Hairworm Anti-Predator Strategy: a Study of Causes and Consequences
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Water-Seeking Behavior in Worm-Infected Crickets and Reversibility of Parasitic Manipulation
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by HAL Clermont Université Water-seeking behavior in worm-infected crickets and reversibility of parasitic manipulation. Fleur Ponton, Fernando Ot´alora-Luna,Thierry Lef`evre,Patrick M Guerin, Camille Lebarbenchon, David Duneau, David Georges Biron, Fr´ed´ericThomas To cite this version: Fleur Ponton, Fernando Ot´alora-Luna,Thierry Lef`evre,Patrick M Guerin, Camille Lebarben- chon, et al.. Water-seeking behavior in worm-infected crickets and reversibility of parasitic manipulation.. Behavioral Ecology, Oxford University Press (OUP), 2011, 22 (2), pp.392-400. <10.1093/beheco/arq215>. <hal-00814753> HAL Id: hal-00814753 https://hal.archives-ouvertes.fr/hal-00814753 Submitted on 17 Apr 2013 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. Behavioral Ecology doi:10.1093/beheco/arq215 Advance Access publication 8 February 2011 Original Article Water-seeking behavior in worm-infected crickets and reversibility of parasitic manipulation Fleur Ponton,a Fernando Ota´lora-Luna,b Thierry Lefe`vre,a Patrick M. Guerin,b Camille Lebarbenchon,a David Duneau,a David G. Biron,a and Fre´de´ric Thomasa aGEMI/UMR CNRS-IRD 2724, Equipe: ‘‘Evolution des Syste`mes Symbiotiques’’, IRD, 911 Avenue Agropolis, B.P. -
THE QUARTERLY REVIEW of BIOLOGY
VOL. 43, NO. I March, 1968 THE QUARTERLY REVIEW of BIOLOGY LIFE CYCLE ORIGINS, SPECIATION, AND RELATED PHENOMENA IN CRICKETS BY RICHARD D. ALEXANDER Museum of Zoology and Departmentof Zoology The Universityof Michigan,Ann Arbor ABSTRACT Seven general kinds of life cycles are known among crickets; they differ chieff,y in overwintering (diapause) stage and number of generations per season, or diapauses per generation. Some species with broad north-south ranges vary in these respects, spanning wholly or in part certain of the gaps between cycles and suggesting how some of the differences originated. Species with a particular cycle have predictable responses to photoperiod and temperature regimes that affect behavior, development time, wing length, bod)• size, and other characteristics. Some polymorphic tendencies also correlate with habitat permanence, and some are influenced by population density. Genera and subfamilies with several kinds of life cycles usually have proportionately more species in temperate regions than those with but one or two cycles, although numbers of species in all widely distributed groups diminish toward the higher lati tudes. The tendency of various field cricket species to become double-cycled at certain latitudes appears to have resulted in speciation without geographic isolation in at least one case. Intermediate steps in this allochronic speciation process are illustrated by North American and Japanese species; the possibility that this process has also occurred in other kinds of temperate insects is discussed. INTRODUCTION the Gryllidae at least to the Jurassic Period (Zeuner, 1939), and many of the larger sub RICKETS are insects of the Family families and genera have spread across two Gryllidae in the Order Orthoptera, or more continents. -
AMCOP 69 Booklet
AMCOP 69 June 8-10, 2017 Center for Sciences and Agriculture Wilmington College Wilmington, OH 45177 Contents OFFICERS 1 ACKNOWLEDGEMENTS 2 SCHEDULE 3 ABSTRACTS 11 AMCOP-68 MEETING SUMMARY 22 ORGANIZATION INFORMATION 26 SUMMARIES OF PREVIOUS MEETINGS 29 2016 FINANCIAL REPORT 37 2017 INTERIM FINANCIAL REPORT 38 MEMBERSHIP DIRECTORY 39 DUES PAYMENT FORM 44 Officers for 2017 Presiding Officer..................................Dr. Matthew Bolek Oklahoma State University Program Officer…………………Dr. Doug Woodmansee Wilmington College Secretary/ Treasurer ………............ Dr. Robert Sorensen Minnesota State University Mankato www.amcop.org Acknowledgements ELANCO ANIMAL HEALTH A Division of Eli Lilly and Company For support of the Herrick Award. THE AMERICAN SOCIETY OF PARASITOLOGISTS For support of speakers’ travel expenses. THE MEMBERSHIP OF AMCOP For support of the LaRue, Cable, Honorable Mention Awards and other expenses. For support of speakers’ travel expenses The 69th Annual Midwestern Conference of Parasitologists provides 4 Continuing Education Credits (4 CE). Your registration confirmation is proof of your attendance. 