ISSN 0036-4665 ISSN 1678-9946 on Line EDITOR‑IN‑CHIEF EMERITUS EDITORS Prof
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
AAVP 1995 Annual Meeting Proceedings
Joint Meeting of The American Society of Parasitologists & The American Association of Veterinary Parasitologists July 6 july 1 0, 1995 Pittsburgh, Pennsylvania 2 ! j THE AMERICAN SOCIETY - OF PARASITOLOGISTS - & THE AMERICAN ASSOCIATION OF VETERINARY PARASITOLOGISTS ACKNOWLEDGE THEFOLLO~GCO~ANlliS FOR THEIR FINANCIAL SUPPORT: CORPORATE EVENT SPONSOR: PFIZER ANIMAL HEALTH CORPORATE SPONSORS: BOEHRINGER INGELHEIM ANIMAL HEALTH, INC. MALUNCKRODT VETERINARY, INC. THE UPJOHN CO. MEETING SPONSORS: AMERICAN CYANAMID CO. CIBA ANIMAL HEALTH ELl LILLY & CO. FERMENT A ANIMAL HEALTH HILL'S PET NUTRITION, INC. HOECHST-ROUSSEL AGRI-VET CO. IDEXX LABORATORIES, INC. MIDWEST VETERINARY SERVICES, INC. PARA VAX, INC. PROFESSIONAL LABORATORIES & RESEARCH SERVICES RHONE MERIEUX, INC. SCHERING-PLOUGH ANIMAL HEALTH SOLVAY ANIMAL HEALTH, INC. SUMITOMO CHEMICAL, LTO. SYNBIOTICS CORP. TRS LABS, INC. - - I I '1---.. --J 3 Announcing a Joint Meeting of THE AMERICAN SOCIETY THE AMERICAN ASSOCIATION Of OF PARASITOLOGISTS VETERINARY PARASITOLOGISTS (70th Meeting) (40th Meeting) Pittsburgh, Pennsylvania july 6-1 0, 1995 INFORMATION & REGISTRATION Hyatt Regency Hotel, 112 Washington Place THURSDAY Regency foyer, 2nd Floor t July 6th Registration Begins, Noon-5:00 p.m. FRIDAY Regency foyer, 2nd Floor t July 7th 8:00 a.m.-5:00 p.m. SATURDAY Regency foyer, 2nd Floor july 8th 8:00 a.m.-5:00p.m. SUNDAY Regency foyer, 2nd Floor july 9th 8:00 a.m.-Noon t Items for the Auction may be delivered to this location before 3:00p.m. on Friday, july 7th. 4 WELCOME RECEPTION Thursday, july 6th 7:00-1 0:00 p.m. Grand Ballroom SOCIAl, MATCH THE FACES & AUCTION Friday, July 7th Preview: 6:30-7:30 p.m. -
The Life Cycle of a Horsehair Worm, Gordius Robustus (Nematomorpha: Gordioidea)
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln John Janovy Publications Papers in the Biological Sciences 2-1999 The Life Cycle of a Horsehair Worm, Gordius robustus (Nematomorpha: Gordioidea) Ben Hanelt University of New Mexico, [email protected] John J. Janovy Jr. University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/bioscijanovy Part of the Parasitology Commons Hanelt, Ben and Janovy, John J. Jr., "The Life Cycle of a Horsehair Worm, Gordius robustus (Nematomorpha: Gordioidea)" (1999). John Janovy Publications. 9. https://digitalcommons.unl.edu/bioscijanovy/9 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in John Janovy Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Hanelt & Janovy, Life Cycle of a Horsehair Worm, Gordius robustus (Nematomorpha: Gordoidea) Journal of Parasitology (1999) 85. Copyright 1999, American Society of Parasitologists. Used by permission. RESEARCH NOTES 139 J. Parasitol., 85(1), 1999 p. 139-141 @ American Society of Parasitologists 1999 The Life Cycle of a Horsehair Worm, Gordius robustus (Nematomorpha: Gordioidea) Ben Hanelt and John Janovy, Jr., School of Biological Sciences, University of Nebraska-lincoln, Lincoln, Nebraska 68588-0118 ABSTRACf: Aspects of the life cycle of the nematomorph Gordius ro Nematomorphs are a poorly studied phylum of pseudocoe bustus were investigated. Gordius robustus larvae fed to Tenebrio mol lomates. As adults they are free living, but their ontogeny is itor (Coleoptera: Tenebrionidae) readily penetrated and subsequently completed as obligate parasites. -
Nematomorpha, Gordiida) Species
A peer-reviewed open-access journal ZooKeys 733: 131–145 (2018) New hairworm (Nematomorpha, Gordiida) species... 