA Space Flight Programs, Space Systems Division, Lockheed Missiles and Space Company, Inc., Sunnyvale, CA John H. McElroy, Dean of Engineering, University of Texas, Arlington, Arlington, TX Norman F. Parker, Varian Associates (Ret.), Cardiff by the Sea, CA Robert O. Ritchie, Director, Center for Advanced Materials, Lawrence Berkeley Laboratory, Berkeley, CA William C. Schneider, Consultant, Silver Spring, MD Richard R. Weiss, Sr. Staff Specialist, Office of the Undersecretary of Defense (Acquisitions), Arlington, VA John B. West, Professor of Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA William L. Whittaker, Director & Senior Research
Recommended publications
  • Space Industry Bulletin July 2019
    VOLUME 2 • ISSUE 7 www.spaceindustrybulletin.com Space Industry Bulletin Market analysis and business intelligence for the space community Commercialising LEO will need destinations beyond the ISS ommercialisation of low investors. And it will depend on and a few private companies Earth orbit will require having destinations beyond just does not make a sustainable in - Cnew models for public- the International Space Station. frastructure. So how do we build private partnership, and it will be For almost two decades, the this community? built on a technology infras- ISS has been the sole hub for Kerry Timmons, LEO com - tructure that will include the commercialisation activities, pro - mercial programme manage - CONTENTS likes of robotics and machine viding unique access to research ment lead at Lockheed Martin learning. and development in a micro- Space, said: “It requires collab - Industry news 2 But commercial success will gravity environment. oration. It needs ‘old space’ and l Virgin Galactic to go public hinge on an infrastructure that Doug Comstock, deputy chief ‘new space’ working in partner - following merger “buys down the risk” for financial officer for integration ship. It needs the commercial l Launch of balloon marks the commercial partners and at NASA, said: “The ISS has 14 market to be energised to bring beginning of a new space era different facilities built by 11 dif - their money and ideas to space.” l Innovation loans offer a share of ferent companies. We don’t want When we talk about commer - £10m funding a gap in capability for human cialising LEO, it’s important to l Galileo outage helps build the access to LEO.” recognise that space is not the case for sovereign UK GNSS Along with destinations, suc - first frontier, and also that Earth l OneWeb takes sustainability into cessful commercialisation of LEO imagery is an industry success orbit and calls on the wider industry will depend on a community, story.
    [Show full text]
  • Small Satellite Launchers
    SMALL SATELLITE LAUNCHERS NewSpace Index 2020/04/20 Current status and time from development start to the first successful or planned orbital launch NEWSPACE.IM Northrop Grumman Pegasus 1990 Scorpius Space Launch Demi-Sprite ? Makeyev OKB Shtil 1998 Interorbital Systems NEPTUNE N1 ? SpaceX Falcon 1e 2008 Interstellar Technologies Zero 2021 MT Aerospace MTA, WARR, Daneo ? Rocket Lab Electron 2017 Nammo North Star 2020 CTA VLM 2020 Acrux Montenegro ? Frontier Astronautics ? ? Earth to Sky ? 2021 Zero 2 Infinity Bloostar ? CASIC / ExPace Kuaizhou-1A (Fei Tian 1) 2017 SpaceLS Prometheus-1 ? MISHAAL Aerospace M-OV ? CONAE Tronador II 2020 TLON Space Aventura I ? Rocketcrafters Intrepid-1 2020 ARCA Space Haas 2CA ? Aerojet Rocketdyne SPARK / Super Strypi 2015 Generation Orbit GoLauncher 2 ? PLD Space Miura 5 (Arion 2) 2021 Swiss Space Systems SOAR 2018 Heliaq ALV-2 ? Gilmour Space Eris-S 2021 Roketsan UFS 2023 Independence-X DNLV 2021 Beyond Earth ? ? Bagaveev Corporation Bagaveev ? Open Space Orbital Neutrino I ? LIA Aerospace Procyon 2026 JAXA SS-520-4 2017 Swedish Space Corporation Rainbow 2021 SpinLaunch ? 2022 Pipeline2Space ? ? Perigee Blue Whale 2020 Link Space New Line 1 2021 Lin Industrial Taymyr-1A ? Leaf Space Primo ? Firefly 2020 Exos Aerospace Jaguar ? Cubecab Cab-3A 2022 Celestia Aerospace Space Arrow CM ? bluShift Aerospace Red Dwarf 2022 Black Arrow Black Arrow 2 ? Tranquility Aerospace Devon Two ? Masterra Space MINSAT-2000 2021 LEO Launcher & Logistics ? ? ISRO SSLV (PSLV Light) 2020 Wagner Industries Konshu ? VSAT ? ? VALT
    [Show full text]
  • SHOW DAILY SHOW Aug
