Endophytes of Pseudowintera Colorata (Horopito)

Total Page:16

File Type:pdf, Size:1020Kb

Endophytes of Pseudowintera Colorata (Horopito) Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Endophytes of Pseudowintera colorata (horopito) ________________________________________ A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Microbiology and Microbial Ecology at Lincoln University by Neeraj Purushotham Balraj 2017 Lincoln University i Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy Endophytes of Pseudowintera colorata (horopito) By Neeraj Purushotham Balraj Pseudowintera colorata (horopito) commonly known as New Zealand pepper tree is a native medicinal plant, known for its antimicrobial properties. International studies have demonstrated that endophytes of medicinal plants play key roles in maintaining plant health, tolerance to biotic and abiotic stresses and production of secondary metabolites. However, there have been no studies on the endophytes of P. colorata. The objectives of this study were to i) investigate the community structure of the endophytic bacteria, Actinobacteria and fungi in the tissues of P. colorata and identify members of the core endomicrobiome, ii) investigate the bioactive potential of the culturable endophytic bacteria, Actinobacteria and fungi, iii) investigate the influence of selected members on the growth and chemistry of P. colorata in vitro and in vivo. The endophytic communities in P. colorata were characterized by denaturing gradient gel electrophoresis (DGGE) and Illumina MiSeq. Plants from ten sites across New Zealand were analysed by DGGE and it was revealed that tissue type was the main factor influencing the endophytic communities in P. colorata (PERMANOVA, P=0.001). Richness of Actinobacteria, Betaproteobacteria and fungi was higher in stems compared to leaves and roots. For a subset of three sites, the interaction of plant location with maturity influenced the microbial communities across all groups analysed except for Alphaproteobacteria and total fungi (PERMANOVA, P=0.226 and P=0.164 respectively). Using Illumina MiSeq for analysing the bacterial communities from ten sites, it was confirmed that tissue type affected the bacterial communities in P. colorata. Illumina data revealed that Gammaproteobacteria was the most abundant class (89.1%) followed by Alphaproteobacteria (10%). In addition, two OTUs belonging to Pseudomonas were identified as members of P. colorata core endomicrobiome. A total of 350 endophytic bacteria, 200 endophytic fungi and nine endophytic Actinobacteria were recovered from P. colorata plants from ten sites across New Zealand. The majority of ii endophytic bacteria were isolated from the stem (57.1%, n=200), followed by roots (37.1%, n=130) and leaves (5.7%, n=20). Eleven endophytic bacteria showed strong antagonistic activity against four phytopathogenic fungi Neofusicoccum luteum, N. parvum, Neonectria ditissima, Ilyonectria liriodendri and four endophytic bacteria were active against bacterial pathogens Pectobacterium atrosepticum, P. brasiliensis, Staphylococcus aureus, Escherichia coli. In addition, endophytic bacteria also produced siderophores on chrom-azurol S agar (CAS). Based on 16S rRNA gene, the endophytic bacteria were identified as members of genera Bacillus, Pseudomonas, and Pantoea. The endophytic fungi Pezicula sp. PRY2BA2, Metarhizium sp. PR1SB1 were active against all the phytopathogenic fungi tested. Six endophytic fungi showed high activity against Candida albicans in vitro. A total of nine endophytic Actinobacteria were recovered onto selective agar. Sequencing the 16S rRNA gene revealed that the culturable members belonged to genera Streptomyces, Micromonospora, Nocardia, Nakamurella and Microlunatus. Major bands (n=20) from DGGE gels were sequenced and were identified as uncultured bacteria, Streptomyces sp. and Angustibacter peucedani. Nocardia sp. TP1BA1B and Streptomyces sp. UKCW/B solubilized phosphate in tricalcium phosphate agar (TCP) and secreted siderophores. This is the first study to identify Actinobacteria communities in P. colorata and to examine the functional traits of cultured representatives. The effect of endophytes displaying in vitro activity was examined by reintroduction as a soil drench. Bacillus sp. TP1LA1B and