Fact Not Fiction. Science Not Speculation

Total Page:16

File Type:pdf, Size:1020Kb

Fact Not Fiction. Science Not Speculation EURE media kit 2020 On Land. At Sea. In Flight. Fact not fiction. Science not speculation. What’s on the radar? Vision of Plug-free power Then there were five Advances in sense-and-avoid systems What 5G will mean for unmanned vehicle control the future Wireless charging technologies Key advances in image Signals from space explained and compared Strong attachments sensor technology GNSS rises to the accuracy challenge Way points Why you need to latch on to advances in connectors Advances in MEMS Match points How to pick the right and what they mean Blades of class electric motor for a UAV for navigation Take care How to match a propeller to a UAV Focus on maintenance This year’s modelling Chain of command The latest in simulation and testing kit Advances in ground control systems Rugged and reliable Who wants data? Burning ambition Plug and play A seamless transition Under the surface Tecdron’s TC800-FF UGV has been Robot Aviation looks to fill a gap in the UAV XOcean’s XO-450 hybrid USV collects and delivers How the Wingcopter uses only one propulsion Development details of the iXblue DriX USV designed to fight fires – at least for now market with its all-weather SkyRobot FX450 How Milrem developed its Multiscope commercial UGV system to shift between all flight modes and its underwater payload gondola UST 21 : AUG/SEPT 2018 UST 22 : OCT/NOV 2018 UST 23 : DEC/JAN 2019 UST 24 : FEB/MAR 2019 UST 25 : APRIL/MAY 2019 UST 26 : JUNE/JULY 2019 Read all back issues online Read all back issues online Read all back issues online Read all back issues online Read all back issues online Read all back issues online www.ust-media.com www.ust-media.com www.ust-media.com www.ust-media.com www.ust-media.com www.ust-media.com e22 e22 e22 e22 e22 e22 UK £15, USA $30, EUROPE UK £15, USA $30, EUROPE UK £15, USA $30, EUROPE UK £15, USA $30, EUROPE UK £15, USA $30, EUROPE UK £15, USA $30, EUROPE Advanced Aircraft Company HAMR UAV | Dossier 5G communications | Focus Artist’s rendering of the HAMR with the boom fairings in by the drag, both of which can be Peter Donaldson details the development of this hybrid multi- place. The balls on sticks attached to the leading edges are measured in pounds or kilos, so the mass balance weights for stability (Courtesy of AAC) rotor craft, designed as the prelude to a more advanced system units cancel each other out to leave a dimensionless figure, which coincides with the glide ratio. Because powered-lift vehicles by definition have to consume power to Launched in 2014, UST is generate lift and overcome drag, it is hard to measure the drag, so the Shape of calculation is more complicated. “That’s why, in the case of a helicopter or a multi-rotor, we use effective lift-to- drag ratio,” Fredericks says. “Weight is things to come the same as lift in the numerator, but drag is replaced with velocity divided by the first ever publication to power.” This gives the drag, because the AVs provide tremendous These days AAC is focused on span forward boom and four on the more power required to achieve a opportunities to explore precision agriculture and survey/ longer main boom at the rear. given velocity at a given weight, the the potential advantages mapping, not only because current The front boom also carries a pair more drag there must be. The actual Again, the units cancel out to leave a so we held an aerodynamic clean- Blades of class of unusual airframe regulations permit UAVs but because of pivoting fairings, one between each eL/D calculation involves multiplying dimensionless ratio. up brainstorming session,” Fredericks How to match a propeller to a UAV configurations. Hybrids there is an established market for these motor and the fuselage, while the rear the vehicle’s weight by its velocity and “The aerodynamic efficiency of says. From that, the team selected three Take care Uthat combine the characteristics of services. boom carries four fairings in unequal- dividing the result by the power required. conventional multi-rotors is terrible, solutions. Focus on maintenance focus entirely on providing multicopters and fixed-wing aircraft are “The same design of the HAMR serves length pairs on each side. The longer increasingly common, but the Hybrid both applications, the only difference fairings are between the outer and This year’s modelling Advanced Multi-Rotor (HAMR) being being the sensors that would be inner motors, while the shorter ones developed by the Advanced Aircraft installed,” Fredericks says. are between the inner motors and the Picking up speed Chain of command The latest in simulation and testing kit Company (AAC) under NASA alumnus AAC also plans to expand into fuselage. William ‘Bill’ Fredericks