131 doi: 10.3897/zookeys.733.22798 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research New hairworm (Nematomorpha, Gordiida) species described from the Arizona Madrean Sky Islands Rachel J. Swanteson-Franz1, Destinie A. Marquez1, Craig I. Goldstein2, Andreas Schmidt-Rhaesa3, Matthew G. Bolek4, Ben Hanelt1 1 Center for Evolutionary and Theoretical Immunology, Department of Biology, 163 Castetter Hall, MSC032020, University of New Mexico, Albuquerque, New Mexico 87131-0001, USA 2 Rush Oak Park Hospital, Department of Emergency Medicine, 520 South Maple Avenue, Oak Park, Illinois 60304, USA 3 Zoological Museum and Institute, Biocenter Grindel, Martin-Luther-King-Platz 3, University of Hamburg, 20146 Hamburg, Germany 4 Department of Integrative Biology, 501 Life Sciences West, Oklahoma State University, Stillwater, Oklahoma 74078, USA Corresponding author: Ben Hanelt ([email protected]) Academic editor: H-P Fagerholm | Received 5 December 2017 | Accepted 7 January 2018 | Published 1 February 2018 http://zoobank.org/DC5CDDD5-74A1-4BF9-BA09-4EC956A57179 Citation: Swanteson-Franz RJ, Marquez DA, Goldstein CI, Schmidt-Rhaesa A, Bolek MG, Hanelt B (2018) New hairworm (Nematomorpha, Gordiida) species described from the Arizona Madrean Sky Islands. ZooKeys 733: 131– 145. https://doi.org/10.3897/zookeys.733.22798 Abstract Gordiids, or freshwater hairworms, are members of the phylum Nematomorpha that use terrestrial de- finitive hosts (arthropods) and live as adults in rivers, lakes, or streams. The genus Paragordius consists of 18 species, one of which was described from the Nearctic in 1851. More than 150 years later, we are describing a second Paragordius species from a unique habitat within the Nearctic; the Madrean Sky Island complex. -
Hairworm Response to Notonectid Attacks
ANIMAL BEHAVIOUR, 2008, 75, 823e826 doi:10.1016/j.anbehav.2007.07.002 Available online at www.sciencedirect.com Hairworm response to notonectid attacks MARTA I. SA´ NCHEZ*,FLEURPONTON*, DOROTHE´ EMISSE´ *,DAVIDP.HUGHES† &FRE´ DE´ RIC THOMAS* *GEMI, UMR CNRS/IRD, Montpellier yCentre for Social Evolution, Institute of Biology, Universitetsparken, Copenhagen (Received 20 March 2007; initial acceptance 11 May 2007; final acceptance 4 July 2007; published online 24 October 2007; MS. number: 9319) Very few parasite species are directly predated but most of them inherit the predators of their host. We explored the behavioural response of nematomorph hairworms when their hosts are preyed upon by one of the commonest invertebrate predators in the aquatic habitat of hairworms, notonectids. The hair- worm Paragordius tricuspidatus can alter the behaviour of its terrestrial insect host (the cricket Nemobius syl- vestris), causing it to jump into the water; an aquatic habitat is required for the adult free-living stage of the parasite. We predicted that hairworms whose hosts are captured by a notonectid should accelerate their emergence to leave the host before being killed. As predicted, the emergence length of the worm was sig- nificantly shortened in cases of notonectid predation, but the exact reason of this response seems to be more complex than expected. Indeed, experimental manipulations revealed that hairworms are remark- ably insensitive to a prolonged exposure to predator effluvia which notonectids inject into prey, so accel- erated emergence is not a protective response against digestive enzymes. We discuss other possibilities for the accelerated exit observed, ranging from unspecific stress responses to other scenarios requiring consid- eration of the ecological context. -
Insect Behavioral Change and the Potential Contributions of Neuroinflammation—A Call for Future Research
G C A T T A C G G C A T genes Review Insect Behavioral Change and the Potential Contributions of Neuroinflammation—A Call for Future Research Colleen A. Mangold 1,2 and David P. Hughes 1,2,3,* 1 Department of Entomology, College of Agricultural Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA; [email protected] 2 Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA 3 Department of Biology, Eberly College of Science, Pennsylvania State University, University Park, State College, PA 16802, USA * Correspondence: [email protected] Abstract: Many organisms are able to elicit behavioral change in other organisms. Examples include different microbes (e.g., viruses and fungi), parasites (e.g., hairworms and trematodes), and parasitoid wasps. In most cases, the mechanisms underlying host behavioral change remain relatively unclear. There is a growing body of literature linking alterations in immune signaling with neuron health, communication, and function; however, there is a paucity of data detailing the effects of altered neuroimmune signaling on insect neuron function and how glial cells may contribute toward neuron dysregulation. It is important to consider the potential impacts of altered neuroimmune communica- tion on host behavior and reflect on its potential role as an important tool in the “neuro-engineer” toolkit. In this review, we examine what is known about the relationships between the insect immune and nervous systems. We highlight organisms that are able to influence insect behavior and discuss possible mechanisms of behavioral manipulation, including potentially dysregulated neuroimmune Citation: Mangold, C.A.; Hughes, communication. -