Nocardia sp. TP1BA1B in addition to increasing the shoot height, also significantly increased the shoot, root biomass and the number of internodes of P. colorata seedlings compared to the control (P=0.016, P <0.001, P=0.007 and P <0.001 respectively). This is the first study to investigate the influence of endophytes on the growth of P. colorata. Overall, this study revealed the community structure of endophytic bacteria, Actinobacteria and fungi in P. colorata for the first time and is one of the only two studies on native plants in New Zealand. Members of the endomicrobiome displayed in vitro activity as measured by antimicrobial and nutrient mobilisation assays. The endophytes were able to influence host plant growth when applied as soil drenches and some were able to recolonize the host endophytically demonstrating a route from soil to root. This study indicated that P. colorata harbours unique endophytes which have a key role in the ecology of the plant. iii Keywords: Endophytes, Microbial Ecology, Medicinal Plant, Pseudowintera colorata, horopito, biological control, DGGE, NGS, Illumina MiSeq, Plant growth promotion, Endophytic Actinobacteria, biotransformation. iv Acknowledgements First and foremost, my sincere thanks to my lord, my saviour Shiridi Sai Baba for bestowing me with this opportunity to pursue my dream and for giving me strength, guidance and courage to complete my Ph.D. I would like to thank my supervisors Assoc. Prof. Hayley Ridgway, Assoc. Prof. Eirian Jones and my advisor Dr Jana Monk for their expert supervision, guidance and timely support throughout my entire study. My sincere thanks to Dr Nigel Perry and Dr John Van Klink at Plant and Food Research for their invaluable inputs and help with the NMR analysis in my study. I thank the New Zealand Ministry of Foreign Affairs and Trade (MFAT) for the Commonwealth scholarship, which has made this study possible. I extend my thanks to Lincoln University for funding this study and am also thankful for Lincoln University faculty research writing scholarship. Special thanks to ICPP 2003 inc. for the ICPP international travel grant to attend conferences in Canada and Germany. I would like to thank the lab managers of the plant pathology group Candice Hume and Sandy Hammond for their help with equipment and consumables. I extend my thanks to Stu Larsen for my helping me with my experimental work in Biotron, Neil Smith for helping me with freeze drying my samples, Brent Richards for providing me with space and equipment for my pot experiments in the glasshouse. I would like to thank Estelle, Thanh Le, Dr Celine Blond and John Ramana for helping me with my pot trial set up and harvest. I thank my colleagues at Lincoln University Dr Shanika Tennekoon, Anish Shah, Kritarth Seth, Dr Kathryn Wigely and Dr Wisnu Wicaksono for their advise on different aspects of my study and help during my Ph.D. My heartfelt thanks to my mom and dad for their blessings and support which has seen me through this study. My greatest thanks to my wife Neelima for bearing with me during my most stressful times and for all the unconditional love and support given to me to complete my study. A massive thank you to my son, my dearest Karthikey for being my reason, my solace and my motivation to find strength during the toughest of times and for me to strive and focus on completing my study. This thesis is dedicated to the most important people in my life.. my family. v Table of Contents Abstract……………………………………………………………………………………………………………………………ii Acknowledgements………………………………………………………………………………………………………….v Table of contents…………………………………………………………………………………………………………….vi List of Tables…………………………………………………...................................................................xi List of Figures………………………………………………………………………………….................................xii 1 Literature Review….………………………………………………………………………………………………………1 1.1. Endophytes ……………………………………………………………………………………………………………..1 1.1.1. Endophytic fungi……………………………………………………………………………………………1 1.1.2. Endophytic bacteria……………………………………………………………………………………….3 1.1.3. Endophytic Actinobacteria…………………………………………………………………………….4 1.2 The function of endophytes……………………………………………………………………………………….5 1.2.1 Nutrient uptake……………………………………………………………………………………………..6 1.2.2 Protection against phytopathogens……………………………………………………………....7 1.3 Commercial interest in endophytes……………………………………………………………………….....7 1.4 Endomicrobiome and functionality analysis………………………………………………………………8 1.4.1 Culture independent methods……………………………………………………………………….9 1.4.1.1 Denaturing gradient gel electrophoresis (DGGE)………………………………………9 1.4.1.2 DNA metabarcoding using next generation sequencing technologies……..10 1.4.2 Culture dependent techniques…………………………………………………………………….11 1.5 Endophytes of