is unique. linear infrastructure inspection – The composite fuselage houses a Advances in ground control systems It uses passively pivoting fairings power lines, pipelines and railway Desert Aircraft DA-35 engine (examined The impending introduction of 5G comms will have that automatically adjust themselves in tracks – and package delivery as the in detail in UST 15, August/September a huge impact on how unmanned systems are airflow to reduce drag and augment lift regulatory framework opens up to 2017) as well as a generator, a fuel tank, independent coverage of the 5G more will herald more responsive remote control of unmanned cars. This Audi Q7 SUV demonstrated in forward flight, and minimise drag in a permit commercial beyond-line-of-sight a Thunder Power lithium-ion battery, an controlled and organised. Nick Flaherty reports the technology at CES 2019 using chips and antennas from Qualcomm (Courtesy of Audi) hover, without the need for actuators. operations. autopilot and comms electronics, and Although the HAMR remains in rotor- For the government/military sector, two payload bays, one in the nose and driven flight throughout its envelope, he says, the HAMR spans the gap in one in the centre of the fuselage. its configuration and lift augmentation size between Group 1 hand-launched he development of the data links at up to 20 Gbit/s – 20 times as well as the 802.11p standard that is 8K high-quality cameras on UAVs to a The specification allows the radios, compared to the all-new 5G system improve significantly on the and Group 2 catapult-launched UAVs, Quest for drag reduction next generation of cellular that of current speeds – as well as low a variant of wi-fi which is used for the smartphone terminal, and for quickly orthogonal frequency domain Standalone (SA) systems. range, speed, payload and endurance noting that it has the minimal logistical The HAMR’s fairings – passively moving comms technology has latency and the ability to support short Digital Short Range Communications downloading high-definition (HD) maps modulation (OFDM) protocols already The advantage of SA is that the engineering of unmanned offered by comparable conventional footprint associated with Group 1 craft, wing surfaces – emerged from efforts reached the point where it data packets from millions of autonomous (DSRC) technology for vehicle-to-vehicle to vehicles. used in 3G and 4G to operate in more radios based on it are simpler and Burning ambition multi-rotor UAVs, and provide a degree which are typically lightweight but with to improve multi-rotor aerodynamics, is ready to be rolled out for systems. It is the first specification that (V2V) links. With Release 16, all of this can be than 30 different bands – from 700 MHz consume less power, and will improve of failsafe operation thanks to a hybrid greater endurance and the ability to carry particularly the lift-to-drag (L/D) ratio. Tunmanned systems. Release 16 of the meets the IMT-2020 targets set in 2012 The low latency of the link can be used achieved using mainstream, high- up to 2.6 GHz, which is just above the performance in throughput up to the 5G specification was frozen at the end by the International Telecommunications for more responsive remote control of volume components that are developed 2.4 GHz unlicenced band of wi-fi; edge of the network, while supporting Under the surface Tecdron’s TC800-FF UGV has been petrol-electric power system. payloads closer to those of the larger Multi-rotors typically have an effective When we interviewed Fredericks Group 2 vehicles. lift-to-drag (eL/D) ratio of around 2, of 2018, and chips built to it are being Union for what the International Mobile unmanned cars and aircraft, as well as for the consumer cellular phone 3.3 GHz up to 6 GHz, and even the the ultra-reliable low latency comms Development details of the iXblue DriX USV designed to fight fires – at least for now for UST issue 13 (April-May 2017), he Fredericks explains, manned helicopters launched in the coming months for use Telecommunication system would look providing more efficient data connections business, allowing autonomous system 24-52 GHz ‘millimetre wave’ bands, (URLLC) of Release 16. Although NSA explained that this vehicle was intended Final configuration have a ratio of between 4 and 5, and in smartphones, but the technology like in 2020 and beyond. to and from roadside infrastructures designers to access the cost savings of allowing system designers to trade off 5G radios will be the first to roll out, they and its underwater payload gondola to pave the way for the more demanding After experimenting with prototypes, of small fixed-wing UAVs achieve ratios in is also set to play a crucial role in the These new capabilities open up the for driverless cars for vehicle-to- volume production.
