AAVP 1995 Annual Meeting Proceedings
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evidence for Host-Specific Clades of Tetraphyllidean
International Journal for Parasitology 29 (1999) 1465±1476 Evidence for host-speci®c clades of tetraphyllidean tapeworms (Platyhelminthes: Eucestoda) revealed by analysis of 18S ssrDNAp P.D. Olson a, b,*, T.R. Ruhnke c, J. Sanney c, T. Hudson c aThe Natural History Museum, Department of Zoology, Division of Parasitic Worms, Cromwell Road, London SW7 5BD, UK bUniversity of Connecticut, Ecology and Evolutionary Biology, U-43, 75 No. Eagleville Road, Storrs, CT 06269-3043, USA cWest Virginia State College, Department of Biology, Institute, WV 25112-1000, USA Received 12 April 1999; received in revised form 22 June 1999; accepted 22 June 1999 Abstract Sequence data from the V4 and V7±V9 variable regions of the 18S small subunit ribosomal DNA (ssrDNA) gene were used to examine relationships among 26 tetraphyllidean and two lecanicephalidean taxa. Newly collected specimens of 21 of the tetraphyllidean species were used to generate ssrDNA sequences that were combined with sequences previously available, including those of two diphyllidean taxa used for outgroup rooting. The sequences were aligned by eye according to secondary structural motifs of the conserved core of the molecule. Of the 1520 sites in the alignment, 874 (58%) were excluded from analysis due to alignment gaps and lack of positional homology as inferred by manual inspection. Genetic variability of the ssrDNA gene regions compared was greater than would be expected, based on the present taxonomy of the ingroup species, and the genetic divergences among tetraphyllidean `families' and genera were comparable to that among tapeworm orders. Phylogenetic hypotheses were generated by the methods of maximum parsimony and maximum likelihood (GTR + I + G nucleotide substitution model). -
Ecology and Evolutionary Biology
Ecology and evolutionary biology SPRING/SUMMER NEWSLETTER 2019 NUMBER 34 CARL SCHLICHTING RETURNS TO FULL TIME TEACHING AND RESEARCH On June 30, 2019 Dr. Carl Schlichting returned to full time teaching and research responsibilities after serving as EEB’s Department Head for 5 1/2 years (2014-2019). Carl received his B.S. in Zoology from Ohio State University, M.A. in Ecology and Evolution from SUNY at Stony Brook, and a Ph.D. in Botany from the University of Texas (Austin). Carl joined the EEB Department in 1988 as Assistant Professor at the Hartford campus. In 2000 he was promoted to Professor and joined the faculty in Storrs in 2002. He is looking forward to finishing some manuscripts and analyzing some old (Phox and Lobelia) and new (Pelargonium) datasets that have been awaiting his attention! During Carl’s tenure as Head, EEB welcomed eight new faculty members, six at Storrs and one each at Hartford and Stamford. Although he takes little credit, he notes that Department grant expenditures have risen by 40% to $3.5M/ year, and the number of EEB majors has risen from 55 to 80. Carl performed day-to-day management of the multi- year planning process for EEB’s eventual move into a newly renovated Gant Building, as well as the negotiations for a new Greenhouse facility. He will continue to manage the planning and move into EEB’s new Gant space. The exact dates of the two-phase moves will be announced in an upcoming newsletter so stay tuned. Faculty, students and staff are grateful to Carl for his leadership and support during his tenure as Department Head. -
Use of Parasites As Biological Tags for Separating Stocks of the Starspotted Dogfish Mustelus Manazo in Japan and Taiwan
