NASA Plans a Space Station. • • Ter Spent

Total Page:16

File Type:pdf, Size:1020Kb

NASA Plans a Space Station. • • Ter Spent ~57_4----------------------------------------------NEVVS-----------------------------N_A_TU__ RE __ w_>t_ .. _~__ I8_A_u_o_·u_sr __ l~_3 US space programme public silence, the board has been working on a policy statement spelling out its belief that money for space science could be bet­ NASA plans a space station. • • ter spent. The draft statement complains Washington station while the station's capabilities and that current budget levels support only a THE National Aeronautics and Space Ad­ uses are still somewhat vague. small fraction of existing mission ministration (NASA) is urging the United The Department of Defense (DOD), for possibilities for space science and that States to take its next historic step in space example, has so far refused to enthuse "few" disciplines in the life sciences and -the construction of a permanent mann­ about the military uses of a space station. none in the physical sciences need a mann­ ed space station that could become the cen­ Richard DeLauer, Under Secretary for ed space station at present. In the long run, tre of a space-based manufacturing industry Defense for Research and Engineering, the statement concludes, a space station as well as the jumping-off point for manned told a recent NASA symposium that the could provide a "significant opportunity" trips to the Moon and Mars. Pentagon had been unable to identify a for some disciplines, but space science is Under the guise of a "modest" planning single military function that could be done still just beginning to learn how to use the exercise, NASA has lobbied assiduously to better by a space station than by an unman­ capabilities of the shuttle. make the space station the centrepiece of its ned spacecraft. DOD is nevertheless deeply The National Academy of Science's activities to the end of the century and involved in hypothetical discussions about space applications board has been less beyond. The agency has told the White the station's design, enabling NASA to hostile, but also fears that by committing House that a space station is the logical se­ argue that a space station could make great itself to an enormous engineering project quel to the shuttle and offers the best pro­ contributions to national security. like the space station, NASA will be forced spects for maintaining American leader­ According to Beggs, the space station to divert money from applications to pay ship in space. It seems likely that President could ultimately evolve into a command for the inevitable cost overruns in develop­ Reagan will agree. post or operations centre for DOD, as well ment. Space stations have come and gone from as a storage facility and a base from which Despite the scepticism of some groups, NASA drawing boards for more than two military satellites could be serviced. Later, Beggs believes that the White House will decades. In the 1960s, plans for a space sta­ Beggs adds, there would "probably" be give the project its blessing within the next 6 tion were pushed aside by the Apollo Moon two stations, one in polar orbit primarily to 12 months. The senior interagency programme and in 1970 lack of political for DOD use and one in equatorial orbit group responsible for space policy is ex­ support forced NASA to drop the concept (the 28.5° main base) primarily for NASA. pected to receive a recommendation from of a space station in favour of the shuttle. NASA is using a similar manoeuvre to its space station working group by The agency's administrator, James Beggs, overcome the scepticism of the US space November. Chaired by NASA, the space now wants an all-out effort to launch the science community. The National station group is likely to argue that without first elements of a space station by 1991, Academy of Science's space science board a single big engineering project like the sta­ which he estimates could cost less than has been drawn into the space station plan­ tion, NASA will be unable to maintain its £9,000 million. ning process and asked to consider how preeminence in space. The Soviet Union, Until recently, much of NASA's plan­ space scientists could exploit a space sta­ NASA has been pointing out, has already ning effort has been devoted to finding tion if one were to be built. The board has developed an entirely automated resupply potential users for the space station, but in not, however, been asked (by NASA) unit for its Soyuz 7 vehicle, and recently at­ recent months agency officials have whether it believes there is a scientific tached a propulsion unit that will be able to become less coy about the technical details. justification for investing in a space station move the craft into new orbits. What has emerged is not a single large in the first place. If it were to be asked, the It will not be entirely plain sailing, space facility but a network of manned and answer would almost certainly be no. however. The president's science adviser, unmanned platforms, laboratories and Although it has so far observed a prudent George Keyworth, has maintained a satellites linked by a new generation of or­ bital transfer vehicles. The vanguard of the space station in . Soviet union almost there? 