Recommended publications
  • Annual Report 2014 OUR VISION
    AMOS Centre for Autonomous Marine Operations and Systems Annual Report 2014 Annual Report OUR VISION To establish a world-leading research centre for autonomous marine operations and systems: To nourish a lively scientific heart in which fundamental knowledge is created through multidisciplinary theoretical, numerical, and experimental research within the knowledge fields of hydrodynamics, structural mechanics, guidance, navigation, and control. Cutting-edge inter-disciplinary research will provide the necessary bridge to realise high levels of autonomy for ships and ocean structures, unmanned vehicles, and marine operations and to address the challenges associated with greener and safer maritime transport, monitoring and surveillance of the coast and oceans, offshore renewable energy, and oil and gas exploration and production in deep waters and Arctic waters. Editors: Annika Bremvåg and Thor I. Fossen Copyright AMOS, NTNU, 2014 www.ntnu.edu/amos AMOS • Annual Report 2014 Table of Contents Our Vision ........................................................................................................................................................................ 2 Director’s Report: Licence to Create............................................................................................................................. 4 Organization, Collaborators, and Facts and Figures 2014 ......................................................................................... 6 Presentation of New Affiliated Scientists...................................................................................................................
    [Show full text]
  • Development of the Crew Dragon ECLSS
    ICES-2020-333 Development of the Crew Dragon ECLSS Jason Silverman1, Andrew Irby2, and Theodore Agerton3 Space Exploration Technologies, Hawthorne, California, 90250 SpaceX designed the Crew Dragon spacecraft to be the safest ever flown and to restore the ability of the United States to launch astronauts. One of the key systems required for human flight is the Environmental Control and Life Support System (ECLSS), which was designed to work in concert with the spacesuit and spacecraft. The tight coupling of many subsystems combined with an emphasis on simplicity and fault tolerance created unique challenges and opportunities for the design team. During the development of the crew ECLSS, the Dragon 1 cargo spacecraft flew with a simple ECLSS for animals, providing an opportunity for technology development and the early characterization of system-level behavior. As the ECLSS design matured a series of tests were conducted, including with humans in a prototype capsule in November 2016, the Demo-1 test flight to the ISS in March 2019, and human-in-the-loop ground testing in the Demo-2 capsule in January 2020 before the same vehicle performs a crewed test flight. This paper describes the design and operations of the ECLSS, the development process, and the lessons learned. Nomenclature AC = air conditioning AQM = air quality monitor AVV = active vent valve CCiCap = Commercial Crew Integrated Capability CCtCap = Commercial Crew Transportation Capability CFD = computational fluid dynamics conops = concept of operations COPV = composite overwrapped
    [Show full text]
  • Commercial Orbital Transportation Services
    National Aeronautics and Space Administration Commercial Orbital Transportation Services A New Era in Spaceflight NASA/SP-2014-617 Commercial Orbital Transportation Services A New Era in Spaceflight On the cover: Background photo: The terminator—the line separating the sunlit side of Earth from the side in darkness—marks the changeover between day and night on the ground. By establishing government-industry partnerships, the Commercial Orbital Transportation Services (COTS) program marked a change from the traditional way NASA had worked. Inset photos, right: The COTS program supported two U.S. companies in their efforts to design and build transportation systems to carry cargo to low-Earth orbit. (Top photo—Credit: SpaceX) SpaceX launched its Falcon 9 rocket on May 22, 2012, from Cape Canaveral, Florida. (Second photo) Three days later, the company successfully completed the mission that sent its Dragon spacecraft to the Station. (Third photo—Credit: NASA/Bill Ingalls) Orbital Sciences Corp. sent its Antares rocket on its test flight on April 21, 2013, from a new launchpad on Virginia’s eastern shore. Later that year, the second Antares lifted off with Orbital’s cargo capsule, (Fourth photo) the Cygnus, that berthed with the ISS on September 29, 2013. Both companies successfully proved the capability to deliver cargo to the International Space Station by U.S. commercial companies and began a new era of spaceflight. ISS photo, center left: Benefiting from the success of the partnerships is the International Space Station, pictured as seen by the last Space Shuttle crew that visited the orbiting laboratory (July 19, 2011). More photos of the ISS are featured on the first pages of each chapter.