Blackwell Science, LtdOxford, UK FISFisheries Science0919-92682003 Blackwell Science Asia Pty Ltd 692April 2003 626 Parasites of Mustelus manazo A Yamaguchi et al. 10.1046/j.0919-9268.2002.00626.x Original Article337342BEES SGML FISHERIES SCIENCE 2003; 69: 337–342 Use of parasites as biological tags for separating stocks of the starspotted dogfish Mustelus manazo in Japan and Taiwan Atsuko YAMAGUCHI,1* Hiroshi YOKOYAMA,2 Kazuo OGAWA2 AND Toru TANIUCHI3 1Faculty of Fisheries, Nagasaki University, Nagasaki, Nagasaki 852-8521, 2Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo 113-8657 and 3College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-8510, Japan ABSTRACT: The parasite fauna of Mustelus manazo from seven localities in Japan and Taiwan was assessed for the feasibility of using parasites as biological tags for the identification of different host stocks. Examination of 1038 host specimens resulted in 13 parasite species recorded: one nematode, two myxosporeans, two copepods and eight cestodes. Although relatively low overall prevalence of the first five species at different localities showed some significant differences, the samples collected in Tokyo Bay bore the lowest similarity (19.2%). These results support previous studies, which suggested the existence of a unique host stock in Tokyo Bay. Accordingly, combinations of prevalence data may provide useful information on stock identification. Cestodes probably have the greatest potential for use as biological tags. Detailed examination of 25 specimens of M. manazo from Aomori and Tokyo Bay disclosed eight species of intestinal cestodes. A canonical discriminant analysis based on these species separated the two localities clearly. -
The Life Cycle of a Horsehair Worm, Gordius Robustus (Nematomorpha: Gordioidea)
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln John Janovy Publications Papers in the Biological Sciences 2-1999 The Life Cycle of a Horsehair Worm, Gordius robustus (Nematomorpha: Gordioidea) Ben Hanelt University of New Mexico, [email protected] John J. Janovy Jr. University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/bioscijanovy Part of the Parasitology Commons Hanelt, Ben and Janovy, John J. Jr., "The Life Cycle of a Horsehair Worm, Gordius robustus (Nematomorpha: Gordioidea)" (1999). John Janovy Publications. 9. https://digitalcommons.unl.edu/bioscijanovy/9 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in John Janovy Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Hanelt & Janovy, Life Cycle of a Horsehair Worm, Gordius robustus (Nematomorpha: Gordoidea) Journal of Parasitology (1999) 85. Copyright 1999, American Society of Parasitologists. Used by permission. RESEARCH NOTES 139 J. Parasitol., 85(1), 1999 p. 139-141 @ American Society of Parasitologists 1999 The Life Cycle of a Horsehair Worm, Gordius robustus (Nematomorpha: Gordioidea) Ben Hanelt and John Janovy, Jr., School of Biological Sciences, University of Nebraska-lincoln, Lincoln, Nebraska 68588-0118 ABSTRACf: Aspects of the life cycle of the nematomorph Gordius ro Nematomorphs are a poorly studied phylum of pseudocoe bustus were investigated. Gordius robustus larvae fed to Tenebrio mol lomates. As adults they are free living, but their ontogeny is itor (Coleoptera: Tenebrionidae) readily penetrated and subsequently completed as obligate parasites. -
Nematomorpha, Gordiida) Species
A peer-reviewed open-access journal ZooKeys 733: 131–145 (2018) New hairworm (Nematomorpha, Gordiida) species... 131 doi: 10.3897/zookeys.733.22798 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research New hairworm (Nematomorpha, Gordiida) species described from the Arizona Madrean Sky Islands Rachel J. Swanteson-Franz1, Destinie A. Marquez1, Craig I. Goldstein2, Andreas Schmidt-Rhaesa3, Matthew G. Bolek4, Ben Hanelt1 1 Center for Evolutionary and Theoretical Immunology, Department of Biology, 163 Castetter Hall, MSC032020, University of New Mexico, Albuquerque, New Mexico 87131-0001, USA 2 Rush Oak Park Hospital, Department of Emergency Medicine, 520 South Maple Avenue, Oak Park, Illinois 60304, USA 3 Zoological Museum and Institute, Biocenter Grindel, Martin-Luther-King-Platz 3, University of Hamburg, 20146 Hamburg, Germany 4 Department of Integrative Biology, 501 Life Sciences West, Oklahoma State University, Stillwater, Oklahoma 74078, USA Corresponding author: Ben Hanelt ([email protected]) Academic editor: H-P Fagerholm | Received 5 December 2017 | Accepted 7 January 2018 | Published 1 February 2018 http://zoobank.org/DC5CDDD5-74A1-4BF9-BA09-4EC956A57179 Citation: Swanteson-Franz RJ, Marquez DA, Goldstein CI, Schmidt-Rhaesa A, Bolek MG, Hanelt B (2018) New hairworm (Nematomorpha, Gordiida) species described from the Arizona Madrean Sky Islands. ZooKeys 733: 131– 145. https://doi.org/10.3897/zookeys.733.22798 Abstract Gordiids, or freshwater hairworms, are members of the phylum Nematomorpha that use terrestrial de- finitive hosts (arthropods) and live as adults in rivers, lakes, or streams. The genus Paragordius consists of 18 species, one of which was described from the Nearctic in 1851. More than 150 years later, we are describing a second Paragordius species from a unique habitat within the Nearctic; the Madrean Sky Island complex. -