2 SCHEDULE THURSDAY, JUNE 8, 2017 2:00-5:00 pm Room Check-in at Pyle Center for Students 7:00-10:00 pm Opening Mixer: The Escape, 36 W. Sugartree St, Wilmington, OH FRIDAY, JUNE 9, 2017 Center for The Sciences and Agriculture (CSA) Room 242 8:00am Continental Breakfast (CSA Hallway) and Silent Auction Setup (Tables in back of CSA 242) 8:45am Opening Remarks and Welcome • Dr. Doug Woodmansee, Program Officer • Dr. Erica Goodwin, Vice President for Academic Affairs and Dean of the Faculty CONTRIBUTED PAPERS (STUDENT PAPERS INDICATED BY *) 9:00 1* Chronic Cytauxzoon felis infections in wild caught bobcats (Lynx rufus). -
Top 10 Real-Life Body Snatchers
Top 10 Real-Life Body Snatchers Parasites and zombies are not science fiction; they infest rats, crickets, ants, moths and other creatures, sucking the life out of them By Megan Gambino, Smithsonian.com October 24, 2011 To ensure their own survival, parasites alter the appearance and behavior of their hosts in the creepiest ways. For instance, rats carrying the parasitic protozoan Toxoplasma gondii, which reproduces inside the gut of a cat, no longer fear the smell of cat urine. In fact, they are sexually attracted to the scent, according to a recent study. This way, infected rats walk right into the grips of a feline. Here are ten other parasites whose sophisticated manipulations of animals are more horrifying than fiction. 1. Paragordius tricuspidatus Exactly how a hairworm parasitizes a cricket is unknown. Scientists suspect that the insect ingests either an infected mosquito or water containing hairworm larvae. But once inside, the hairworm grows three to four times as long as the arthropod, filling all parts of its body except the head and legs. What happens next is even more bizarre. The parasite, Paragordius tricuspidatus, produces proteins that hijack the cricket’s central nervous system, making it attracted to areas brighter than its shaded forest home. The cricket, Nemobius sylvestris, heads then to an exposed pond or river and dives in, at which point the hairworm emerges from its host’s rear end. In an aquatic environment, the worm can find a mate and reproduce. For some crickets, it’s a suicide leap. But others lucky enough not to have drowned have lived for several months after the parasite removes itself. -
AAVP 1995 Annual Meeting Proceedings
Joint Meeting of The American Society of Parasitologists & The American Association of Veterinary Parasitologists July 6 july 1 0, 1995 Pittsburgh, Pennsylvania 2 ! j THE AMERICAN SOCIETY - OF PARASITOLOGISTS - & THE AMERICAN ASSOCIATION OF VETERINARY PARASITOLOGISTS ACKNOWLEDGE THEFOLLO~GCO~ANlliS FOR THEIR FINANCIAL SUPPORT: CORPORATE EVENT SPONSOR: PFIZER ANIMAL HEALTH CORPORATE SPONSORS: BOEHRINGER INGELHEIM ANIMAL HEALTH, INC. MALUNCKRODT VETERINARY, INC. THE UPJOHN CO. MEETING SPONSORS: AMERICAN CYANAMID CO. CIBA ANIMAL HEALTH ELl LILLY & CO. FERMENT A ANIMAL HEALTH HILL'S PET NUTRITION, INC. HOECHST-ROUSSEL AGRI-VET CO. IDEXX LABORATORIES, INC. MIDWEST VETERINARY SERVICES, INC. PARA VAX, INC. PROFESSIONAL LABORATORIES & RESEARCH SERVICES RHONE MERIEUX, INC. SCHERING-PLOUGH ANIMAL HEALTH SOLVAY ANIMAL HEALTH, INC. SUMITOMO CHEMICAL, LTO. SYNBIOTICS CORP. TRS LABS, INC. - - I I '1---.. --J 3 Announcing a Joint Meeting of THE AMERICAN SOCIETY THE AMERICAN ASSOCIATION Of OF PARASITOLOGISTS VETERINARY PARASITOLOGISTS (70th Meeting) (40th Meeting) Pittsburgh, Pennsylvania july 6-1 0, 1995 INFORMATION & REGISTRATION Hyatt Regency Hotel, 112 Washington Place THURSDAY Regency foyer, 2nd Floor t July 6th Registration Begins, Noon-5:00 p.m. FRIDAY Regency foyer, 2nd Floor t July 7th 8:00 a.m.-5:00 p.m. SATURDAY Regency foyer, 2nd Floor july 8th 8:00 a.m.-5:00p.m. SUNDAY Regency foyer, 2nd Floor july 9th 8:00 a.m.-Noon t Items for the Auction may be delivered to this location before 3:00p.m. on Friday, july 7th. 4 WELCOME RECEPTION Thursday, july 6th 7:00-1 0:00 p.m. Grand Ballroom SOCIAl, MATCH THE FACES & AUCTION Friday, July 7th Preview: 6:30-7:30 p.m. -
Ohio EPA Macroinvertebrate Taxonomic Level December 2019 1 Table 1. Current Taxonomic Keys and the Level of Taxonomy Routinely U
Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Table 1. Current taxonomic keys and the level of taxonomy routinely used by the Ohio EPA in streams and rivers for various macroinvertebrate taxonomic classifications. Genera that are reasonably considered to be monotypic in Ohio are also listed. Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Species Pennak 1989, Thorp & Rogers 2016 Porifera If no gemmules are present identify to family (Spongillidae). Genus Thorp & Rogers 2016 Cnidaria monotypic genera: Cordylophora caspia and Craspedacusta sowerbii Platyhelminthes Class (Turbellaria) Thorp & Rogers 2016 Nemertea Phylum (Nemertea) Thorp & Rogers 2016 Phylum (Nematomorpha) Thorp & Rogers 2016 Nematomorpha Paragordius varius monotypic genus Thorp & Rogers 2016 Genus Thorp & Rogers 2016 Ectoprocta monotypic genera: Cristatella mucedo, Hyalinella punctata, Lophopodella carteri, Paludicella articulata, Pectinatella magnifica, Pottsiella erecta Entoprocta Urnatella gracilis monotypic genus Thorp & Rogers 2016 Polychaeta Class (Polychaeta) Thorp & Rogers 2016 Annelida Oligochaeta Subclass (Oligochaeta) Thorp & Rogers 2016 Hirudinida Species Klemm 1982, Klemm et al. 2015 Anostraca Species Thorp & Rogers 2016 Species (Lynceus Laevicaudata Thorp & Rogers 2016 brachyurus) Spinicaudata Genus Thorp & Rogers 2016 Williams 1972, Thorp & Rogers Isopoda Genus 2016 Holsinger 1972, Thorp & Rogers Amphipoda Genus 2016 Gammaridae: Gammarus Species Holsinger 1972 Crustacea monotypic genera: Apocorophium lacustre, Echinogammarus ischnus, Synurella dentata Species (Taphromysis Mysida Thorp & Rogers 2016 louisianae) Crocker & Barr 1968; Jezerinac 1993, 1995; Jezerinac & Thoma 1984; Taylor 2000; Thoma et al. Cambaridae Species 2005; Thoma & Stocker 2009; Crandall & De Grave 2017; Glon et al. 2018 Species (Palaemon Pennak 1989, Palaemonidae kadiakensis) Thorp & Rogers 2016 1 Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Informal grouping of the Arachnida Hydrachnidia Smith 2001 water mites Genus Morse et al. -
A Parasitological Evaluation of Edible Insects and Their Role in the Transmission of Parasitic Diseases to Humans and Animals
RESEARCH ARTICLE A parasitological evaluation of edible insects and their role in the transmission of parasitic diseases to humans and animals 1 2 Remigiusz GaøęckiID *, Rajmund Soko ø 1 Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland, 2 Department of Parasitology and Invasive Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract From 1 January 2018 came into force Regulation (EU) 2015/2238 of the European Parlia- ment and of the Council of 25 November 2015, introducing the concept of ªnovel foodsº, including insects and their parts. One of the most commonly used species of insects are: OPEN ACCESS mealworms (Tenebrio molitor), house crickets (Acheta domesticus), cockroaches (Blatto- Citation: Gaøęcki R, SokoÂø R (2019) A dea) and migratory locusts (Locusta migrans). In this context, the unfathomable issue is the parasitological evaluation of edible insects and their role in the transmission of parasitic diseases to role of edible insects in transmitting parasitic diseases that can cause significant losses in humans and animals. PLoS ONE 14(7): e0219303. their breeding and may pose a threat to humans and animals. The aim of this study was to https://doi.org/10.1371/journal.pone.0219303 identify and evaluate the developmental forms of parasites colonizing edible insects in Editor: Pedro L. Oliveira, Universidade Federal do household farms and pet stores in Central Europe and to determine the potential risk of par- Rio de Janeiro, BRAZIL asitic infections for humans and animals. -
The Life Cycle of a Horsehair Worm, Gordius Robustus (Nematomorpha: Gordioidea)
