Annual Report 2014 OUR VISION

Total Page:16

File Type:pdf, Size:1020Kb

Annual Report 2014 OUR VISION AMOS Centre for Autonomous Marine Operations and Systems Annual Report 2014 Annual Report OUR VISION To establish a world-leading research centre for autonomous marine operations and systems: To nourish a lively scientific heart in which fundamental knowledge is created through multidisciplinary theoretical, numerical, and experimental research within the knowledge fields of hydrodynamics, structural mechanics, guidance, navigation, and control. Cutting-edge inter-disciplinary research will provide the necessary bridge to realise high levels of autonomy for ships and ocean structures, unmanned vehicles, and marine operations and to address the challenges associated with greener and safer maritime transport, monitoring and surveillance of the coast and oceans, offshore renewable energy, and oil and gas exploration and production in deep waters and Arctic waters. Editors: Annika Bremvåg and Thor I. Fossen Copyright AMOS, NTNU, 2014 www.ntnu.edu/amos AMOS • Annual Report 2014 Table of Contents Our Vision ........................................................................................................................................................................ 2 Director’s Report: Licence to Create............................................................................................................................. 4 Organization, Collaborators, and Facts and Figures 2014 ......................................................................................... 6 Presentation of New Affiliated Scientists.................................................................................................................... 8 Board of Directors........................................................................................................................................................... 12 Research Projects •. Optimization.and.fault-tolerant.control.of.offshore.renewable.energy.systems..................................................... 15 •. Intelligent.offshore.aquaculture.structures............................................................................................................... 16 •. Autonomous.unmanned.vehicle.systems................................................................................................................... 18 •. Autonomous.underwater.robotics.for.mapping,.monitoring.and.intervention......................................................... 19 •. Autonomous.aerial.systems.for.marine.monitoring.and.data.collection................................................................. 23 •. Energy.management.and.propulsion.for.greener.operations.of.ships.and.offshore.structures............................. 25 •. Autonomous.marine.operations.in.extreme.seas,.violent.water-structure.interactions,. deep.and.shallow.waters,.and.the.Arctic................................................................................................................... 27 •. Consequences.of.accidental.and.abnormal.events.on.ships.and.offshore.structures............................................ 35 •. Safety,.risk.and.autonomy.in.subsea.intervention..................................................................................................... 39 Associated Research Projects •. Fault-tolerant.inertial.sensor.fusion.for.marine.vessels.(MarineINS)..................................................................... 40 •. Low-cost.integrated.navigation.systems.using.nonlinear.observer.theory.(LowCostNav)...................................... 41 •. Design.and.verification.of.control.systems.for.safe.and.energy-efficient.vessels.with. hybrid.power.plants.(D2V)........................................................................................................................................... 42 •. Next.generation.subsea.inspection,.maintenance.and.repair.(NextGenIMR).......................................................... 44 •. Control,.information.and.communication.systems.for.environmental.and.safety.critical.systems........................ 45 •. Snake.locomotion.in.challenging.environments........................................................................................................ 48 •. Dynamic response analysis of wind turbines under fault conditions...................................................................... 49 •. Nonlinear wave loads on offshore wind turbines...................................................................................................... 50 •. Numerical and experimental study of a combined wind and wave energy concept – STC (Spar-Torus-Combination).................................................................................................................................. 51 Photo Gallery................................................................................................................................................................... 52 Laboratory Highlights and Research Campaigns •. Highlights.of.the.Applied.Underwater.Vehicle.Laboratory.(AUR-Lab)...................................................................... 56 •. Highlights.of.the.Marine.Cybernetics.Laboratory.(MC-Lab)...................................................................................... 59 •. Highlights.of.the.Unmanned.Aerial.Vehicle.Laboratory.(UAV-Lab).......................................................................... 61 •. Highlights.of.the.experiments.at.CNR-INSEAN......................................................................................................... 63 •. Research.campaign:.AMOS.researchers.investigate.mysteries.in.the.sea.during.the.polar.night......................... 64 Honours, Awards and other Achievements.................................................................................................................. 65 Innovation and Training of PhD Candidates.................................................................................................................. 67 Interviews with PhD Candidates ................................................................................................................................... 70 Appendices ...................................................................................................................................................................... 