Hairworm Anti-Predator Strategy: a Study of Causes and Consequences
1 Hairworm anti-predator strategy: a study of causes and consequences F. PONTON1*,C. LEBARBENCHON1,2,T.LEFE` VRE1,F.THOMAS1,D.DUNEAU1, L. MARCHE´ 3, L. RENAULT3, D. P. HUGHES4 and D. G. BIRON1 1 Ge´ne´tique et Evolution des Maladies Infectieuses, UMR CNRS-IRD 2724, Equipe: ‘Evolution des Syste`mes Symbiotiques’, IRD, 911 Avenue Agropolis, B.P. 64501, 34394 Montpellier Cedex 5, France 2 Station Biologique de la Tour du Valat, Le Sambuc, 13200 Arles, France 3 INRA, UMR BiO3P, Domaine de la Motte, BP 35327, 35653 Le Rheu Cedex, France 4 Centre for Social Evolution, Institute of Biology, Universitetsparken 15, DK-21000 Copenhagen (Received 4 May 2006; revised 7 June 2006; accepted 7 June 2006) SUMMARY One of the most fascinating anti-predator responses displayed by parasites is that of hairworms (Nematomorpha). Following the ingestion of the insect host by fish or frogs, the parasitic worm is able to actively exit both its host and the gut of the predator. Using as a model the hairworm, Paragordius tricuspidatus, (parasitizing the cricket Nemobius sylvestris) and the fish predator Micropterus salmoı¨des, we explored, with proteomics tools, the physiological basis of this anti-predator response. By examining the proteome of the parasitic worm, we detected a differential expression of 27 protein spots in those worms able to escape the predator. Peptide Mass Fingerprints of candidate protein spots suggest the existence of an intense muscular activity in escaping worms, which functions in parallel with their distinctive biology. In a second step, we attempted to determine whether the energy expended by worms to escape the predator is traded off against its reproductive potential. -
Two Steps to Suicide in Crickets Harbouring Hairworms
ANIMAL BEHAVIOUR, 2008, 76, 1621e1624 doi:10.1016/j.anbehav.2008.07.018 Available online at www.sciencedirect.com Two steps to suicide in crickets harbouring hairworms MARTA I. SANCHEZ*†,FLEURPONTON*, ANDREAS SCHMIDT-RHAESA‡,DAVIDP.HUGHES§, DOROTHEE MISSE* &FREDERICTHOMAS*** *CNRS/IRD Montpellier yCEFE, CNRS, Montpellier zZoomorphologie und Systematik, Universita¨t Bielefeld xCentre for Social Evolution, Institute of Biology, University of Copenhagen **Institut de recherche en biologie ve´ge´tale, Universite´ de Montre´al (Que´bec) (Received 13 February 2008; initial acceptance 26 March 2008; final acceptance 24 July 2008; published online 3 September 2008; MS. number: D-08-00090R) The hairworm (Nematomorpha) Paragordius tricuspidatus has the ability to alter the behaviour of its terres- trial insect host (the cricket Nemobius sylvestris), making it jump into the water to reach its reproductive habitat. Because water is a limited and critical resource in the ecosystem, we predicted that hairworms should adaptively manipulate host behaviour to maximize parasite reproductive success. Our results sup- ported the hypothesis that the host manipulation strategy of hairworms consists of at least two distinct steps, first the induction of erratic behaviour and then suicidal behaviour per se. Hairworms secured mating by starting to manipulate their host before being fully mature. Once induced, the cricket’s suicidal behaviour was maintained until the host found water but the fecundity of worms decreased over time. As expected, the fecundity of worms was better in crickets with suicidal rather than erratic behaviour. Ó 2008 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. Keywords: environmental constraint; hairworm; manipulation; Nemobius sylvestris; Paragordius tricuspidatus; water Parasites are capable of altering a large range of pheno- host behaviour by parasites (Thomas et al. -