    Aug. 8, 2019 • Visit us at 239T DAY 3 SHOW DAILY OFFICIAL SHOW DAILY OF THE 33RD AIAA/USU CONFERENCE ON SMALL SATELLITES NASA seeking proposals for cubesats on second SLS launch ASA is soliciting proposals to fly cubesats on the second flight of its Space Launch N System, even as those cubesats chosen for the first SLS launch patiently await their ride. At an agency town hall meeting during the Conference on Small Satellites Aug. 5, Renee Cox, deputy manager for SLS payload integration at NASA’s Marshall Space Flight Center, said the agency was planning to fly cubesats on Artemis 2, the second flight of the SLS, tentatively sched- uled for 2022. “Recently we achieved a level of maturity that has allowed us to identify performance margin, so that means we get to fly cubesats,” she said of the decision to add cubesats to the mission. NASA announced in 2016 it would fly 13 cubesats on the first SLS mission, originally called Explora- tion Mission (EM) 1 and renamed Artemis 1 earlier this year. Those satellites include NASA-funded science and technology demonstration missions, payloads from international partners and compet- itors in the Cube Quest Challenge competition. As with the Artemis 1 mission, the cubesats flying on Artemis 2 will be mounted on the inside of a stage adapter ring between the SLS upper stage and the Orion spacecraft, and will be de- Renee Cox, deputy manager for SLS payload integration, at SmallSat on Wednesday holds a model of an adapter ployed after Orion separates. Unlike Artemis 1, ring that can accomodate six-unit and 12-unit cubesats between the SLS upper stage and Orion spacecraft.
    [Show full text]
  • A Comparison of the Rocket and Satellite Sectors$ Andrew S
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/authorsrights Author's personal copy Acta Astronautica 103 (2014) 142–167 Contents lists available at ScienceDirect Acta Astronautica journal homepage: www.elsevier.com/locate/actaastro China's space development history: A comparison of the rocket and satellite sectors$ Andrew S. Erickson a,b,n,1 a U.S. Naval War College, United States b John King Fairbank Center for Chinese Studies, Harvard University, United States article info abstract Article history: China is the most recent great power to emerge in aerospace. It has become the first Received 3 March 2014 developing nation to achieve some measure of aerospace production capability across Received in revised form the board. Outside the developed aerospace powers, only China has demonstrated 16 May 2014 competence concerning all aspects of a world-class aerospace industry: production of Accepted 16 June 2014 advanced rockets, satellites, and aircraft and of their supporting engineering, materials, Available online 26 June 2014 and systems. As an emerging great power during the Cold War, China was still limited in Keywords: resources, technology access, and capabilities.
    [Show full text]
  • Development and Definition of a Cubesat Demonstrator for a Water Propulsion System
    Development and Definition of a CubeSat Demonstrator for a Water Propulsion System Entwicklung und Definition eines CubeSat Demonstrators für ein Water Propulsion Antriebssystem Master Thesis of cand. aer Colum Walter IRS-20-S-046 Supervisors: Prof. Dr. Stefan Schlechtriem M.Sc. Marius Wilhelm M.Sc. Malte Wurdak Institute of Space Systems, University of Stuttgart January 2021 Abstract ArianeGroup is currently developing the innovative semi-electric Water Propulsion System (WPS) based on the in-orbit production of the propellants, hydrogen and oxygen, by a polymer electrolyte membrane (PEM) electrolyzer. The propulsion system is composed of new technologies and components that shall be tested in their operational environment to verify their functionality in space. Therefore, a demonstrator system concept is developed which shall be tested on a CubeSat platform. An examination of the current developments of the WPS is performed in the first step followed by a description of the CubeSat mission by a project breakdown structure and a design and development plan for the Demonstrator Water Propulsion System (DWPS). The outcomes hereof combined with the results of a literature study on suitable CubeSat platforms result in the definition of technical requirements on the demonstrator system. These technical requirements form the foundation for the development of a concept of the DWPS which is analyzed by a Matlab calculation on the behavior of the gases produced by the electrolyzer. For the demonstrator propulsion system, a preliminary mission is defined in a last step. It provides an overview of the expected performance of the system, reviews orbit and launch possibilities and defines the operational procedure in space.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • MIT Japan Program Working Paper 01.10 the GLOBAL COMMERCIAL