73 3 AMOS • Annual Report 2014 www.ntnu.edu/amos DIRECTOR’S REPORT: LICENCE TO CREATE ... AMOS has completed its second year of operation and has become a lively scientific centre of research on auton- omous marine operations and systems with the licence to create – competence, knowledge and innovations. The organisation efficiently operates with strong support from NTNU, as the host institution, and committed partner- ships with the Research Council of Norway, Statoil, DNV GL, MARINTEK, SINTEF Fisheries and Aquaculture and SINTEF ICT. In addition to the core activity of AMOS, several new associated research projects, which expand the capabilities of AMOS and the centre’s impact, are established with national and international collaborators. Licence to create competence following control. A generic theoretical result, which proves Currently, 65 young and talented PhD candidates, including that the well-celebrated proportional LOS guidance law ten females and four post-doctorates are employed at NTNU for path following is uniformly semi-globally exponentially in AMOS research areas. 88 MSc students fulfilled their mas- stable, was published in Automatica by Fossen and Pettersen ter’s degree requirements in cooperation with AMOS in 2014, (2014). Additionally, theoretical results on synchronisation of and five candidates received their PhD degrees in 2014. networked vehicles and agents was published in Automatica by Peymani et al. (2014). In the past year, one new full professorship on sensor • The research group also conducted important theoret- fusion was sponsored by DNV GL and three new professor-II ical and experimental work on autonomous net-landing sys- positions on marine hydrodynamics and structural mecha- tems for UAVs using single-frequency carrier-phase differ- nics have been created to increase the expertise offered at ential GNSS for accurate positioning. The main results will different levels to students and to strengthen the in-depth appear in the IEEE Aerospace and Electronic Systems Maga- research performed at the centre. zine in 2015. Extensions of this work on autonomous landing onboard ships are in progress. AMOS has been instrumental in the development of a joint • Intervention AUVs is another topic of research, and new PhD degree (Cotutelle agreement) between NTNU and the research results on robotic manipulator control that can in- Technical University of Denmark (DTU). The first PhD candi- crease the degree of autonomy for both remotely operated date has been enrolled at AMOS. This degree program vehicle (ROV) operations and intervention AUVs have been will strengthen the cooperation between AMOS and DTU developed. Furthermore, the research group developed sig- research ers. Four DTU professors are currently employed nificant new results for hyper-redundant underwater mani- in adjunct positions. pulators, i.e., swimming snake robots. These robots may constitute the next generation of intervention AUVs. In par- NTNU will coordinate a new Marie Skłodowska-Curie Inno- ticular, these robots have the promising potential to improve vative Training Network on Autonomous Marine Unmanned the efficiency and manoeuvrability of next-generation AUVs. Aerial Systems for Marine and Coastal
Recommended publications
  • Smithsonian Institution Archives (SIA)
    SMITHSONIAN OPPORTUNITIES FOR RESEARCH AND STUDY 2020 Office of Fellowships and Internships Smithsonian Institution Washington, DC The Smithsonian Opportunities for Research and Study Guide Can be Found Online at http://www.smithsonianofi.com/sors-introduction/ Version 2.0 (Updated January 2020) Copyright © 2020 by Smithsonian Institution Table of Contents Table of Contents .................................................................................................................................................................................................. 1 How to Use This Book .......................................................................................................................................................................................... 1 Anacostia Community Museum (ACM) ........................................................................................................................................................ 2 Archives of American Art (AAA) ....................................................................................................................................................................... 4 Asian Pacific American Center (APAC) .......................................................................................................................................................... 6 Center for Folklife and Cultural Heritage (CFCH) ...................................................................................................................................... 7 Cooper-Hewitt,
    [Show full text]
  • An Innovative Mechanical and Control Architecture for a Biomimetic Hexapod for Planetary Exploration M
    An Innovative Mechanical and Control Architecture for a Biomimetic Hexapod for Planetary Exploration M. Pavone∗, P. Arenax and L. Patane´x ∗Scuola Superiore di Catania, Via S. Paolo 73, 95123 Catania, Italy xDipartimento di Ingegneria Elettrica Elettronica e dei Sistemi, Universita` degli Studi di Catania, Viale A. Doria, 6 - 95125 Catania, Italy Abstract— This paper addresses the design of a six locomotion are: wheels, caterpillar treads and legs. legged robot for planetary exploration. The robot is Wheeled and tracked robots are much easier to design specifically designed for uneven terrains and is bio- and to implement if compared with legged robots and logically inspired on different levels: mechanically as led to successful missions like Mars Pathfinder or well as in control. A novel structure is developed Spirit and Opportunity; nevertheless, they carry a set basing on a (careful) emulation of the cockroach, whose of disadvantages that hamper their use in more com- extraordinary agility and speed are principally due to its self-stabilizing posture and specializing legged plex explorative tasks. Firstly, wheeled and tracked function. Structure design enhances these properties, vehicles, even if designed specifically for harsh ter- in particular with an innovative piston-like scheme rains, cannot maneuver over an obstacle significantly for rear legs, while avoiding an excessive and useless shorter than the vehicle itself; a legged vehicle, on the complexity. Locomotion control is designed following an other hand, could be expected to climb an obstacle analog electronics approach, that in space applications up to twice its own height, much like a cockroach could hold many benefits. In particular, the locomotion can.