Recommended publications
  • Supporting Information
    Supporting Information Bachelier and Friedman 10.1073/pnas.1104697108 Table S1. Initiation of more than one female gametophyte per ovule in basal angiosperms Taxon Multiple female gametophytes References Amborellaceae No 1–4 Hydatellaceae Variable 5 and 6 Nymphaeaceae Variable 7–9 Cabombaceae Variable 8 and 10 Austrobaileyaceae No 11 Illiciaceae (incl. Schisandraceae) Variable 12–15 Trimeniaceae Variable 16–18 and this study Chloranthaceae Rare 4 and 18–22 Laurales Variable 18 and 23–27 Magnoliales No 27–31 Canellales Rare 30 and 32–37 Piperales Rare 38–44 Ceratophyllaceae Variable 45 Character states: No means that initiation of more than one female gametophyte per ovule has not been reported as yet, rare means that initiation of more than one female gametophyte per ovule has only been reported one time, and variable means that initiation of more than one female gametophyte per ovule has been reported to occur more than one time in some but not all studies. 1. Friedman WE, Ryerson KC (2009) Reconstructing the ancestral female gametophyte of angiosperms: Insights from Amborella and other ancient lineages of flowering plants. Am J Bot 96:129–143. 2. Friedman WE (2006) Embryological evidence for developmental lability during early angiosperm evolution. Nature 441:337–340. 3. Tobe H, Jaffré T, Raven PH (2000) Embryology of Amborella (Amborellaceae): Descriptions and polarity of character states. J Plant Res 113:271–280. 4. Yamada T, Tobe H, Imaichi R, Kato M (2001) Developmental morphology of the ovules of Amborella trichopoda (Amborellaceae) and Chloranthus serratus (Chloranthaceae). Bot J Linn Soc 137:277–290. 5. Rudall PJ, et al.
    [Show full text]
  • Bio 308-Course Guide
    COURSE GUIDE BIO 308 BIOGEOGRAPHY Course Team Dr. Kelechi L. Njoku (Course Developer/Writer) Professor A. Adebanjo (Programme Leader)- NOUN Abiodun E. Adams (Course Coordinator)-NOUN NATIONAL OPEN UNIVERSITY OF NIGERIA BIO 308 COURSE GUIDE National Open University of Nigeria Headquarters 14/16 Ahmadu Bello Way Victoria Island Lagos Abuja Office No. 5 Dar es Salaam Street Off Aminu Kano Crescent Wuse II, Abuja e-mail: [email protected] URL: www.nou.edu.ng Published by National Open University of Nigeria Printed 2013 ISBN: 978-058-434-X All Rights Reserved Printed by: ii BIO 308 COURSE GUIDE CONTENTS PAGE Introduction ……………………………………......................... iv What you will Learn from this Course …………………............ iv Course Aims ……………………………………………............ iv Course Objectives …………………………………………....... iv Working through this Course …………………………….......... v Course Materials ………………………………………….......... v Study Units ………………………………………………......... v Textbooks and References ………………………………........... vi Assessment ……………………………………………….......... vi End of Course Examination and Grading..................................... vi Course Marking Scheme................................................................ vii Presentation Schedule.................................................................... vii Tutor-Marked Assignment ……………………………….......... vii Tutors and Tutorials....................................................................... viii iii BIO 308 COURSE GUIDE INTRODUCTION BIO 308: Biogeography is a one-semester, 2 credit- hour course in Biology. It is a 300 level, second semester undergraduate course offered to students admitted in the School of Science and Technology, School of Education who are offering Biology or related programmes. The course guide tells you briefly what the course is all about, what course materials you will be using and how you can work your way through these materials. It gives you some guidance on your Tutor- Marked Assignments. There are Self-Assessment Exercises within the body of a unit and/or at the end of each unit.