1991 would consist of a main base at an or­ IN pressing for a space station, the US "useful cargo" - photographic film, bital inclination of 28.5 o. With a crew of six space agency is following the path taken by semiconductor materials produced in to eight, the base would include two or the Soviet Union. The Soviet space space, equipment for reuse in ground-level three pressurized modules for research and programme has long been committed to the control experiments - to be sent back. development, with a volume of about 120 idea of establishing a permanently staffed The early recovery of film will be of cubic metres. A separate unmanned plat­ orbital station, and in 1976, a leading particular importance to the Earth form would be placed in polar orbit. By the space-planner, Academician Georgii resources survey, which, a Pravda article end of the century, the space station would Petrov, talked about a staff of 100 people, stressed last week, makes a major be expanded to provide space for a crew of with some twenty or thirty cosmonauts on contribution to the "practical character" 12 to 18 and the polar station might be turn­ board at any one time. of the manned orbital programme. Any ed into a manned facility. The new Soviet space' 'tug''launched on suggestion that it could also be useful for These plans are so tentative, however, 27 June as Cosmos-1443, and now oper­ military reconnaissance would, of course, that NASA only recently lifted a self­ ating as part of a manned orbital complex be hotly denied by the Soviets who denying ordinance banning the publication with Salyut-7 and Soyuz-T, marked an consistently contrast the "peaceful" aims of drawings of the proposed station. A important step in the Soviet programme. of their space programme with the NASA official told Congress last week that The new craft, with a length of 13 m, "military" aspects of the US space shuttle. at the end of meetings with foreign coun­ maximum diameter more than 4 m and Not everyone abroad, however, accepts tries interested in the space station, all mass (including return module) of 20 the Soviet assurances. The Cosmos-1267 doodles had been carefully destroyed. tonnes, is the largest cargo spacecraft ever craft, used to supply and enlarge the The ostensible reason for NASA's reluc­ launched to rendezvous with a Salyut Salyut-6 station, and subsequently used to tance to define its plans is that it wants to be station. It has more than 2.5 times the effect a re-entry burn when the complex sure that it has the best possible design cargo space of its forerunner, Progress, had finished its useful life, was believed by before it is committed to specific pieces of and, unlike Progress, has its own power a number of US analysts to have been 2 hardware. Another reason, not publicly source - a solar cell of area 40 m • The armed with anti-satellite homing devices. stated, is that the agency expects to find it return module allows up to 500 kg of Vera Rich easier to win political friends for the space 0028-0836/83/330574-02$01.00 e> 1983 Macmillan Journals Ltd _NA_TU__ RE__ v_o_t._~ __ ,_s_A_uo_·u_s_T_I_~_l _____________________________ NEVVS----------------------------------------------~57~5 carefully ambiguous public attitude. In a Cell astrobiology delphic speech in Seattle recently, Keyworth hinted that it would be a mistake to plunge into a space station project Shuttle separation of islet cells without spelling out precisely what the next StLouis of the sample, not by the density ofthe buf­ step in space would be. Significantly, he ON the eighth space shuttle flight, due to be fer used. dismissed the argument that Soviet launched on 30 August, the McDonnell Many questions remain to be answered achievements with Soyuz had stolen a Douglas Corporation will be using about how to handle the cells before, dur­ march on the United States. continuous-flow electrophoresis to try to ing and after the flight- such as what kind The two most significant deciding fac­ separate insulin-producing beta cells from of buffers to use and whether to use fresh tors will be the White House's perception the other cells of the pancreas. The pro­ or frozen tissue. This first attempt at sepa­ of the military use of the space station and cedure could have potential as a way of ob­ rating beta cells in space will be used to the significance it assigns to private sector taining cells for transplantation into work out the handling and separation pro­ interst in space-based ventures.
