Hairworm Response to Notonectid Attacks
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Het Nederlandse D.Rijk
75 HET NEDERLANDSE DIERENRIJK Alle in Nederland vastgestelde diergroepen worden & Ryland (1990*). Brakwater: Barnes (1994*). Zoet hieronder kort besproken met de volgende standaard- water: Fitter & Manuel (1986), Macan (1959), Koop- indeling: mans (1991*). Parasieten en commensalen van mens en WETENSCHAPPELIJKE NAAM - NEDERLANDSE NAAM huisdier: Walker (1994*), Lane & Crosskey (1993*), Korte karakterisering van de diergroep. Weidner (1982*). Insekten en geleedpotigen algemeen: NL Het aantal in Nederland vastgestelde soorten, de Chinery (1988*), Joosse et al. (1972*), Naumann hoeveelheid daarvan die niet echt inheems is, en even- (1994*), Bellmann (1991*), Kühlmann et al. (1993), tueel het aantal alleen uit ons land bekende soorten en Van Frankenhuyzen (1992*, plagen in fruitteelt). het aantal (nog) te verwachten soorten (d.w.z.: waar- verspreiding Opgave van literatuur met gegevens schijnlijk in Nederland aanwezig, maar nog niet ont- over de verspreiding in Nederland. dekt), met bronnen. Eventueel zijn de bij ons soorten- rijkste deelgroepen (meestal families) vermeld of is een PORIFERA - SPONZEN overzicht van de groep in tabelvorm toegevoegd. Eenvoudig gebouwde dieren zonder organen. Ze be- veranderingen Informatie over toe- of afname van staan uit twee lagen cellen met daartussen een gelati- het aantal soorten en de (mogelijke) oorzaken daarvan. neuze laag. Hierin bevinden zich naaldjes van kalk of Melding van in Nederland uitgestorven soorten (indien kiezel (spiculae), of hoornige vezels (badspons!). De bekend), maar ook voor- of achteruitgang van andere cellen zijn gerangschikt rond één of meer centrale hol- soorten, met opgave van bronnen. ten met in- en uitstroomopeningen. Trilhaarcellen diversiteit Opgave van de gebieden in Nederland (choanocyten) zorgen voor watertransport. Sponzen waarbinnen het grootste soortenaantal (de grootste di- zijn sessiele bodemdieren, waarvan de vorm in hoge versiteit) optreedt. -
AAVP 1995 Annual Meeting Proceedings
Joint Meeting of The American Society of Parasitologists & The American Association of Veterinary Parasitologists July 6 july 1 0, 1995 Pittsburgh, Pennsylvania 2 ! j THE AMERICAN SOCIETY - OF PARASITOLOGISTS - & THE AMERICAN ASSOCIATION OF VETERINARY PARASITOLOGISTS ACKNOWLEDGE THEFOLLO~GCO~ANlliS FOR THEIR FINANCIAL SUPPORT: CORPORATE EVENT SPONSOR: PFIZER ANIMAL HEALTH CORPORATE SPONSORS: BOEHRINGER INGELHEIM ANIMAL HEALTH, INC. MALUNCKRODT VETERINARY, INC. THE UPJOHN CO. MEETING SPONSORS: AMERICAN CYANAMID CO. CIBA ANIMAL HEALTH ELl LILLY & CO. FERMENT A ANIMAL HEALTH HILL'S PET NUTRITION, INC. HOECHST-ROUSSEL AGRI-VET CO. IDEXX LABORATORIES, INC. MIDWEST VETERINARY SERVICES, INC. PARA VAX, INC. PROFESSIONAL LABORATORIES & RESEARCH SERVICES RHONE MERIEUX, INC. SCHERING-PLOUGH ANIMAL HEALTH SOLVAY ANIMAL HEALTH, INC. SUMITOMO CHEMICAL, LTO. SYNBIOTICS CORP. TRS LABS, INC. - - I I '1---.. --J 3 Announcing a Joint Meeting of THE AMERICAN SOCIETY THE AMERICAN ASSOCIATION Of OF PARASITOLOGISTS VETERINARY PARASITOLOGISTS (70th Meeting) (40th Meeting) Pittsburgh, Pennsylvania july 6-1 0, 1995 INFORMATION & REGISTRATION Hyatt Regency Hotel, 112 Washington Place THURSDAY Regency foyer, 2nd Floor t July 6th Registration Begins, Noon-5:00 p.m. FRIDAY Regency foyer, 2nd Floor t July 7th 8:00 a.m.-5:00 p.m. SATURDAY Regency foyer, 2nd Floor july 8th 8:00 a.m.-5:00p.m. SUNDAY Regency foyer, 2nd Floor july 9th 8:00 a.m.-Noon t Items for the Auction may be delivered to this location before 3:00p.m. on Friday, july 7th. 4 WELCOME RECEPTION Thursday, july 6th 7:00-1 0:00 p.m. Grand Ballroom SOCIAl, MATCH THE FACES & AUCTION Friday, July 7th Preview: 6:30-7:30 p.m. -