    [Show full text]
  • Development of the Crew Dragon ECLSS
    ICES-2020-333 Development of the Crew Dragon ECLSS Jason Silverman1, Andrew Irby2, and Theodore Agerton3 Space Exploration Technologies, Hawthorne, California, 90250 SpaceX designed the Crew Dragon spacecraft to be the safest ever flown and to restore the ability of the United States to launch astronauts. One of the key systems required for human flight is the Environmental Control and Life Support System (ECLSS), which was designed to work in concert with the spacesuit and spacecraft. The tight coupling of many subsystems combined with an emphasis on simplicity and fault tolerance created unique challenges and opportunities for the design team. During the development of the crew ECLSS, the Dragon 1 cargo spacecraft flew with a simple ECLSS for animals, providing an opportunity for technology development and the early characterization of system-level behavior. As the ECLSS design matured a series of tests were conducted, including with humans in a prototype capsule in November 2016, the Demo-1 test flight to the ISS in March 2019, and human-in-the-loop ground testing in the Demo-2 capsule in January 2020 before the same vehicle performs a crewed test flight. This paper describes the design and operations of the ECLSS, the development process, and the lessons learned. Nomenclature AC = air conditioning AQM = air quality monitor AVV = active vent valve CCiCap = Commercial Crew Integrated Capability CCtCap = Commercial Crew Transportation Capability CFD = computational fluid dynamics conops = concept of operations COPV = composite overwrapped
    [Show full text]
  • An Introduction to the NASA Robotics Alliance Cadets Program
    Session F An Introduction to the NASA Robotics Alliance Cadets Program David R. Schneider, Clare van den Blink NASA, DAVANNE, & Cornell University / Cornell University CIT [email protected], [email protected] Abstract The 2006 report National Defense Education and Innovation Initiative highlighted this nation’s growing need to revitalize undergraduate STEM education. In response, NASA has partnered with the DAVANNE Corporation to create the NASA Robotics Alliance Cadets Program to develop innovative, highly integrated and interactive curriculum to redesign the first two years of Mechanical Engineering, Electrical Engineering and Computer Science. This paper introduces the NASA Cadets Program and provides insight into the skill areas targeted by the program as well as the assessment methodology for determining the program’s effectiveness. The paper also offers a brief discussion on the capabilities of the program’s robotic platform and a justification for its design into the program. As an example of the integration of the robotic platform with the program’s methodologies, this paper concludes by outlining one of the first educational experiments of NASA Cadets Program at Cornell University to be implemented in the Spring 2007 semester. I. Introduction To be an engineer is to be a designer, a creator of new technology, and the everyday hero that solves society’s problems through innovative methods and products by making ideas become a reality. However, the opportunity to truly explore these key concepts of being an engineer are often withheld from most incoming engineering students until at least their junior year causing many new students to lose motivation and potentially leave the program.