New Geographic Distribution Records for Horsehair Worms (Nematomorpha: Gordiida) in Arkansas, Including New State Records for Ch
Journal of the Arkansas Academy of Science Volume 66 Article 35 2012 New Geographic Distribution Records for Horsehair Worms (Nematomorpha: Gordiida) in Arkansas, Including New State Records for Chordodes morgani and Paragordius varius H. W. Robison Southern Arkansas University C. T. McAllister Eastern Oklahoma State College, [email protected] B. Hanelt University of New Mexico Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Entomology Commons Recommended Citation Robison, H. W.; McAllister, C. T.; and Hanelt, B. (2012) "New Geographic Distribution Records for Horsehair Worms (Nematomorpha: Gordiida) in Arkansas, Including New State Records for Chordodes morgani and Paragordius varius," Journal of the Arkansas Academy of Science: Vol. 66 , Article 35. Available at: http://scholarworks.uark.edu/jaas/vol66/iss1/35 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This General Note is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 66 [2012], Art. 35 New Geographic Distribution Records for Horsehair Worms (Nematomorpha: Gordiida) in Arkansas, Including New State Records for Chordodes morgani and Paragordius varius H.W. -
Zootaxa,A Modern Look at the Animal Tree of Life
Zootaxa 1668: 61–79 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) A modern look at the Animal Tree of Life* GONZALO GIRIBET1, CASEY W. DUNN2, GREGORY D. EDGECOMBE3, GREG W. ROUSE4 1Department of Organismic and Evolutionary Biology & Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA, [email protected] 2Department of Ecology and Evolutionary Biology, Brown University, Providence, 80 Waterman Street, RI 02912, USA, [email protected] 3Department of Palaeontology, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK, [email protected] 4Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive #0202, La Jolla, CA 92093, USA, [email protected] *In: Zhang, Z.-Q. & Shear, W.A. (Eds) (2007) Linnaeus Tercentenary: Progress in Invertebrate Taxonomy. Zootaxa, 1668, 1–766. Table of contents Abstract . .61 The setting . 62 The Animal Tree of Life—molecules and history . .62 The Animal Tree of Life—morphology and new developments . 63 Recent consensus on the Animal Tree of Life . 65 The base of the animal tree . .68 Bilateria . .72 Protostomia-Deuterostomia . .72 The Future of the Animal Tree of Life . .73 Acknowledgements . .73 References . 73 Abstract The phylogenetic interrelationships of animals (Metazoa) have been elucidated by refined systematic methods and by new techniques, notably from molecular biology. In parallel with the strong molecular focus of contemporary metazoan phylogenetics, morphology has advanced with the introduction of new approaches, such as confocal laser scanning microscopy and cell-labelling in the study of embryology. -
Using Gordiid Cysts to Discover the Hidden Diversity, Potential Distribution, and New Species of Gordiids (Phylum Nematomorpha)
Zootaxa 4088 (4): 515–530 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4088.4.3 http://zoobank.org/urn:lsid:zoobank.org:pub:9E0775BF-0E05-4FF0-96F8-7E4B8CC38D58 Using Gordiid cysts to discover the hidden diversity, potential distribution, and new species of Gordiids (Phylum Nematomorpha) CLEO HARKINS1,4, RYAN SHANNON1, MONICA PAPEŞ1, ANDREAS SCHMIDT-RHAESA2, BEN HANELT3 & MATTHEW G. BOLEK1,5. 1Department of Integrative Biology, 501 Life Sciences West, Oklahoma State University, Stillwater, Oklahoma 74078, U.S.A. E-mails: [email protected]; [email protected]; [email protected] 2Zoological Museum and Institute, Biocenter Grindel, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany. E-mail: [email protected] 3Center for Evolutionary and Theoretical Immunology, Department of Biology, 163 Castetter Hall, University of New Mexico, Albuquerque, New Mexico 87131-0001, U.S.A. E-mail: [email protected] 4Curent address: Alexion Pharmaceuticals Inc.75 Sidney St, Cambridge, Massachusetts 02139 U.S.A. E-mail:[email protected] 5Corresponding author. E-mail: [email protected] Abstract In this study, we sampled aquatic snails for the presence of hairworm cysts from 46 streams in Payne County, Oklahoma. Gordiid cysts were found at 70 % (32/46) of sites examined. Based on cyst morphology, we were able to identify three morphological types of gordiid cysts, including Paragordius, Gordius, and Chordodes/Neochordodes. Using our gordiid cyst presence data in conjunction with environmental variables, we developed an ecological niche model using Maxent to identify areas suitable for snail infections with gordiids. -