Comparative Descriptions of Non-Adult Stages of Four Genera of Gordiids (Phylum: Nematomorpha)
Zootaxa 3768 (2): 101–118 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3768.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:7F20EF3D-85D1-4908-9CCC-EADC7C434CCD Comparative descriptions of non-adult stages of four genera of Gordiids (Phylum: Nematomorpha) CLEO SZMYGIEL1, ANDREAS SCHMIDT-RHAESA2, BEN HANELT3 & MATTHEW G. BOLEK1,4 1Department of Zoology, 501 Life Sciences West, Oklahoma State University, Stillwater, Oklahoma 74078, U.S.A. E-mail: [email protected] 2Zoological Museum and Institute, Biocenter Grindel, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany. E-mail: [email protected] 3Center for Evolutionary and Theoretical Immunology, Department of Biology, 163 Castetter Hall, University of New Mexico, Albuquerque, New Mexico 87131-0001, U.S.A. E-mail: [email protected] 4Corresponding author. E-mail: [email protected] Abstract Freshwater hairworms infect terrestrial arthropods as larvae but are free-living in aquatic habitats as adults. Estimates sug- gest that only 18% of hairworm species have been described globally and biodiversity studies on this group have been hindered by unreliable ways of collecting adult free living worms over large geographical areas. However, recent work indicates that non-adult cyst stages of hairworms may be the most commonly encountered stages of gordiids in the envi- ronment, and can be used for discovering the hidden diversity of this group. Unfortunately, little information is available on the morphological characteristics of non-adult stages of hairworms. To address this problem, we describe and compare morphological characteristics of non-adult stages for nine species of African and North American gordiids from four gen- era (Chordodes, Gordius, Paragordius, and Neochordodes). -
The Life Cycle of a Horsehair Worm, Gordius Robustus (Nematomorpha: Gordioidea)
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln John Janovy Publications Papers in the Biological Sciences 2-1999 The Life Cycle of a Horsehair Worm, Gordius robustus (Nematomorpha: Gordioidea) Ben Hanelt University of New Mexico, [email protected] John J. Janovy Jr. University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/bioscijanovy Part of the Parasitology Commons Hanelt, Ben and Janovy, John J. Jr., "The Life Cycle of a Horsehair Worm, Gordius robustus (Nematomorpha: Gordioidea)" (1999). John Janovy Publications. 9. https://digitalcommons.unl.edu/bioscijanovy/9 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in John Janovy Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Hanelt & Janovy, Life Cycle of a Horsehair Worm, Gordius robustus (Nematomorpha: Gordoidea) Journal of Parasitology (1999) 85. Copyright 1999, American Society of Parasitologists. Used by permission. RESEARCH NOTES 139 J. Parasitol., 85(1), 1999 p. 139-141 @ American Society of Parasitologists 1999 The Life Cycle of a Horsehair Worm, Gordius robustus (Nematomorpha: Gordioidea) Ben Hanelt and John Janovy, Jr., School of Biological Sciences, University of Nebraska-lincoln, Lincoln, Nebraska 68588-0118 ABSTRACf: Aspects of the life cycle of the nematomorph Gordius ro Nematomorphs are a poorly studied phylum of pseudocoe bustus were investigated. Gordius robustus larvae fed to Tenebrio mol lomates. As adults they are free living, but their ontogeny is itor (Coleoptera: Tenebrionidae) readily penetrated and subsequently completed as obligate parasites. -