Taenia Infections Iowa State University Center for Food Security and Public Health
Center for Food Security and Public Health Center for Food Security and Public Health Technical Factsheets 5-1-2005 Taenia Infections Iowa State University Center for Food Security and Public Health Follow this and additional works at: http://lib.dr.iastate.edu/cfsph_factsheets Part of the Animal Diseases Commons, and the Veterinary Infectious Diseases Commons Recommended Citation Iowa State University Center for Food Security and Public Health, "Taenia Infections" (2005). Center for Food Security and Public Health Technical Factsheets. 131. http://lib.dr.iastate.edu/cfsph_factsheets/131 This Report is brought to you for free and open access by the Center for Food Security and Public Health at Iowa State University Digital Repository. It has been accepted for inclusion in Center for Food Security and Public Health Technical Factsheets by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Taenia Etiology Taenia spp. are long, segmented, parasitic tapeworms (family Taeniidae, subclass Infections Cestoda). These parasites have an indirect life cycle, cycling between a definitive and an intermediate host. The following Taenia species are zoonotic, with humans serving Taeniasis, as the definitive host, the intermediate host, or both. Non-zoonotic species of Taenia also exist. Cysticercosis, Neurocysticercosis, Taeniasis Coenurosis, The adult tapeworms live in the intestines of the definitive hosts. This infection is Neurocoenurosis called taeniasis. Humans are the definitive hosts for Taenia solium (the pork tapeworm) and T. saginata (the beef tapeworm). Humans are also the definitive hosts for T. asiatica, a newly recognized tapeworm found in Asia. It is currently uncertain Last Updated: May 2005 whether T. -
Faculdade De Medicina Veterinária
UNIVERSIDADE DE LISBOA Faculdade de Medicina Veterinária THE FIRST EPIDEMIOLOGICAL STUDY ON THE PREVALENCE OF CARDIOPULMONARY AND GASTROINTESTINAL PARASITES IN CATS AND DOGS FROM THE ALGARVE REGION OF PORTUGAL USING THE FLOTAC TECHNIQUE SINCLAIR PATRICK OWEN CONSTITUIÇÃO DO JURÍ ORIENTADOR Doutor José Augusto Farraia e Silva Doutor Luís Manuel Madeira de Carvalho Meireles Doutor Luís Manuel Madeira de Carvalho CO-ORIENTADOR Mestre Telmo Renato Landeiro Raposo Dr. Dário Jorge Costa Santinha Pina Nunes 2017 LISBOA UNIVERSIDADE DE LISBOA Faculdade de Medicina Veterinária THE FIRST EPIDEMIOLOGICAL STUDY ON THE PREVALENCE OF CARDIOPULMONARY AND GASTROINTESTINAL PARASITES IN CATS AND DOGS FROM THE ALGARVE REGION OF PORTUGAL USING THE FLOTAC TECHNIQUE SINCLAIR PATRICK OWEN DISSERTAÇÃO DE MESTRADO INTEGRADO EM MEDICINA VETERINÁRIA CONSTITUIÇÃO DO JURÍ ORIENTADOR Doutor José Augusto Farraia e Silva Doutor Luís Manuel Madeira de Carvalho Meireles CO-ORIENTADOR Doutor Luís Manuel Madeira de Carvalho Dr. Dário Jorge Costa Santinha Mestre Telmo Renato Landeiro Raposo Pina Nunes 2017 LISBOA ACKNOWLEDGEMENTS This dissertation and the research project that underpins it would not have been possible without the support, advice and encouragement of many people to whom I am extremely grateful. First and foremost, a big thank you to my supervisor Professor Doctor Luis Manuel Madeira de Carvalho, a true gentleman, for his unwavering support and for sharing his extensive knowledge with me. Without his excellent scientific guidance and British humour this journey wouldn’t have been the same. I would like to thank my co-supervisor Dr. Dário Jorge Costa Santinha, for welcoming me into his Hospital and for everything he taught me. -
The Influence of Human Settlements on Gastrointestinal Helminths of Wild Monkey Populations in Their Natural Habitat