    MIT Japan Program Working Paper 01.10 THE GLOBAL COMMERCIAL SPACE LAUNCH INDUSTRY: JAPAN IN COMPARATIVE PERSPECTIVE Saadia M. Pekkanen Assistant Professor Department of Political Science Middlebury College Middlebury, VT 05753 [email protected] I am grateful to Marco Caceres, Senior Analyst and Director of Space Studies, Teal Group Corporation; Mark Coleman, Chemical Propulsion Information Agency (CPIA), Johns Hopkins University; and Takashi Ishii, General Manager, Space Division, The Society of Japanese Aerospace Companies (SJAC), Tokyo, for providing basic information concerning launch vehicles. I also thank Richard Samuels and Robert Pekkanen for their encouragement and comments. Finally, I thank Kartik Raj for his excellent research assistance. Financial suppport for the Japan portion of this project was provided graciously through a Postdoctoral Fellowship at the Harvard Academy of International and Area Studies. MIT Japan Program Working Paper Series 01.10 Center for International Studies Massachusetts Institute of Technology Room E38-7th Floor Cambridge, MA 02139 Phone: 617-252-1483 Fax: 617-258-7432 Date of Publication: July 16, 2001 © MIT Japan Program Introduction Japan has been seriously attempting to break into the commercial space launch vehicles industry since at least the mid 1970s. Yet very little is known about this story, and about the politics and perceptions that are continuing to drive Japanese efforts despite many outright failures in the indigenization of the industry. This story, therefore, is important not just because of the widespread economic and technological merits of the space launch vehicles sector which are considerable. It is also important because it speaks directly to the ongoing debates about the Japanese developmental state and, contrary to the new wisdom in light of Japan's recession, the continuation of its high technology policy as a whole.
    [Show full text]
  • Espinsights the Global Space Activity Monitor
    ESPInsights The Global Space Activity Monitor Issue 6 April-June 2020 CONTENTS FOCUS ..................................................................................................................... 6 The Crew Dragon mission to the ISS and the Commercial Crew Program ..................................... 6 SPACE POLICY AND PROGRAMMES .................................................................................... 7 EUROPE ................................................................................................................. 7 COVID-19 and the European space sector ....................................................................... 7 Space technologies for European defence ...................................................................... 7 ESA Earth Observation Missions ................................................................................... 8 Thales Alenia Space among HLS competitors ................................................................... 8 Advancements for the European Service Module ............................................................... 9 Airbus for the Martian Sample Fetch Rover ..................................................................... 9 New appointments in ESA, GSA and Eurospace ................................................................ 10 Italy introduces Platino, regions launch Mirror Copernicus .................................................. 10 DLR new research observatory ..................................................................................
    [Show full text]
  • China Missile Chronology
    China Missile Chronology Last update: June 2012 2012 18 May 2012 The Department of Defense releases the 2012 “Military and Security Developments Involving the People’s Republic of China” report. The report highlights that the PLA Air force is modernizing its ground‐based air defense forces with conventional medium‐range ballistic missiles, which can “conduct precision strikes against land targets and naval ships, including aircraft carriers, operating far from China’s shores beyond the first island chain.” According to the Department of Defense’s report, China will acquire DF‐31A intercontinental ballistic missiles (ICBMs) and enhanced, silo‐based DF‐5 (CSS‐4) ICMBs by 2015. To date, China is the third country that has developed a stealth combat aircraft, after the U.S. and Russia. J‐20 is expected conduct military missions by 2018. It will be equipped with “air‐to‐air missiles, air‐to‐surface missiles, anti‐radiation missiles, laser‐guided bombs and drop bombs.”J‐20 stealth fighter is a distinguished example of Chinese military modernization. – Office of Secretary of Defense, “Annual Report to Congress: Military and Security Developments Involving the People’s Republic of China 2012,” distributed by U.S. Department of Defense, May 2012, www.defense.gov; Office of the Assistant Secretary of Defense, David Helvey, “Press Briefing on 2012 DOD Report to Congress on ‘Military and Security Developments Involving the People’s Republic of China,’” distributed by U.S. Department of Defense, 18 May 2012, www.defense.gov; “Chengdu J‐20 Multirole Stealth Fighter Aircraft, China,” Airforce‐Technology, www.airforce‐technology.com. 15 April 2012 North Korea shows off a potential new ICBM in a military parade.