Nematomorpha, Gordiida) Species
A peer-reviewed open-access journal ZooKeys 733: 131–145 (2018) New hairworm (Nematomorpha, Gordiida) species... 131 doi: 10.3897/zookeys.733.22798 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research New hairworm (Nematomorpha, Gordiida) species described from the Arizona Madrean Sky Islands Rachel J. Swanteson-Franz1, Destinie A. Marquez1, Craig I. Goldstein2, Andreas Schmidt-Rhaesa3, Matthew G. Bolek4, Ben Hanelt1 1 Center for Evolutionary and Theoretical Immunology, Department of Biology, 163 Castetter Hall, MSC032020, University of New Mexico, Albuquerque, New Mexico 87131-0001, USA 2 Rush Oak Park Hospital, Department of Emergency Medicine, 520 South Maple Avenue, Oak Park, Illinois 60304, USA 3 Zoological Museum and Institute, Biocenter Grindel, Martin-Luther-King-Platz 3, University of Hamburg, 20146 Hamburg, Germany 4 Department of Integrative Biology, 501 Life Sciences West, Oklahoma State University, Stillwater, Oklahoma 74078, USA Corresponding author: Ben Hanelt ([email protected]) Academic editor: H-P Fagerholm | Received 5 December 2017 | Accepted 7 January 2018 | Published 1 February 2018 http://zoobank.org/DC5CDDD5-74A1-4BF9-BA09-4EC956A57179 Citation: Swanteson-Franz RJ, Marquez DA, Goldstein CI, Schmidt-Rhaesa A, Bolek MG, Hanelt B (2018) New hairworm (Nematomorpha, Gordiida) species described from the Arizona Madrean Sky Islands. ZooKeys 733: 131– 145. https://doi.org/10.3897/zookeys.733.22798 Abstract Gordiids, or freshwater hairworms, are members of the phylum Nematomorpha that use terrestrial de- finitive hosts (arthropods) and live as adults in rivers, lakes, or streams. The genus Paragordius consists of 18 species, one of which was described from the Nearctic in 1851. More than 150 years later, we are describing a second Paragordius species from a unique habitat within the Nearctic; the Madrean Sky Island complex. -
Biodiversity from Caves and Other Subterranean Habitats of Georgia, USA
Kirk S. Zigler, Matthew L. Niemiller, Charles D.R. Stephen, Breanne N. Ayala, Marc A. Milne, Nicholas S. Gladstone, Annette S. Engel, John B. Jensen, Carlos D. Camp, James C. Ozier, and Alan Cressler. Biodiversity from caves and other subterranean habitats of Georgia, USA. Journal of Cave and Karst Studies, v. 82, no. 2, p. 125-167. DOI:10.4311/2019LSC0125 BIODIVERSITY FROM CAVES AND OTHER SUBTERRANEAN HABITATS OF GEORGIA, USA Kirk S. Zigler1C, Matthew L. Niemiller2, Charles D.R. Stephen3, Breanne N. Ayala1, Marc A. Milne4, Nicholas S. Gladstone5, Annette S. Engel6, John B. Jensen7, Carlos D. Camp8, James C. Ozier9, and Alan Cressler10 Abstract We provide an annotated checklist of species recorded from caves and other subterranean habitats in the state of Georgia, USA. We report 281 species (228 invertebrates and 53 vertebrates), including 51 troglobionts (cave-obligate species), from more than 150 sites (caves, springs, and wells). Endemism is high; of the troglobionts, 17 (33 % of those known from the state) are endemic to Georgia and seven (14 %) are known from a single cave. We identified three biogeographic clusters of troglobionts. Two clusters are located in the northwestern part of the state, west of Lookout Mountain in Lookout Valley and east of Lookout Mountain in the Valley and Ridge. In addition, there is a group of tro- globionts found only in the southwestern corner of the state and associated with the Upper Floridan Aquifer. At least two dozen potentially undescribed species have been collected from caves; clarifying the taxonomic status of these organisms would improve our understanding of cave biodiversity in the state. -