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln John Janovy Publications Papers in the Biological Sciences 2-1999 The Life Cycle of a Horsehair Worm, Gordius robustus (Nematomorpha: Gordioidea) Ben Hanelt University of New Mexico, [email protected] John J. Janovy Jr. University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/bioscijanovy Part of the Parasitology Commons Hanelt, Ben and Janovy, John J. Jr., "The Life Cycle of a Horsehair Worm, Gordius robustus (Nematomorpha: Gordioidea)" (1999). John Janovy Publications. 9. https://digitalcommons.unl.edu/bioscijanovy/9 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in John Janovy Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Hanelt & Janovy, Life Cycle of a Horsehair Worm, Gordius robustus (Nematomorpha: Gordoidea) Journal of Parasitology (1999) 85. Copyright 1999, American Society of Parasitologists. Used by permission. RESEARCH NOTES 139 J. Parasitol., 85(1), 1999 p. 139-141 @ American Society of Parasitologists 1999 The Life Cycle of a Horsehair Worm, Gordius robustus (Nematomorpha: Gordioidea) Ben Hanelt and John Janovy, Jr., School of Biological Sciences, University of Nebraska-lincoln, Lincoln, Nebraska 68588-0118 ABSTRACf: Aspects of the life cycle of the nematomorph Gordius ro Nematomorphs are a poorly studied phylum of pseudocoe bustus were investigated. Gordius robustus larvae fed to Tenebrio mol lomates. As adults they are free living, but their ontogeny is itor (Coleoptera: Tenebrionidae) readily penetrated and subsequently completed as obligate parasites. -
Nematomorpha, Gordiida) Species
A peer-reviewed open-access journal ZooKeys 733: 131–145 (2018) New hairworm (Nematomorpha, Gordiida) species... 131 doi: 10.3897/zookeys.733.22798 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research New hairworm (Nematomorpha, Gordiida) species described from the Arizona Madrean Sky Islands Rachel J. Swanteson-Franz1, Destinie A. Marquez1, Craig I. Goldstein2, Andreas Schmidt-Rhaesa3, Matthew G. Bolek4, Ben Hanelt1 1 Center for Evolutionary and Theoretical Immunology, Department of Biology, 163 Castetter Hall, MSC032020, University of New Mexico, Albuquerque, New Mexico 87131-0001, USA 2 Rush Oak Park Hospital, Department of Emergency Medicine, 520 South Maple Avenue, Oak Park, Illinois 60304, USA 3 Zoological Museum and Institute, Biocenter Grindel, Martin-Luther-King-Platz 3, University of Hamburg, 20146 Hamburg, Germany 4 Department of Integrative Biology, 501 Life Sciences West, Oklahoma State University, Stillwater, Oklahoma 74078, USA Corresponding author: Ben Hanelt ([email protected]) Academic editor: H-P Fagerholm | Received 5 December 2017 | Accepted 7 January 2018 | Published 1 February 2018 http://zoobank.org/DC5CDDD5-74A1-4BF9-BA09-4EC956A57179 Citation: Swanteson-Franz RJ, Marquez DA, Goldstein CI, Schmidt-Rhaesa A, Bolek MG, Hanelt B (2018) New hairworm (Nematomorpha, Gordiida) species described from the Arizona Madrean Sky Islands. ZooKeys 733: 131– 145. https://doi.org/10.3897/zookeys.733.22798 Abstract Gordiids, or freshwater hairworms, are members of the phylum Nematomorpha that use terrestrial de- finitive hosts (arthropods) and live as adults in rivers, lakes, or streams. The genus Paragordius consists of 18 species, one of which was described from the Nearctic in 1851. More than 150 years later, we are describing a second Paragordius species from a unique habitat within the Nearctic; the Madrean Sky Island complex. -
Orthoptera, Gryllidae, Nemobiinae) Discovered in Colluvial, Stony Debris in the Iberian Peninsula: a Biological, Phenological and Biometric Study
Zootaxa 3691 (2): 201–219 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3691.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:860039CB-3547-4088-B4CE-0DD240559ACA A new mute species of the genus Nemobius Serville (Orthoptera, Gryllidae, Nemobiinae) discovered in colluvial, stony debris in the Iberian Peninsula: A biological, phenological and biometric study PABLO BARRANCO1,3, JOSÉ D. GILGADO2 & VICENTE M. ORTUÑO2 1Dpto. Biología y Geología. Cite II-B. Universidad de Almería. E-04120 – Almería. Spain 2Dpto. de Ciencias de la Vida. Facultad de Biología, Ciencias Ambientales y Química. Universidad de Alcalá, E-28871 – Alcalá de Henares. Madrid. Spain 3Corresponding author. E-mail: [email protected] Abstract Sampling of a Mesovoid Shallow Substratum (MSS) of a scree in the Guadarrama mountains (Madrid, Spain) revealed a population of crickets of the genus Nemobius Serville. A detailed morphological study revealed that the cricket was a new species, Nemobius interstitialis sp. nov., which is principally characterized by the absence of a tympanum in the outer margin of the foreleg tibiae and a peculiar design of venation of the forewing of the male. Sampling of this environment over 1 year using surface and MSS pitfall traps, set at a depth of one meter, allowed study of population dynamics. A pop- ulation maximum is attained in August. Abiotic (temperature and humidity) and biotic (accompanying fauna) data are giv- en to contextualize the habitat of this new species. Key words: Nemobius interstitialis sp. nov., biology, Mesovoid Shallow Substratum (MSS), Guadarrama mountains, Ibe- rian Peninsula. -