The influence of human settlements on gastrointestinal helminths of wild monkey populations in their natural habitat Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) Fakultät für Chemie und Biowissenschaften Karlsruher Institut für Technologie (KIT) – Universitätsbereich genehmigte DISSERTATION von Dipl. Biol. Alexandra Mücke geboren in Germersheim Dekan: Prof. Dr. Martin Bastmeyer Referent: Prof. Dr. Horst F. Taraschewski 1. Korreferent: Prof. Dr. Eckhard W. Heymann 2. Korreferent: Prof. Dr. Doris Wedlich Tag der mündlichen Prüfung: 16.12.2011 To Maya Index of Contents I Index of Contents Index of Tables ..............................................................................................III Index of Figures............................................................................................. IV Abstract .......................................................................................................... VI Zusammenfassung........................................................................................VII Introduction ......................................................................................................1 1.1 Why study primate parasites?...................................................................................2 1.2 Objectives of the study and thesis outline ................................................................4 Literature Review.............................................................................................7 2.1 Parasites -
Severe Coenurosis Caused by Larvae of Taenia Serialis in an Olive Baboon (Papio Anubis) in Benin T
IJP: Parasites and Wildlife 9 (2019) 134–138 Contents lists available at ScienceDirect IJP: Parasites and Wildlife journal homepage: www.elsevier.com/locate/ijppaw Severe coenurosis caused by larvae of Taenia serialis in an olive baboon (Papio anubis) in Benin T ∗ E. Chanoveb, , A.M. Ionicăa, D. Hochmanc, F. Berchtolda, C.M. Ghermana, A.D. Mihalcaa a Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, Cluj-Napoca, 400372, Romania b Department of Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, Cluj-Napoca, 400372, Romania c Veterinary Clinic “du clos”, 67 rue de la chapelle, Saint-Cergues, 74140, France ARTICLE INFO ABSTRACT Keywords: In March 2017, a captive male juvenile (ca. 6 months old) olive baboon (Papio anubis) was brought to a primate Olive baboon rescue center in Benin with multiple subcutaneous swellings of unknown aetiology. At the general inspection of Intermediate host the body, around 15 partially mobile masses of variable sizes were found in different locations across the body. Taenia serialis Following two surgical procedures, several cyst-like structures were removed and placed either in 10% formalin Coenurus or in absolute ethanol. The cysts had a typical coenurus-like morphology. Genomic DNA was extracted from one cyst using a commercially available kit. The molecular characterization was performed by PCR amplification and sequencing of a region of the nuclear ITS-2 rDNA and a fragment of the mitochondrial 12S rDNA gene, revealing its identity as T. serialis, with 88%–98% similarity to T. -
Hairworm Response to Notonectid Attacks
ANIMAL BEHAVIOUR, 2008, 75, 823e826 doi:10.1016/j.anbehav.2007.07.002 Available online at www.sciencedirect.com Hairworm response to notonectid attacks MARTA I. SA´ NCHEZ*,FLEURPONTON*, DOROTHE´ EMISSE´ *,DAVIDP.HUGHES† &FRE´ DE´ RIC THOMAS* *GEMI, UMR CNRS/IRD, Montpellier yCentre for Social Evolution, Institute of Biology, Universitetsparken, Copenhagen (Received 20 March 2007; initial acceptance 11 May 2007; final acceptance 4 July 2007; published online 24 October 2007; MS. number: 9319) Very few parasite species are directly predated but most of them inherit the predators of their host. We explored the behavioural response of nematomorph hairworms when their hosts are preyed upon by one of the commonest invertebrate predators in the aquatic habitat of hairworms, notonectids. The hair- worm Paragordius tricuspidatus can alter the behaviour of its terrestrial insect host (the cricket Nemobius syl- vestris), causing it to jump into the water; an aquatic habitat is required for the adult free-living stage of the parasite. We predicted that hairworms whose hosts are captured by a notonectid should accelerate their emergence to leave the host before being killed. As predicted, the emergence length of the worm was sig- nificantly shortened in cases of notonectid predation, but the exact reason of this response seems to be more complex than expected. Indeed, experimental manipulations revealed that hairworms are remark- ably insensitive to a prolonged exposure to predator effluvia which notonectids inject into prey, so accel- erated emergence is not a protective response against digestive enzymes. We discuss other possibilities for the accelerated exit observed, ranging from unspecific stress responses to other scenarios requiring consid- eration of the ecological context. -