Recommended publications
  • Annual Report 2014 OUR VISION
    AMOS Centre for Autonomous Marine Operations and Systems Annual Report 2014 Annual Report OUR VISION To establish a world-leading research centre for autonomous marine operations and systems: To nourish a lively scientific heart in which fundamental knowledge is created through multidisciplinary theoretical, numerical, and experimental research within the knowledge fields of hydrodynamics, structural mechanics, guidance, navigation, and control. Cutting-edge inter-disciplinary research will provide the necessary bridge to realise high levels of autonomy for ships and ocean structures, unmanned vehicles, and marine operations and to address the challenges associated with greener and safer maritime transport, monitoring and surveillance of the coast and oceans, offshore renewable energy, and oil and gas exploration and production in deep waters and Arctic waters. Editors: Annika Bremvåg and Thor I. Fossen Copyright AMOS, NTNU, 2014 www.ntnu.edu/amos AMOS • Annual Report 2014 Table of Contents Our Vision ........................................................................................................................................................................ 2 Director’s Report: Licence to Create............................................................................................................................. 4 Organization, Collaborators, and Facts and Figures 2014 ......................................................................................... 6 Presentation of New Affiliated Scientists...................................................................................................................
    [Show full text]
  • Development of the Crew Dragon ECLSS
    ICES-2020-333 Development of the Crew Dragon ECLSS Jason Silverman1, Andrew Irby2, and Theodore Agerton3 Space Exploration Technologies, Hawthorne, California, 90250 SpaceX designed the Crew Dragon spacecraft to be the safest ever flown and to restore the ability of the United States to launch astronauts. One of the key systems required for human flight is the Environmental Control and Life Support System (ECLSS), which was designed to work in concert with the spacesuit and spacecraft. The tight coupling of many subsystems combined with an emphasis on simplicity and fault tolerance created unique challenges and opportunities for the design team. During the development of the crew ECLSS, the Dragon 1 cargo spacecraft flew with a simple ECLSS for animals, providing an opportunity for technology development and the early characterization of system-level behavior. As the ECLSS design matured a series of tests were conducted, including with humans in a prototype capsule in November 2016, the Demo-1 test flight to the ISS in March 2019, and human-in-the-loop ground testing in the Demo-2 capsule in January 2020 before the same vehicle performs a crewed test flight. This paper describes the design and operations of the ECLSS, the development process, and the lessons learned. Nomenclature AC = air conditioning AQM = air quality monitor AVV = active vent valve CCiCap = Commercial Crew Integrated Capability CCtCap = Commercial Crew Transportation Capability CFD = computational fluid dynamics conops = concept of operations COPV = composite overwrapped
    [Show full text]
  • Soviet Steps Toward Permanent Human Presence in Space
    SALYUT: Soviet Steps Toward Permanent Human Presence in Space December 1983 NTIS order #PB84-181437 Recommended Citation: SALYUT: Soviet Steps Toward Permanent Human Presence in Space–A Technical Mere- orandum (Washington, D. C.: U.S. Congress, Office of Technology Assessment, OTA- TM-STI-14, December 1983). Library of Congress Catalog Card Number 83-600624 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Foreword As the other major spacefaring nation, the Soviet Union is a subject of interest to the American people and Congress in their deliberations concerning the future of U.S. space activities. In the course of an assessment of Civilian Space Stations, the Office of Technology Assessment (OTA) has undertaken a study of the presence of Soviets in space and their Salyut space stations, in order to provide Congress with an informed view of Soviet capabilities and intentions. The major element in this technical memorandum was a workshop held at OTA in December 1982: it was the first occasion when a significant number of experts in this area of Soviet space activities had met for extended unclassified discussion. As a result of the workshop, OTA prepared this technical memorandum, “Salyut: Soviet Steps Toward Permanent Human Presence in Space. ” It has been reviewed extensively by workshop participants and others familiar with Soviet space activities. Also in December 1982, OTA wrote to the U. S. S. R.’s Ambassador to the United States Anatoliy Dobrynin, requesting any information concerning present and future Soviet space activities that the Soviet Union judged could be of value to the OTA assess- ment of civilian space stations.