    [Show full text]
  • Autonomous Navigation of Hexapod Robots with Vision-Based Controller Adaptation
    Research Collection Conference Paper Autonomous Navigation of Hexapod Robots With Vision-based Controller Adaptation Author(s): Bjelonic, Marko; Homberger, Timon; Kottege, Navinda; Borges, Paulo; Chli, Margarita; Beckerle, Philipp Publication Date: 2017 Permanent Link: https://doi.org/10.3929/ethz-a-010859391 Originally published in: http://doi.org/10.1109/ICRA.2017.7989655 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Autonomous Navigation of Hexapod Robots With Vision-based Controller Adaptation Marko Bjelonic1∗, Timon Homberger2∗, Navinda Kottege3, Paulo Borges3, Margarita Chli4, Philipp Beckerle5 Abstract— This work introduces a novel hybrid control architecture for a hexapod platform (Weaver), making it capable of autonomously navigating in uneven terrain. The main contribution stems from the use of vision-based exte- roceptive terrain perception to adapt the robot’s locomotion parameters. Avoiding computationally expensive path planning for the individual foot tips, the adaptation controller enables the robot to reactively adapt to the surface structure it is moving on. The virtual stiffness, which mainly characterizes the behavior of the legs’ impedance controller is adapted according to visually perceived terrain properties. To further improve locomotion, the frequency and height of the robot’s stride are similarly adapted. Furthermore, novel methods for terrain characterization and a keyframe based visual-inertial odometry algorithm are combined to generate a spatial map of terrain characteristics. Localization via odometry also allows Fig. 1. The hexapod robot Weaver on the multi-terrain testbed. for autonomous missions on variable terrain by incorporating global navigation and terrain adaptation into one control have been used in the literature to perform leg adaptation to architecture.
    [Show full text]
  • Commercial Orbital Transportation Services
    National Aeronautics and Space Administration Commercial Orbital Transportation Services A New Era in Spaceflight NASA/SP-2014-617 Commercial Orbital Transportation Services A New Era in Spaceflight On the cover: Background photo: The terminator—the line separating the sunlit side of Earth from the side in darkness—marks the changeover between day and night on the ground. By establishing government-industry partnerships, the Commercial Orbital Transportation Services (COTS) program marked a change from the traditional way NASA had worked. Inset photos, right: The COTS program supported two U.S. companies in their efforts to design and build transportation systems to carry cargo to low-Earth orbit. (Top photo—Credit: SpaceX) SpaceX launched its Falcon 9 rocket on May 22, 2012, from Cape Canaveral, Florida. (Second photo) Three days later, the company successfully completed the mission that sent its Dragon spacecraft to the Station. (Third photo—Credit: NASA/Bill Ingalls) Orbital Sciences Corp. sent its Antares rocket on its test flight on April 21, 2013, from a new launchpad on Virginia’s eastern shore. Later that year, the second Antares lifted off with Orbital’s cargo capsule, (Fourth photo) the Cygnus, that berthed with the ISS on September 29, 2013. Both companies successfully proved the capability to deliver cargo to the International Space Station by U.S. commercial companies and began a new era of spaceflight. ISS photo, center left: Benefiting from the success of the partnerships is the International Space Station, pictured as seen by the last Space Shuttle crew that visited the orbiting laboratory (July 19, 2011). More photos of the ISS are featured on the first pages of each chapter.
    [Show full text]
  • Design and Control of a Large Modular Robot Hexapod
    Design and Control of a Large Modular Robot Hexapod Matt Martone CMU-RI-TR-19-79 November 22, 2019 The Robotics Institute School of Computer Science Carnegie Mellon University Pittsburgh, PA Thesis Committee: Howie Choset, chair Matt Travers Aaron Johnson Julian Whitman Submitted in partial fulfillment of the requirements for the degree of Master of Science in Robotics. Copyright © 2019 Matt Martone. All rights reserved. To all my mentors: past and future iv Abstract Legged robotic systems have made great strides in recent years, but unlike wheeled robots, limbed locomotion does not scale well. Long legs demand huge torques, driving up actuator size and onboard battery mass. This relationship results in massive structures that lack the safety, portabil- ity, and controllability of their smaller limbed counterparts. Innovative transmission design paired with unconventional controller paradigms are the keys to breaking this trend. The Titan 6 project endeavors to build a set of self-sufficient modular joints unified by a novel control architecture to create a spiderlike robot with two-meter legs that is robust, field- repairable, and an order of magnitude lighter than similarly sized systems. This thesis explores how we transformed desired behaviors into a set of workable design constraints, discusses our prototypes in the context of the project and the field, describes how our controller leverages compliance to improve stability, and delves into the electromechanical designs for these modular actuators that enable Titan 6 to be both light and strong. v vi Acknowledgments This work was made possible by a huge group of people who taught and supported me throughout my graduate studies and my time at Carnegie Mellon as a whole.