    [Show full text]
  • Japan Cargo Spacecraft Docks at ISS 18 September 2009
    Japan cargo spacecraft docks at ISS 18 September 2009 It was the first time that astronauts operate a Canadian robotic arm at the ISS to dock a spacecraft at the station. The HTV carried 4.5 tonnes of supplies, including food and daily necessities for the six ISS crew, as well as materials for experiments, such as seeds for growing plants in space. The 10-metre (33-foot) long cylindrical vehicle, which cost 20 billion yen (217 million dollars), will soon unload the supplies. It will later take waste materials and return to Earth, burning up as it re-enters the atmosphere. Japan has spent 68 billion yen developing the vehicle, which could be modified in future to carry Japan's first cargo spacecraft arrived at the International humans. Space Station on Friday after astronauts aboard the station grabbed and docked it using a robotic arm. The docking came a week after the Japan Aerospace (c) 2009 AFP Exploration Agency (JAXA) launched the unmanned HTV transportation vehicle atop an H-2B rocket (in picture). Japan's first cargo spacecraft arrived at the International Space Station (ISS) on Friday after astronauts aboard the station grabbed and docked it using a robotic arm. The docking came a week after the Japan Aerospace Exploration Agency (JAXA) launched the unmanned HTV transportation vehicle atop an H-2B rocket. The HTV is Japan's first freighter spacecraft aiming for a share of space transport after the retirement of the US space shuttle fleet next year. "I'm so relieved because I was feeling the pressure and responsibility," Koji Yamanaka, the flight director in charge of the cargo mission, told reporters at Japan's Tsukuba space centre.
    [Show full text]
  • Espinsights the Global Space Activity Monitor
    ESPInsights The Global Space Activity Monitor Issue 2 May–June 2019 CONTENTS FOCUS ..................................................................................................................... 1 European industrial leadership at stake ............................................................................ 1 SPACE POLICY AND PROGRAMMES .................................................................................... 2 EUROPE ................................................................................................................. 2 9th EU-ESA Space Council .......................................................................................... 2 Europe’s Martian ambitions take shape ......................................................................... 2 ESA’s advancements on Planetary Defence Systems ........................................................... 2 ESA prepares for rescuing Humans on Moon .................................................................... 3 ESA’s private partnerships ......................................................................................... 3 ESA’s international cooperation with Japan .................................................................... 3 New EU Parliament, new EU European Space Policy? ......................................................... 3 France reflects on its competitiveness and defence posture in space ...................................... 3 Germany joins consortium to support a European reusable rocket.........................................
    [Show full text]
  • GUIDANCE, NAVIGATION, and CONTROL 2020 AAS PRESIDENT Carol S
    GUIDANCE, NAVIGATION, AND CONTROL 2020 AAS PRESIDENT Carol S. Lane Cynergy LLC VICE PRESIDENT – PUBLICATIONS James V. McAdams KinetX Inc. EDITOR Jastesh Sud Lockheed Martin Space SERIES EDITOR Robert H. Jacobs Univelt, Incorporated Front Cover Illustration: Image: Checkpoint-Rehearsal-Movie-1024x720.gif Caption: “OSIRIS-REx Buzzes Sample Site Nightingale” Photo and Caption Credit: NASA/Goddard/University of Arizona Public Release Approval: Per multimedia guidelines from NASA Frontispiece Illustration: Image: NASA_Orion_EarthRise.jpg Caption: “Orion Primed for Deep Space Exploration” Photo Credit: NASA Public Release Approval: Per multimedia guidelines from NASA GUIDANCE, NAVIGATION, AND CONTROL 2020 Volume 172 ADVANCES IN THE ASTRONAUTICAL SCIENCES Edited by Jastesh Sud Proceedings of the 43rd AAS Rocky Mountain Section Guidance, Navigation and Control Conference held January 30 to February 5, 2020, Breckenridge, Colorado Published for the American Astronautical Society by Univelt, Incorporated, P.O. Box 28130, San Diego, California 92198 Web Site: http://www.univelt.com Copyright 2020 by AMERICAN ASTRONAUTICAL SOCIETY AAS Publications Office P.O. Box 28130 San Diego, California 92198 Affiliated with the American Association for the Advancement of Science Member of the International Astronautical Federation First Printing 2020 Library of Congress Card No. 57-43769 ISSN 0065-3438 ISBN 978-0-87703-669-2 (Hard Cover Plus CD ROM) ISBN 978-0-87703-670-8 (Digital Version) Published for the American Astronautical Society by Univelt, Incorporated, P.O. Box 28130, San Diego, California 92198 Web Site: http://www.univelt.com Printed and Bound in the U.S.A. FOREWORD HISTORICAL SUMMARY The annual American Astronautical Society Rocky Mountain Guidance, Navigation and Control Conference began as an informal exchange of ideas and reports of achievements among local guidance and control specialists.