    [Show full text]
  • Commercial Orbital Transportation Services
    National Aeronautics and Space Administration Commercial Orbital Transportation Services A New Era in Spaceflight NASA/SP-2014-617 Commercial Orbital Transportation Services A New Era in Spaceflight On the cover: Background photo: The terminator—the line separating the sunlit side of Earth from the side in darkness—marks the changeover between day and night on the ground. By establishing government-industry partnerships, the Commercial Orbital Transportation Services (COTS) program marked a change from the traditional way NASA had worked. Inset photos, right: The COTS program supported two U.S. companies in their efforts to design and build transportation systems to carry cargo to low-Earth orbit. (Top photo—Credit: SpaceX) SpaceX launched its Falcon 9 rocket on May 22, 2012, from Cape Canaveral, Florida. (Second photo) Three days later, the company successfully completed the mission that sent its Dragon spacecraft to the Station. (Third photo—Credit: NASA/Bill Ingalls) Orbital Sciences Corp. sent its Antares rocket on its test flight on April 21, 2013, from a new launchpad on Virginia’s eastern shore. Later that year, the second Antares lifted off with Orbital’s cargo capsule, (Fourth photo) the Cygnus, that berthed with the ISS on September 29, 2013. Both companies successfully proved the capability to deliver cargo to the International Space Station by U.S. commercial companies and began a new era of spaceflight. ISS photo, center left: Benefiting from the success of the partnerships is the International Space Station, pictured as seen by the last Space Shuttle crew that visited the orbiting laboratory (July 19, 2011). More photos of the ISS are featured on the first pages of each chapter.
    [Show full text]
  • Japan Cargo Spacecraft Docks at ISS 18 September 2009
    Japan cargo spacecraft docks at ISS 18 September 2009 It was the first time that astronauts operate a Canadian robotic arm at the ISS to dock a spacecraft at the station. The HTV carried 4.5 tonnes of supplies, including food and daily necessities for the six ISS crew, as well as materials for experiments, such as seeds for growing plants in space. The 10-metre (33-foot) long cylindrical vehicle, which cost 20 billion yen (217 million dollars), will soon unload the supplies. It will later take waste materials and return to Earth, burning up as it re-enters the atmosphere. Japan has spent 68 billion yen developing the vehicle, which could be modified in future to carry Japan's first cargo spacecraft arrived at the International humans. Space Station on Friday after astronauts aboard the station grabbed and docked it using a robotic arm. The docking came a week after the Japan Aerospace (c) 2009 AFP Exploration Agency (JAXA) launched the unmanned HTV transportation vehicle atop an H-2B rocket (in picture). Japan's first cargo spacecraft arrived at the International Space Station (ISS) on Friday after astronauts aboard the station grabbed and docked it using a robotic arm. The docking came a week after the Japan Aerospace Exploration Agency (JAXA) launched the unmanned HTV transportation vehicle atop an H-2B rocket. The HTV is Japan's first freighter spacecraft aiming for a share of space transport after the retirement of the US space shuttle fleet next year. "I'm so relieved because I was feeling the pressure and responsibility," Koji Yamanaka, the flight director in charge of the cargo mission, told reporters at Japan's Tsukuba space centre.
    [Show full text]
  • Espinsights the Global Space Activity Monitor
    ESPInsights The Global Space Activity Monitor Issue 2 May–June 2019 CONTENTS FOCUS ..................................................................................................................... 1 European industrial leadership at stake ............................................................................ 1 SPACE POLICY AND PROGRAMMES .................................................................................... 2 EUROPE ................................................................................................................. 2 9th EU-ESA Space Council .......................................................................................... 2 Europe’s Martian ambitions take shape ......................................................................... 2 ESA’s advancements on Planetary Defence Systems ........................................................... 2 ESA prepares for rescuing Humans on Moon .................................................................... 3 ESA’s private partnerships ......................................................................................... 3 ESA’s international cooperation with Japan .................................................................... 3 New EU Parliament, new EU European Space Policy? ......................................................... 3 France reflects on its competitiveness and defence posture in space ...................................... 3 Germany joins consortium to support a European reusable rocket.........................................