Parasites of Cartilaginous Fishes (Chondrichthyes) in South Africa – a Neglected Field of Marine Science
Institute of Parasitology, Biology Centre CAS Folia Parasitologica 2019, 66: 002 doi: 10.14411/fp.2019.002 http://folia.paru.cas.cz Research article Parasites of cartilaginous fishes (Chondrichthyes) in South Africa – a neglected field of marine science Bjoern C. Schaeffner and Nico J. Smit Water Research Group, Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, Potchefstroom, South Africa Abstract: Southern Africa is considered one of the world’s ‘hotspots’ for the diversity of cartilaginous fishes (Chondrichthyes), with currently 204 reported species. Although numerous literature records and treatises on chondrichthyan fishes are available, a paucity of information exists on the biodiversity of their parasites. Chondrichthyan fishes are parasitised by several groups of protozoan and metazoan organisms that live either permanently or temporarily on and within their hosts. Reports of parasites infecting elasmobranchs and holocephalans in South Africa are sparse and information on most parasitic groups is fragmentary or entirely lacking. Parasitic copepods constitute the best-studied group with currently 70 described species (excluding undescribed species or nomina nuda) from chondrichthyans. Given the large number of chondrichthyan species present in southern Africa, it is expected that only a mere fraction of the parasite diversity has been discovered to date and numerous species await discovery and description. This review summarises information on all groups of parasites of chondrichthyan hosts and demonstrates the current knowledge of chondrichthyan parasites in South Africa. Checklists are provided displaying the host-parasite and parasite-host data known to date. Keywords: Elasmobranchii, Holocephali, diversity, host-parasite list, parasite-host list The biogeographical realm of Temperate Southern Af- pagno et al. -
Insect Behavioral Change and the Potential Contributions of Neuroinflammation—A Call for Future Research
G C A T T A C G G C A T genes Review Insect Behavioral Change and the Potential Contributions of Neuroinflammation—A Call for Future Research Colleen A. Mangold 1,2 and David P. Hughes 1,2,3,* 1 Department of Entomology, College of Agricultural Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA; [email protected] 2 Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA 3 Department of Biology, Eberly College of Science, Pennsylvania State University, University Park, State College, PA 16802, USA * Correspondence: [email protected] Abstract: Many organisms are able to elicit behavioral change in other organisms. Examples include different microbes (e.g., viruses and fungi), parasites (e.g., hairworms and trematodes), and parasitoid wasps. In most cases, the mechanisms underlying host behavioral change remain relatively unclear. There is a growing body of literature linking alterations in immune signaling with neuron health, communication, and function; however, there is a paucity of data detailing the effects of altered neuroimmune signaling on insect neuron function and how glial cells may contribute toward neuron dysregulation. It is important to consider the potential impacts of altered neuroimmune communica- tion on host behavior and reflect on its potential role as an important tool in the “neuro-engineer” toolkit. In this review, we examine what is known about the relationships between the insect immune and nervous systems. We highlight organisms that are able to influence insect behavior and discuss possible mechanisms of behavioral manipulation, including potentially dysregulated neuroimmune Citation: Mangold, C.A.; Hughes, communication.