    [Show full text]
  • Human Asteroid Exploitation Mission Blue Team - Space Vehicle
    SD2905 - HUMAN SPACEFLIGHT 1 Human asteroid exploitation mission Blue team - Space Vehicle Jeremy BEK, Clement´ BORNE, Anton KABJ˚ ORN¨ and Filippo POZZI Abstract—Asteroid rendez-vous and mining is one step Where a is one astronomical unit, MC the mass towards deep space exploration and interplanetary jour- of the Earth and M@ those of the Sun. The lunar neys, and it could prove to be a very lucrative endeavour. distance LD is 384 400 km so the asteroid is outside This paper tackles the space vehicle design associated of Earth’s sphere of influence. The orbital period with the hypothetical mission. It presents background, challenges and solutions linked with spacecraft design. The is one year, just like Earth, and so its seen period structure, mass, cost and technology readiness level (TRL) around Earth is also one year. This means that of the different systems composing the space vehicles are whichever trajectory is chosen, there is a launch described in the report. window every year at the same period. Index Terms—Spacecraft design, Asteroid, Mining, Technology Readiness Level. I. INTRODUCTION Designing a space vehicle for a certain mission is a complicated task that contains many parameters and variables. Even more so, for a particularly ambitious mission like asteroid mining. However, this paper constitutes a preliminary study of what Fig. 1. Orbit of 469219 Kamo’oalewa could resemble such a mission, from a vehicle point of view. The study tackles various topics, such as trajectory III. LAUNCHERS calculations, launcher considerations, or spacecraft The launch is the first part of a spaceflight. For the design.
    [Show full text]
  • An Assessment of Cost Improvements in the NASA COTS/CRS Program and Implications for Future NASA Missions
    An Assessment of Cost Improvements in the NASA COTS/CRS Program and Implications for Future NASA Missions Edgar Zapataa National Aeronautics and Space Administration, Kennedy Space Center, FL, 32899 In May 2012, the SpaceX Dragon spacecraft became the first commercial spacecraft to arrive at the International Space Station (ISS). This achievement, and that of other partners in the NASA Commercial Orbital Transportation Services (COTS) program, would surface difficult questions about NASA’s other more traditional development processes and their traditionally high costs. The cost of the non-traditional COTS public private partnership for the development of spacecraft and launch systems, and later the prices for services to deliver cargo to the ISS, would be praised or criticized by one measure of cost versus another, often with little regard for consistency or data. The goal here is to do the math, to bring rigorous life cycle cost (LCC) analysis into discussions about COTS program costs. We gather publicly available cost data, review the data for credibility, check for consistency among sources, and rigorously define and analyze specific cost metrics. This paper shows quantitatively that the COTS development and later the operational Commercial Resupply Services (CRS) are significant advances in affordability by any measure. To understand measureable improvements in context, we also create and analyze an apples-to-apples scenario where the Space Shuttle would have fulfilled the ISS cargo requirement versus the COTS/CRS launchers and spacecraft. Alternately, we review valid questions that arise where measures or comparisons are not easy or break down, with no quantitative path to clear conclusions.
    [Show full text]
  • SPACE POLICY PRIMER Key Concepts, Issues, and Actors SECOND EDITION
    JOHN PAUL BYRNE John Paul Byrne is an undergraduate at the United States Air Force Academy. He was recently an intern at The Aerospace Corporation, where he supported the work of the Center for Space Policy and Strategy. He is working as the president of the Air Force Academy’s International Applied Space Policy and Strategy cadet club, where they focus on developing space-minded officers for the Air and Space Forces. John will earn his bachelor’s degree in political science with a focus in international relations, and a minor in German in 2021. ROBIN DICKEY Robin Dickey is a space policy and strategy analyst at The Aerospace Corporation’s Center for Space Policy and Strategy, focusing on national security space. Her prior experience includes risk analysis, legislative affairs, and international development. She earned her bachelor’s and master’s degrees in international studies at Johns Hopkins University. MICHAEL P. GLEASON Dr. Michael P. Gleason is a national security senior project engineer in The Aerospace Corporation’s Center for Space Policy and Strategy and is a well-regarded author on space policy subjects, including international cooperation, space traffic management, national security, and deterrence. He has presented his research on critical space policy issues at conferences in Canada, Europe, Japan, and across the United States. A graduate of the U.S. Air Force Academy, Gleason served 29 years active in the Air Force space career field, including stints in spacecraft operations, on the Air Force Academy faculty, at the Pentagon, and at the Department of State. He holds a Ph.D.