    [Show full text]
  • Japan Cargo Spacecraft Docks at ISS 18 September 2009
    Japan cargo spacecraft docks at ISS 18 September 2009 It was the first time that astronauts operate a Canadian robotic arm at the ISS to dock a spacecraft at the station. The HTV carried 4.5 tonnes of supplies, including food and daily necessities for the six ISS crew, as well as materials for experiments, such as seeds for growing plants in space. The 10-metre (33-foot) long cylindrical vehicle, which cost 20 billion yen (217 million dollars), will soon unload the supplies. It will later take waste materials and return to Earth, burning up as it re-enters the atmosphere. Japan has spent 68 billion yen developing the vehicle, which could be modified in future to carry Japan's first cargo spacecraft arrived at the International humans. Space Station on Friday after astronauts aboard the station grabbed and docked it using a robotic arm. The docking came a week after the Japan Aerospace (c) 2009 AFP Exploration Agency (JAXA) launched the unmanned HTV transportation vehicle atop an H-2B rocket (in picture). Japan's first cargo spacecraft arrived at the International Space Station (ISS) on Friday after astronauts aboard the station grabbed and docked it using a robotic arm. The docking came a week after the Japan Aerospace Exploration Agency (JAXA) launched the unmanned HTV transportation vehicle atop an H-2B rocket. The HTV is Japan's first freighter spacecraft aiming for a share of space transport after the retirement of the US space shuttle fleet next year. "I'm so relieved because I was feeling the pressure and responsibility," Koji Yamanaka, the flight director in charge of the cargo mission, told reporters at Japan's Tsukuba space centre.
    [Show full text]
  • Attendee Demographics
    DEMOGRAPHICS 20REPORT 19 2020 Conferences: April 18–22, 2020 Exhibits: April 19–22 Show Floor Now Open Sunday! 2019 Conferences: April 6–11, 2019 Exhibits: April 8–11 Las Vegas Convention Center, Las Vegas, Nevada USA NABShow.com ATTENDANCE HIGHLIGHTS OVERVIEW 27% 63,331 Exhibitors BUYERS 4% Other 24,896 91,921 TOTAL EXHIBITORS 69% TOTAL NAB SHOW REGISTRANTS Buyers Includes BEA registrations 24,086 INTERNATIONAL NAB SHOW REGISTRANTS from 160+ COUNTRIES 1,635* 963,411* 1,361 EXHIBITING NET SQ. FT. PRESS COMPANIES 89,503 m2 *Includes unique companies on the Exhibit Floor and those in Attractions, Pavilions, Meeting Rooms and Suites. 2019 NAB SHOW DEMOGRAPHICS REPORT PRIMARY BUSINESS Total Buyer Audience and Data Total Buyers: 63,331 ADVERTISING/PUBLIC RELATIONS/MARKETING 6% AUDIO PRODUCTION/POST-PRODUCTION SERVICE 21% BROADERCASTING/CARRIER 19% Cable/MSO Satellite (Radio or Television) Internet/Social Media Telco (Wireline/Wireless) Radio (Broadcast) Television (Broadcast) CONTENT/CHANNEL 8% Film/TV Studio Podcasting Independent Filmmaker Gaming Programming Network Photography DIGITAL MEDIA 4% DISTRIBUTOR/DEALER/RESELLER 4% EDUCATION 3% FAITH-BASED ORGANIZATION 1% FINANCIAL 1% HEALTHCARE/MEDICAL .4% SPORTS: TEAM/LEAGUE/VENUE 1% GOVERNMENT/NON-PROFIT 1% MANUFACTURER/SUPPLIER (HARDWARE) 3% PERFORMING ARTS/MUSIC/LIVE ENTERTAINMENT 1% RENTAL EQUIPMENT 1% SYSTEMS INTEGRATION 3% VIDEO PRODUCTION/POST-PRODUCTION 8% Video Production Services/Facility Video Post-Production Services/Facility WEB SERVICES/SOFTWARE MANUFACTURER 8% OTHER 7% 2019 NAB
    [Show full text]
  • Espinsights the Global Space Activity Monitor
    ESPInsights The Global Space Activity Monitor Issue 2 May–June 2019 CONTENTS FOCUS ..................................................................................................................... 1 European industrial leadership at stake ............................................................................ 1 SPACE POLICY AND PROGRAMMES .................................................................................... 2 EUROPE ................................................................................................................. 2 9th EU-ESA Space Council .......................................................................................... 2 Europe’s Martian ambitions take shape ......................................................................... 2 ESA’s advancements on Planetary Defence Systems ........................................................... 2 ESA prepares for rescuing Humans on Moon .................................................................... 3 ESA’s private partnerships ......................................................................................... 3 ESA’s international cooperation with Japan .................................................................... 3 New EU Parliament, new EU European Space Policy? ......................................................... 3 France reflects on its competitiveness and defence posture in space ...................................... 3 Germany joins consortium to support a European reusable rocket.........................................