Bibliographia Trichopterorum
Entry numbers checked/adjusted: 23/10/12 Bibliographia Trichopterorum Volume 4 1991-2000 (Preliminary) ©Andrew P.Nimmo 106-29 Ave NW, EDMONTON, Alberta, Canada T6J 4H6 e-mail: [email protected] [As at 25/3/14] 2 LITERATURE CITATIONS [*indicates that I have a copy of the paper in question] 0001 Anon. 1993. Studies on the structure and function of river ecosystems of the Far East, 2. Rep. on work supported by Japan Soc. Promot. Sci. 1992. 82 pp. TN. 0002 * . 1994. Gunter Brückerman. 19.12.1960 12.2.1994. Braueria 21:7. [Photo only]. 0003 . 1994. New kind of fly discovered in Man.[itoba]. Eco Briefs, Edmonton Journal. Sept. 4. 0004 . 1997. Caddis biodiversity. Weta 20:40-41. ZRan 134-03000625 & 00002404. 0005 . 1997. Rote Liste gefahrdeter Tiere und Pflanzen des Burgenlandes. BFB-Ber. 87: 1-33. ZRan 135-02001470. 0006 1998. Floods have their benefits. Current Sci., Weekly Reader Corp. 84(1):12. 0007 . 1999. Short reports. Taxa new to Finland, new provincial records and deletions from the fauna of Finland. Ent. Fenn. 10:1-5. ZRan 136-02000496. 0008 . 2000. Entomology report. Sandnats 22(3):10-12, 20. ZRan 137-09000211. 0009 . 2000. Short reports. Ent. Fenn. 11:1-4. ZRan 136-03000823. 0010 * . 2000. Nattsländor - Trichoptera. pp 285-296. In: Rödlistade arter i Sverige 2000. The 2000 Red List of Swedish species. ed. U.Gärdenfors. ArtDatabanken, SLU, Uppsala. ISBN 91 88506 23 1 0011 Aagaard, K., J.O.Solem, T.Nost, & O.Hanssen. 1997. The macrobenthos of the pristine stre- am, Skiftesaa, Haeylandet, Norway. Hydrobiologia 348:81-94. -
Design and Implementation of a Biodiversity Information Management System: Electronic Catalogue of Known Indian Fauna – a Case Study
DESIGN AND IMPLEMENTATION OF A BIODIVERSITY INFORMATION MANAGEMENT SYSTEM: ELECTRONIC CATALOGUE OF KNOWN INDIAN FAUNA – A CASE STUDY A THESIS SUBMITTED TO THE UNIVERSITY OF PUNE FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOINFORMATICS BY VISHWAS CHAVAN UNDER THE GUIDANCE OF DR. S. KRISHNAN NATIONAL CHEMICAL LABORATORY PUNE SEPTEMBER 2007 DESIGN AND IMPLEMENTATION OF A BIODIVERSITY INFORMATION MANAGEMENT SYSTEM: ELECTRONIC CATALOGUE OF KNOWN INDIAN FAUNA – A CASE STUDY A THESIS SUBMITTED TO THE UNIVERSITY OF PUNE FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOINFORMATICS BY VISHWAS CHAVAN UNDER THE GUIDANCE OF DR. S. KRISHNAN NATIONAL CHEMICAL LABORATORY PUNE SEPTEMBER 2007 DECLARATION I hereby declare that the work embodied in this thesis entitled “DESIGN AND IMPLEMENTATION OF A BIODIVERSITY INFORMATION MANAGEMENT SYSTEM: ELECTRONIC CATALOGUE OF KNOWN INDIAN FAUNA – A CASE STUDY” represents original work carried out by me under the supervision of Dr. S. Krishnan, Head, Information Division, National Chemical Laboratory, Pune. It has not been submitted previously for any other research degree of this or any other University. September 25, 2007 Vishwas Chavan National Chemical Laboratory Pune 411008, INDIA CERTIFICATE Certified that the work incorporated in the thesis entitled “DESIGN AND IMPLEMENTATION OF A BIODIVERSITY INFORMATION MANAGEMENT SYSTEM: ELECTRONIC CATALOGUE OF KNOWN INDIAN FAUNA – A CASE STUDY” submitted by Mr. Vishwas Chavan, was carried out by the candidate under my supervision. Materials obtained from other sources have been duly acknowledged in the thesis. September 25, 2007 Dr. S. Krishnan Head, Information Division National Chemical Laboratory Pune 411008, INDIA Dedicated to Mother Earth who nurtures life, my parents who brought me in to this world, my teachers who taught me to understand nature, and my daughter who I believe would continue to care for life«« Acknowledgements Biodiversity informatics is a passion for me. -