    [Show full text]
  • Gait Optimization for Multi-Legged Walking Robots, with Application to a Lunar Hexapod
    GAIT OPTIMIZATION FOR MULTI-LEGGED WALKING ROBOTS, WITH APPLICATION TO A LUNAR HEXAPOD A DISSERTATION SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Daniel Ch´avez-Clemente January 2011 © 2011 by Daniel Chavez Clemente. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/px063cb7934 Includes supplemental files: 1. This video shows a simulation of the zero-interaction gait optimization for the ATHLETE robot. (DanielChavezSwaySimulation.wmv) ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Stephen Rock, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. J Gerdes I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Jean-Claude Latombe I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Terrence Fong Approved for the Stanford University Committee on Graduate Studies.
    [Show full text]
  • Senate Resolution No. 60
    senate, california legislature—2015–16 regular session Senate Resolution No. 60 Introduced by Senators Fuller, Allen, Anderson, Bates, Beall, Berryhill, Block, Cannella, De León, Gaines, Galgiani, Glazer, Hall, Hertzberg, Hill, Hueso, Huff, Jackson, Liu, Moorlach, Morrell, Nguyen, Nielsen, Pan, Roth, Runner, Stone, and Vidak Relative to California Aerospace Days WHEREAS, The California aerospace industry is a powerful, reliable source of employment, innovation, and export income, directly employing more than 203,000 people in California and supporting more than 511,000 jobs in related ®elds resulting in $2.9 billion in annual state income tax revenues; and WHEREAS, The California aerospace industry leads the United States in aerospace and defense services, including the design and manufacture of aircraft, spacecraft, and commercial satellites, as well as a myriad of systems and instruments for search, detection, navigation, guidance, and radio and television broadcast and wireless communication systems; and WHEREAS, California is home to many superb sites of air and space activity, including Vandenberg Air Force Base, two Federal Aviation Administration-licensed launch sites, the Mojave Air and Space Port, more than 20 astronomical observatories, multiple international airports, many important defense aerospace bases, and hundreds of business and general aviation air®elds; and WHEREAS, California is also home to three National Aeronautics and Space Administration (NASA) research and engineering centers, the Ames Research Center, the NASA Neil A. Armstrong Flight Research Center, formerly known as the Dryden Flight Research Center, and the Jet Propulsion Laboratory (JPL); and WHEREAS, California has led the nation in aeronautical ®rsts and California's aerospace industry produced many of the signi®cant and record-breaking aircraft that are now represented in the Smithsonian Institution's National Air and Space Museum.
    [Show full text]
  • NASA Plans a Space Station. • • Ter Spent
    ~57_4----------------------------------------------NEVVS-----------------------------N_A_TU__ RE __ w_>t_ .. _~__ I8_A_u_o_·u_sr __ l~_3 US space programme public silence, the board has been working on a policy statement spelling out its belief that money for space science could be bet­ NASA plans a space station. • • ter spent. The draft statement complains Washington station while the station's capabilities and that current budget levels support only a THE National Aeronautics and Space Ad­ uses are still somewhat vague. small fraction of existing mission ministration (NASA) is urging the United The Department of Defense (DOD), for possibilities for space science and that States to take its next historic step in space example, has so far refused to enthuse "few" disciplines in the life sciences and -the construction of a permanent mann­ about the military uses of a space station. none in the physical sciences need a mann­ ed space station that could become the cen­ Richard DeLauer, Under Secretary for ed space station at present. In the long run, tre of a space-based manufacturing industry Defense for Research and Engineering, the statement concludes, a space station as well as the jumping-off point for manned told a recent NASA symposium that the could provide a "significant opportunity" trips to the Moon and Mars. Pentagon had been unable to identify a for some disciplines, but space science is Under the guise of a "modest" planning single military function that could be done still just beginning to learn how to use the exercise, NASA has lobbied assiduously to better by a space station than by an unman­ capabilities of the shuttle.
    [Show full text]