The Song Relationships of Four Species of Ground Crickets (Orthoptera: Gryllidae: Nemobius)1
THE SONG RELATIONSHIPS OF FOUR SPECIES OF GROUND CRICKETS (ORTHOPTERA: GRYLLIDAE: NEMOBIUS)1 RICHARD D. ALEXANDER Department of Zoology and Entomology, The Ohio State University, Columbus 10 INTRODUCTION Several accounts have been written of the mating behavior of different species of ground crickets (Fulton, 1931; Richards, 1952; Gabbutt, 1954), and many excellent descriptions of their songs, based on auditory impressions, have appeared (Fulton, 1930, 1931, 1932; Cantrall, 1943; and many others). A few song analyses have been made with mechanical or electronic devices (Fulton, 1933; Pielemeier, 1946, 1946a; Pierce, 1948). Detailed comparative studies of song relationships in the singing Orthoptera and Cicadidae are almost non-existent, though it is increasingly apparent that satisfactory interpretations of the taxonomic and distri- butional relationships of these species will depend on such studies. The present investigation is based on laboratory and field observations, and on tape recordings of songs analyzed by means of a Vibralyzer. The species dis- cussed include Nemobius carolinus carolinus Scudder, N. confusus Blatchley, and N. melodius Thomas and Alexander, the only eastern representatives of the sub- genus Eunemobius Hebard. A fourth species, N. maculatus Blatchley, belonging in the subgenus Allonemobius Hebard, is also considered here because of certain distributional and song relationships with the above species. The recordings used for song analysis are deposited in the Library of Animal Sounds, Department of Zoology and Entomology, The Ohio State University. They were made with a Magnemite, Model 610-E (in the field) and a Magnecorder, Model PT6A (in the laboratory) at a tape speed of fifteen inches per second. American Microphone Company Microphones, Models D-33 and D-33A, were used, both in the field and in the laboratory. -
The Ticking Cricket 615
The Journal of Experimental Biology 205, 613–625 (2002) 613 Printed in Great Britain © The Company of Biologists Limited 2002 JEB3702 Ticking of the clockwork cricket: the role of the escapement mechanism H. C. Bennet-Clark1,* and Winston J. Bailey2 1Department of Zoology, Oxford University, South Parks Road, Oxford OX1 3PS, UK and 2Department of Zoology, University of Western Australia, Nedlands, WA 6907, Australia *e-mail: [email protected] Accepted 10 December 2001 Summary The ‘clockwork cricket’ model for cricket sound frequency components did not correlate with that at the production suggests that the catch-and-release of the file dominant frequency. of one forewing by the plectrum on the opposite wing act Anomalous pulses occurred spontaneously in the songs as an ‘escapement’ to provide the phasic impulses that of several species: multimodal, interrupted or curtailed initiate and sustain the vibration of the resonant regions of pulses are described. In all of these, the anomalous pulse the wings from which the sounds are produced. The action envelope was associated with changes in the amplitude of the escapement produces the familiar ticking sound of and/or instantaneous frequency of the higher-frequency clocks. components of the sound. The higher-frequency components of the songs of twelve A model of the escapement suggests that the frequency species of cricket were analysed after removing the of the residual components of the song depends on the dominant low-frequency components and amplifying the symmetry of action of the plectrum on the teeth of the file. remaining higher-frequency components. In normal song pulses of all species, the higher-frequency components showed a close phase-locking to the waveform of the Key words: cricket, Gryllidae, sound production, escapement, file dominant frequency, but the amplitude of the higher- and plectrum, high-frequency sound, resonator.