    [Show full text]
  • GUIDANCE, NAVIGATION, and CONTROL 2020 AAS PRESIDENT Carol S
    GUIDANCE, NAVIGATION, AND CONTROL 2020 AAS PRESIDENT Carol S. Lane Cynergy LLC VICE PRESIDENT – PUBLICATIONS James V. McAdams KinetX Inc. EDITOR Jastesh Sud Lockheed Martin Space SERIES EDITOR Robert H. Jacobs Univelt, Incorporated Front Cover Illustration: Image: Checkpoint-Rehearsal-Movie-1024x720.gif Caption: “OSIRIS-REx Buzzes Sample Site Nightingale” Photo and Caption Credit: NASA/Goddard/University of Arizona Public Release Approval: Per multimedia guidelines from NASA Frontispiece Illustration: Image: NASA_Orion_EarthRise.jpg Caption: “Orion Primed for Deep Space Exploration” Photo Credit: NASA Public Release Approval: Per multimedia guidelines from NASA GUIDANCE, NAVIGATION, AND CONTROL 2020 Volume 172 ADVANCES IN THE ASTRONAUTICAL SCIENCES Edited by Jastesh Sud Proceedings of the 43rd AAS Rocky Mountain Section Guidance, Navigation and Control Conference held January 30 to February 5, 2020, Breckenridge, Colorado Published for the American Astronautical Society by Univelt, Incorporated, P.O. Box 28130, San Diego, California 92198 Web Site: http://www.univelt.com Copyright 2020 by AMERICAN ASTRONAUTICAL SOCIETY AAS Publications Office P.O. Box 28130 San Diego, California 92198 Affiliated with the American Association for the Advancement of Science Member of the International Astronautical Federation First Printing 2020 Library of Congress Card No. 57-43769 ISSN 0065-3438 ISBN 978-0-87703-669-2 (Hard Cover Plus CD ROM) ISBN 978-0-87703-670-8 (Digital Version) Published for the American Astronautical Society by Univelt, Incorporated, P.O. Box 28130, San Diego, California 92198 Web Site: http://www.univelt.com Printed and Bound in the U.S.A. FOREWORD HISTORICAL SUMMARY The annual American Astronautical Society Rocky Mountain Guidance, Navigation and Control Conference began as an informal exchange of ideas and reports of achievements among local guidance and control specialists.
    [Show full text]
  • The Chirps Prototyping System
    Digital Commons @ George Fox University Faculty Publications - Department of Electrical Department of Electrical Engineering and Engineering and Computer Science Computer Science 2011 The hirC ps Prototyping System Gary Spivey George Fox University, [email protected] Follow this and additional works at: http://digitalcommons.georgefox.edu/eecs_fac Part of the Electrical and Computer Engineering Commons Recommended Citation Spivey, Gary, "The hirC ps Prototyping System" (2011). Faculty Publications - Department of Electrical Engineering and Computer Science. Paper 9. http://digitalcommons.georgefox.edu/eecs_fac/9 This Article is brought to you for free and open access by the Department of Electrical Engineering and Computer Science at Digital Commons @ George Fox University. It has been accepted for inclusion in Faculty Publications - Department of Electrical Engineering and Computer Science by an authorized administrator of Digital Commons @ George Fox University. For more information, please contact [email protected]. The Chirps Prototyping System Abstract Oregon State University has been a pioneer in developing a “Platform for Learning” using their TekBots platform as a fundamental part of their electrical and computer engineering curriculum. At George Fox University, we fundamentally affirm this concept of a “Platform for Learning,” but we additionally desire a “Platform for Prototyping.” By “Platform for Prototyping,” we mean a platform that will enable our engineering students to create significant engineering projects as part of a myriad of service-learning projects, student research, course projects, and the senior capstone experience. To be effective across our curriculum, this system must not only be usable by mechanical, electrical and computer engineers, but by engineering students at the end of their first year in the engineering program.
    [Show full text]