Insect Behavioral Change and the Potential Contributions of Neuroinflammation—A Call for Future Research
G C A T T A C G G C A T genes Review Insect Behavioral Change and the Potential Contributions of Neuroinflammation—A Call for Future Research Colleen A. Mangold 1,2 and David P. Hughes 1,2,3,* 1 Department of Entomology, College of Agricultural Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA; [email protected] 2 Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA 3 Department of Biology, Eberly College of Science, Pennsylvania State University, University Park, State College, PA 16802, USA * Correspondence: [email protected] Abstract: Many organisms are able to elicit behavioral change in other organisms. Examples include different microbes (e.g., viruses and fungi), parasites (e.g., hairworms and trematodes), and parasitoid wasps. In most cases, the mechanisms underlying host behavioral change remain relatively unclear. There is a growing body of literature linking alterations in immune signaling with neuron health, communication, and function; however, there is a paucity of data detailing the effects of altered neuroimmune signaling on insect neuron function and how glial cells may contribute toward neuron dysregulation. It is important to consider the potential impacts of altered neuroimmune communica- tion on host behavior and reflect on its potential role as an important tool in the “neuro-engineer” toolkit. In this review, we examine what is known about the relationships between the insect immune and nervous systems. We highlight organisms that are able to influence insect behavior and discuss possible mechanisms of behavioral manipulation, including potentially dysregulated neuroimmune Citation: Mangold, C.A.; Hughes, communication. -
Hairworm Anti-Predator Strategy: a Study of Causes and Consequences
1 Hairworm anti-predator strategy: a study of causes and consequences F. PONTON1*,C. LEBARBENCHON1,2,T.LEFE` VRE1,F.THOMAS1,D.DUNEAU1, L. MARCHE´ 3, L. RENAULT3, D. P. HUGHES4 and D. G. BIRON1 1 Ge´ne´tique et Evolution des Maladies Infectieuses, UMR CNRS-IRD 2724, Equipe: ‘Evolution des Syste`mes Symbiotiques’, IRD, 911 Avenue Agropolis, B.P. 64501, 34394 Montpellier Cedex 5, France 2 Station Biologique de la Tour du Valat, Le Sambuc, 13200 Arles, France 3 INRA, UMR BiO3P, Domaine de la Motte, BP 35327, 35653 Le Rheu Cedex, France 4 Centre for Social Evolution, Institute of Biology, Universitetsparken 15, DK-21000 Copenhagen (Received 4 May 2006; revised 7 June 2006; accepted 7 June 2006) SUMMARY One of the most fascinating anti-predator responses displayed by parasites is that of hairworms (Nematomorpha). Following the ingestion of the insect host by fish or frogs, the parasitic worm is able to actively exit both its host and the gut of the predator. Using as a model the hairworm, Paragordius tricuspidatus, (parasitizing the cricket Nemobius sylvestris) and the fish predator Micropterus salmoı¨des, we explored, with proteomics tools, the physiological basis of this anti-predator response. By examining the proteome of the parasitic worm, we detected a differential expression of 27 protein spots in those worms able to escape the predator. Peptide Mass Fingerprints of candidate protein spots suggest the existence of an intense muscular activity in escaping worms, which functions in parallel with their distinctive biology. In a second step, we attempted to determine whether the energy expended by worms to escape the predator is traded off against its reproductive potential. -