    [Show full text]
  • GUIDANCE, NAVIGATION, and CONTROL 2020 AAS PRESIDENT Carol S
    GUIDANCE, NAVIGATION, AND CONTROL 2020 AAS PRESIDENT Carol S. Lane Cynergy LLC VICE PRESIDENT – PUBLICATIONS James V. McAdams KinetX Inc. EDITOR Jastesh Sud Lockheed Martin Space SERIES EDITOR Robert H. Jacobs Univelt, Incorporated Front Cover Illustration: Image: Checkpoint-Rehearsal-Movie-1024x720.gif Caption: “OSIRIS-REx Buzzes Sample Site Nightingale” Photo and Caption Credit: NASA/Goddard/University of Arizona Public Release Approval: Per multimedia guidelines from NASA Frontispiece Illustration: Image: NASA_Orion_EarthRise.jpg Caption: “Orion Primed for Deep Space Exploration” Photo Credit: NASA Public Release Approval: Per multimedia guidelines from NASA GUIDANCE, NAVIGATION, AND CONTROL 2020 Volume 172 ADVANCES IN THE ASTRONAUTICAL SCIENCES Edited by Jastesh Sud Proceedings of the 43rd AAS Rocky Mountain Section Guidance, Navigation and Control Conference held January 30 to February 5, 2020, Breckenridge, Colorado Published for the American Astronautical Society by Univelt, Incorporated, P.O. Box 28130, San Diego, California 92198 Web Site: http://www.univelt.com Copyright 2020 by AMERICAN ASTRONAUTICAL SOCIETY AAS Publications Office P.O. Box 28130 San Diego, California 92198 Affiliated with the American Association for the Advancement of Science Member of the International Astronautical Federation First Printing 2020 Library of Congress Card No. 57-43769 ISSN 0065-3438 ISBN 978-0-87703-669-2 (Hard Cover Plus CD ROM) ISBN 978-0-87703-670-8 (Digital Version) Published for the American Astronautical Society by Univelt, Incorporated, P.O. Box 28130, San Diego, California 92198 Web Site: http://www.univelt.com Printed and Bound in the U.S.A. FOREWORD HISTORICAL SUMMARY The annual American Astronautical Society Rocky Mountain Guidance, Navigation and Control Conference began as an informal exchange of ideas and reports of achievements among local guidance and control specialists.
    [Show full text]
  • Human Asteroid Exploitation Mission Blue Team - Space Vehicle
    SD2905 - HUMAN SPACEFLIGHT 1 Human asteroid exploitation mission Blue team - Space Vehicle Jeremy BEK, Clement´ BORNE, Anton KABJ˚ ORN¨ and Filippo POZZI Abstract—Asteroid rendez-vous and mining is one step Where a is one astronomical unit, MC the mass towards deep space exploration and interplanetary jour- of the Earth and M@ those of the Sun. The lunar neys, and it could prove to be a very lucrative endeavour. distance LD is 384 400 km so the asteroid is outside This paper tackles the space vehicle design associated of Earth’s sphere of influence. The orbital period with the hypothetical mission. It presents background, challenges and solutions linked with spacecraft design. The is one year, just like Earth, and so its seen period structure, mass, cost and technology readiness level (TRL) around Earth is also one year. This means that of the different systems composing the space vehicles are whichever trajectory is chosen, there is a launch described in the report. window every year at the same period. Index Terms—Spacecraft design, Asteroid, Mining, Technology Readiness Level. I. INTRODUCTION Designing a space vehicle for a certain mission is a complicated task that contains many parameters and variables. Even more so, for a particularly ambitious mission like asteroid mining. However, this paper constitutes a preliminary study of what Fig. 1. Orbit of 469219 Kamo’oalewa could resemble such a mission, from a vehicle point of view. The study tackles various topics, such as trajectory III. LAUNCHERS calculations, launcher considerations, or spacecraft The launch is the first part of a spaceflight. For the design.
    [Show full text]
  • An Assessment of Cost Improvements in the NASA COTS/CRS Program and Implications for Future NASA Missions
    An Assessment of Cost Improvements in the NASA COTS/CRS Program and Implications for Future NASA Missions Edgar Zapataa National Aeronautics and Space Administration, Kennedy Space Center, FL, 32899 In May 2012, the SpaceX Dragon spacecraft became the first commercial spacecraft to arrive at the International Space Station (ISS). This achievement, and that of other partners in the NASA Commercial Orbital Transportation Services (COTS) program, would surface difficult questions about NASA’s other more traditional development processes and their traditionally high costs. The cost of the non-traditional COTS public private partnership for the development of spacecraft and launch systems, and later the prices for services to deliver cargo to the ISS, would be praised or criticized by one measure of cost versus another, often with little regard for consistency or data. The goal here is to do the math, to bring rigorous life cycle cost (LCC) analysis into discussions about COTS program costs. We gather publicly available cost data, review the data for credibility, check for consistency among sources, and rigorously define and analyze specific cost metrics. This paper shows quantitatively that the COTS development and later the operational Commercial Resupply Services (CRS) are significant advances in affordability by any measure. To understand measureable improvements in context, we also create and analyze an apples-to-apples scenario where the Space Shuttle would have fulfilled the ISS cargo requirement versus the COTS/CRS launchers and spacecraft. Alternately, we review valid questions that arise where measures or comparisons are not easy or break down, with no quantitative path to clear conclusions.