Nematomorpha: Gordioidea)
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UNL | Libraries University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln John Janovy Publications Papers in the Biological Sciences 6-2002 Morphometric Analysis of Nonadult Characters of Common Species of American Gordiids (Nematomorpha: Gordioidea) Ben Hanelt University of New Mexico, [email protected] John J. Janovy Jr. University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/bioscijanovy Part of the Parasitology Commons Hanelt, Ben and Janovy, John J. Jr., "Morphometric Analysis of Nonadult Characters of Common Species of American Gordiids (Nematomorpha: Gordioidea)" (2002). John Janovy Publications. 17. https://digitalcommons.unl.edu/bioscijanovy/17 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in John Janovy Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. J. Parasitol., 88(3), 2002, pp. 557-562 C American Society of Parasitologists 2002 MORPHOMETRICANALYSIS OF NONADULTCHARACTERS OF COMMONSPECIES OF AMERICANGORDIIDS (NEMATOMORPHA: GORDIOIDEA) Ben Hanelt and John Janovy Jr. School of BiologicalSciences, Universityof Nebraska-Lincoln,Lincoln, Nebraska 68588-0118. e-mail:[email protected] ABSTRACT: The nonadultstages, egg strings, eggs, larvae, and cysts of Gordius robustus,Paragordius varius, and Chordodes morganiare describedmorphometrically. The goal was to documentthe differencesbetween species and to evaluatethe usefulness of morphometricsin species identification.In concert, multivariateanalysis of variance(MANOVA) and univariateanalysis of variance(ANOVA, a posterioricontrasts) statistical tests demonstratedthat each species is morphometricallydistinguishable from all others. -
First Data of Iberian Nematomorpha, with Redescription of Gordius Aquaticus Linnaeus, G. Plicatulus Heinze, Gordionus Wolterstorffii (Camerano) and Paragordius Tricuspidatus (Dufour)
Contributions to Zoology, 70 (2) 73-84 (2001) SPB Academic Publishing hv, The Hague First data of Iberian Nematomorpha, with redescription of Gordius aquaticus Linnaeus, G. plicatulus Heinze, Gordionus wolterstorffii (Camerano) and Paragordius tricuspidatus (Dufour) ¹ Leonor+Cristina de Villalobos Ignacio Ribera² & David+T. Bilton³ 1 Facultad de Ciencias Naturales y Museo, Universidad National de La Plata, 1900 La Plata, Argentina; 2 3 Department ofEntomology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; De- & partment of Biological Sciences Plymouth Environmental Research Centre (PERC), University of Ply- mouth, Drake Circus, Plymouth PL4 8AA, UK Keywords: Nematomorpha, Gordiidae, Gordius, Gordionus, Paragordius, parasites, taxonomy, Spain Abstract speciosus (Janda, 1894), considered to be of a dubious taxonomic status by Schmidt-Rhaesa from Galizia Four species of Nematomorpha are recorded from NE Spain, (1997), was described (Poland), and the first reliable data the in the Iberian representing on group its inclusion in Iberia must be a confusion with peninsula. Gordius aquations Linnaeus, 1758, G. plicatulus the Spanish Galicia. The Iberian records of Gordius Heinze, 1937, Gordionus wolterstorffii (Camerano, 1888) and pioltii Camerano, 1887, Parachordodes tolosanus Paragordius tricuspidatus (Dufour, 1828) are redescribed based (Dujardin, 1842), and Gordionus violaceus (Baird, on scanning electron microscope observations. Notes on 1853) were not considered by Schmidt-Rhaesa intraspecific morphological variation and ecology of the spe- cies in his of are given. (1997) recent revision the European fauna of Nematomorpha, which included only Parachor- dodes gemmatus (Villot, 1885), recorded from the Contents French Pyrenees. Other records are generic (e.g. Gordionus spp. From Portugal, Schmidt-Rhaesa, Abstract 73 1997), or have no reliability (e.g.