Two Steps to Suicide in Crickets Harbouring Hairworms
ANIMAL BEHAVIOUR, 2008, 76, 1621e1624 doi:10.1016/j.anbehav.2008.07.018 Available online at www.sciencedirect.com Two steps to suicide in crickets harbouring hairworms MARTA I. SANCHEZ*†,FLEURPONTON*, ANDREAS SCHMIDT-RHAESA‡,DAVIDP.HUGHES§, DOROTHEE MISSE* &FREDERICTHOMAS*** *CNRS/IRD Montpellier yCEFE, CNRS, Montpellier zZoomorphologie und Systematik, Universita¨t Bielefeld xCentre for Social Evolution, Institute of Biology, University of Copenhagen **Institut de recherche en biologie ve´ge´tale, Universite´ de Montre´al (Que´bec) (Received 13 February 2008; initial acceptance 26 March 2008; final acceptance 24 July 2008; published online 3 September 2008; MS. number: D-08-00090R) The hairworm (Nematomorpha) Paragordius tricuspidatus has the ability to alter the behaviour of its terres- trial insect host (the cricket Nemobius sylvestris), making it jump into the water to reach its reproductive habitat. Because water is a limited and critical resource in the ecosystem, we predicted that hairworms should adaptively manipulate host behaviour to maximize parasite reproductive success. Our results sup- ported the hypothesis that the host manipulation strategy of hairworms consists of at least two distinct steps, first the induction of erratic behaviour and then suicidal behaviour per se. Hairworms secured mating by starting to manipulate their host before being fully mature. Once induced, the cricket’s suicidal behaviour was maintained until the host found water but the fecundity of worms decreased over time. As expected, the fecundity of worms was better in crickets with suicidal rather than erratic behaviour. Ó 2008 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. Keywords: environmental constraint; hairworm; manipulation; Nemobius sylvestris; Paragordius tricuspidatus; water Parasites are capable of altering a large range of pheno- host behaviour by parasites (Thomas et al. -
The Horsehair Worm Gordionus Violaceus (Nematomorpha: Gordiida) in Minnesota
The Great Lakes Entomologist Volume 46 Numbers 1 & 2 - Spring/Summer 2013 Numbers Article 13 1 & 2 - Spring/Summer 2013 April 2013 The Horsehair Worm Gordionus Violaceus (Nematomorpha: Gordiida) in Minnesota Philip A. Cochran Saint Mary's University of Minnesota Jacob D. Zanon Saint Mary's University of Minnesota Ben Hanelt University of New Mexico Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Cochran, Philip A.; Zanon, Jacob D.; and Hanelt, Ben 2013. "The Horsehair Worm Gordionus Violaceus (Nematomorpha: Gordiida) in Minnesota," The Great Lakes Entomologist, vol 46 (1) Available at: https://scholar.valpo.edu/tgle/vol46/iss1/13 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Cochran et al.: The Horsehair Worm <i>Gordionus Violaceus</i> (Nematomorpha: Gord 2013 THE GREAT LAKES ENTOMOLOGIST 133 The Horsehair Worm Gordionus violaceus (Nematomorpha: Gordiida) in Minnesota Philip A. Cochran1, Jacob D. Zanon1, Ben Hanelt2 Abstract A sample of 21 Gordionus violaceus (Baird) (Nematomorpha: Gordioi- dea) was obtained from a puddle in Winona County, southeastern Minnesota. These are the first of this species reported from the upper Midwest. Sex ratio was not significantly different from 50:50 and females and males did not dif- fer significantly in length, but females were of significantly greater diameter than males. ____________________ Three species of horsehair worms (Nematomorpha: Gordioidea) have been reported previously from Minnesota: Gordius robustus Leidy, G.