    [Show full text]
  • SPACE POLICY PRIMER Key Concepts, Issues, and Actors SECOND EDITION
    JOHN PAUL BYRNE John Paul Byrne is an undergraduate at the United States Air Force Academy. He was recently an intern at The Aerospace Corporation, where he supported the work of the Center for Space Policy and Strategy. He is working as the president of the Air Force Academy’s International Applied Space Policy and Strategy cadet club, where they focus on developing space-minded officers for the Air and Space Forces. John will earn his bachelor’s degree in political science with a focus in international relations, and a minor in German in 2021. ROBIN DICKEY Robin Dickey is a space policy and strategy analyst at The Aerospace Corporation’s Center for Space Policy and Strategy, focusing on national security space. Her prior experience includes risk analysis, legislative affairs, and international development. She earned her bachelor’s and master’s degrees in international studies at Johns Hopkins University. MICHAEL P. GLEASON Dr. Michael P. Gleason is a national security senior project engineer in The Aerospace Corporation’s Center for Space Policy and Strategy and is a well-regarded author on space policy subjects, including international cooperation, space traffic management, national security, and deterrence. He has presented his research on critical space policy issues at conferences in Canada, Europe, Japan, and across the United States. A graduate of the U.S. Air Force Academy, Gleason served 29 years active in the Air Force space career field, including stints in spacecraft operations, on the Air Force Academy faculty, at the Pentagon, and at the Department of State. He holds a Ph.D.
    [Show full text]
  • Space Station” IMAX Film
    “Space Station” IMAX Film Theme: Learning to Work, and Live, in Space The educational value of NASM Theater programming is that the stunning visual images displayed engage the interest and desire to learn in students of all ages. The programs do not substitute for an in-depth learning experience, but they do facilitate learning and provide a framework for additional study elaborations, both as part of the Museum visit and afterward. See the “Alignment with Standards” table for details regarding how “Space Station!” and its associated classroom extensions, meet specific national standards of learning. What you will see in the “Space Station” program: • How astronauts train • What it is like to live and work in Space aboard the International Space Station (ISS) Things to look for when watching “Space Station”: • Notice how quickly astronauts adapt to free fall conditions and life on the ISS • Reasons humans go to the cost, risk, and effort to work in Space • The importance of “the little things” in keeping astronauts productive so far from home Learning Elaboration While Visiting the National Air and Space Museum Perhaps the first stop to expand on your “Space Station” experience should be the Skylab Orbiting Laboratory, entered from the second floor overlooking the Space Race Gallery. Skylab was America’s first space station, launched in 1973 and visited by three different three-man crews. It fell back to Earth in 1979. The Skylab on display was the back-up for the Skylab that was launched; the Skylab program was cancelled before it was
    [Show full text]
  • Gait Optimization for Multi-Legged Walking Robots, with Application to a Lunar Hexapod
    GAIT OPTIMIZATION FOR MULTI-LEGGED WALKING ROBOTS, WITH APPLICATION TO A LUNAR HEXAPOD A DISSERTATION SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Daniel Ch´avez-Clemente January 2011 © 2011 by Daniel Chavez Clemente. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/px063cb7934 Includes supplemental files: 1. This video shows a simulation of the zero-interaction gait optimization for the ATHLETE robot. (DanielChavezSwaySimulation.wmv) ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Stephen Rock, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. J Gerdes I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Jean-Claude Latombe I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Terrence Fong Approved for the Stanford University Committee on Graduate Studies.
    [Show full text]