    [Show full text]
  • DEPARTMENT of SPACE DEMAND NO.92 Department of Space A
    216 Notes on Demands for Grants, 2002-2003 DEPARTMENT OF SPACE DEMAND NO.92 Department of Space A. The Budget allocations, net of recoveries, are given below: (In crores of Rupees) Budget 2001-2002 Revised 2001-2002 Budget 2002-2003 Major Head Plan Non-Plan Total Plan Non-Plan Total Plan Non-Plan Total Revenue 1288.46 320.00 1608.46 1266.63 309.35 1575.98 1637.75 313.87 1951.62 Capital 421.54 ... 421.54 333.37 ... 333.37 312.25 ... 312.25 Total 1710.00 320.00 2030.00 1600.00 309.35 1909.35 1950.00 313.87 2263.87 1. Secretariat - Economic Services 3451 0.01 4.17 4.18 0.01 3.81 3.82 ... 3.85 3.85 Space Research Rocket Development 2. Geo -Synchronous Satellite Launch Vehicle 3402 98.31 ... 98.31 83.56 ... 83.56 101.13 ... 101.13 5402 0.35 ... 0.35 0.30 ... 0.30 ... ... ... Total 98.66 ... 98.66 83.86 ... 83.86 101.13 ... 101.13 3. GSLV MK-III Development. 3402 5.00 ... 5.00 1.00 ... 1.00 163.00 ... 163.00 5402 ... ... ... ... ... ... 17.00 ... 17.00 Total 5.00 ... 5.00 1.00 ... 1.00 180.00 ... 180.00 4. Cryogenic Upper Stage (CUS) 3402 20.34 ... 20.34 14.82 ... 14.82 15.56 ... 15.56 Project 5402 0.96 ... 0.96 5.49 ... 5.49 0.82 ... 0.82 Total 21.30 ... 21.30 20.31 ... 20.31 16.38 ... 16.38 5. C-20 Cryogenic Stage 3402 0.10 ..
    [Show full text]
  • ESPI Insights Space Sector Watch
    ESPI Insights Space Sector Watch Issue 12 January 2021 THIS MONTH IN THE SPACE SECTOR… 2021 AND NEW EUROPEAN SPACE AMBITIONS ............................................................................. 1 POLICY & PROGRAMMES .............................................................................................................. 2 Josef Aschbacher elected new ESA DG .................................................................................................. 2 BREXIT deal and future UK participation in EU space programmes..................................................... 2 French space sector to receive €500 million investment boost ........................................................... 2 Multiple new U.S. Space Policies released ............................................................................................. 3 Updates on Artemis Accords: new MoU with Brazil ............................................................................... 4 Jim Bridenstine bids farewell to NASA as the agency awaits new administrator nomination.......... 4 Phil Evans becomes new EUMETSAT DG ............................................................................................... 4 NASA and FAA sign MoU on Commercial Space Activities .................................................................. 4 Congress approves Omnibus spending bill for Fiscal Year 2021 ......................................................... 4 Hayabusa-2 capsule returns Ryugu asteroid sample to Earth .............................................................
    [Show full text]
  • China Dream, Space Dream: China's Progress in Space Technologies and Implications for the United States
    China Dream, Space Dream 中国梦,航天梦China’s Progress in Space Technologies and Implications for the United States A report prepared for the U.S.-China Economic and Security Review Commission Kevin Pollpeter Eric Anderson Jordan Wilson Fan Yang Acknowledgements: The authors would like to thank Dr. Patrick Besha and Dr. Scott Pace for reviewing a previous draft of this report. They would also like to thank Lynne Bush and Bret Silvis for their master editing skills. Of course, any errors or omissions are the fault of authors. Disclaimer: This research report was prepared at the request of the Commission to support its deliberations. Posting of the report to the Commission's website is intended to promote greater public understanding of the issues addressed by the Commission in its ongoing assessment of U.S.-China economic relations and their implications for U.S. security, as mandated by Public Law 106-398 and Public Law 108-7. However, it does not necessarily imply an endorsement by the Commission or any individual Commissioner of the views or conclusions expressed in this commissioned research report. CONTENTS Acronyms ......................................................................................................................................... i Executive Summary ....................................................................................................................... iii Introduction ................................................................................................................................... 1
    [Show full text]