    [Show full text]
  • Notification of Access Arrangement for MP 41279, Mt Te Kuha
    Attachment C Draft Terrestrial Ecology Report 106 VEGETATION AND FAUNA OF THE PROPOSED TE KUHA MINE SITE Prepared for Te Kuha Limited Partnership October 2013 EXECUTIVE SUMMARY The Te Kuha mining permit is located predominantly within the Westport Water Conservation Reserve (1,825 ha), which is a local purpose reserve administered by the Buller District Council. The coal deposit is situated outside the water catchment within an area of approximately 490 ha of Brunner Coal Measures vegetation approximately 5 km southwest of Mt Rochfort. Access would be required across conservation land to reach the coal resource. The Te Kuha site was recommended as an area for protection by the Protected Natural Areas Programme surveys in the 1990s on the basis that in the event it was removed from the local purpose reserve for any reason, addition to the public conservation estate would increase the level of protection of coal measures habitats which, although found elsewhere (principally in the Mt Rochfort Conservation Area), were considered inadequately protected overall. The proposal to create an access road and an opencast mine at the site would affect twelve different vegetation types to varying degrees. The habitats present at the proposed mine site are overwhelmingly indigenous and have a very high degree of intactness reflecting their lack of human disturbance. Previous surveys have shown that some trees in the area are more than 500 years old. Habitats affected by the proposed access road are less intact and include exotic pasture as well as regenerating shrubland and forest. Te Kuha is not part of the Department of Conservation’s Buller Coal Plateaux priority site and is unlikely to receive management for that reason.
    [Show full text]
  • 1992 New Zealand Botanical Society President: Dr Eric Godley Secretary/Treasurer: Anthony Wright
    NEW ZEALAND BOTANICAL SOCIETY NEWSLETTER NUMBER 30 DECEMBER 1992 New Zealand Botanical Society President: Dr Eric Godley Secretary/Treasurer: Anthony Wright Committee: Sarah Beadel, Ewen Cameron, Colin Webb, Carol West Address: New Zealand Botanical Society C/- Auckland Institute & Museum Private Bag 92018 AUCKLAND Subscriptions The 1993 ordinary and institutional subs are $14 (reduced to $10 if paid by the due date on the subscription invoice). The 1993 student sub, available to full-time students, is $7 (reduced to $5 if paid by the due date on the subscription invoice). Back issues of the Newsletter are available at $2.50 each - from Number 1 (August 1985) to Number 30 (December 1992). Since 1986 the Newsletter has appeared quarterly in March, June, September and December. New subscriptions are always welcome and these, together with back issue orders, should be sent to the Secretary/Treasurer (address above). Subscriptions are due by 28 February of each year for that calendar year. Existing subscribers are sent an invoice with the December Newsletter for the next year's subscription which offers a reduction if this is paid by the due date. If you are in arrears with your subscription a reminder notice comes attached to each issue of the Newsletter. Deadline for next issue The deadline for the March 1993 issue (Number 31) is 26 February 1993. Please forward contributions to: Bruce & Beverley Clarkson, Editors NZ Botanical Society Newsletter 7 Lynwood Place HAMILTON Cover illustration Asplenium pauperequitum (Aspleniaceae). Drawn by Lesley Alexander from specimens and photographs taken on the Poor Knights Islands. Lesley is completing a BA Hons Graphic Design at Middlesex Polytechnic, England, specialising in scientific illustration.
    [Show full text]
  • Investigation of the Microbial Communities Associated with the Octocorals Erythropodium
    Investigation of the Microbial Communities Associated with the Octocorals Erythropodium caribaeorum and Antillogorgia elisabethae, and Identification of Secondary Metabolites Produced by Octocoral Associated Cultivated Bacteria. By Erin Patricia Barbara McCauley A Thesis Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for a Degree of • Doctor of Philosophy Department of Biomedical Sciences Faculty of Veterinary Medicine University of Prince Edward Island Charlottetown, P.E.I. April 2017 © 2017, McCauley THESIS/DISSERTATION NON-EXCLUSIVE LICENSE Family Name: McCauley . Given Name, Middle Name (if applicable): Erin Patricia Barbara Full Name of University: University of Prince Edward Island . Faculty, Department, School: Department of Biomedical Sciences, Atlantic Veterinary College Degree for which Date Degree Awarded: , thesis/dissertation was presented: April 3rd, 2017 Doctor of Philosophy Thesis/dissertation Title: Investigation of the Microbial Communities Associated with the Octocorals Erythropodium caribaeorum and Antillogorgia elisabethae, and Identification of Secondary Metabolites Produced by Octocoral Associated Cultivated Bacteria. *Date of Birth. May 4th, 1983 In consideration of my University making my thesis/dissertation available to interested persons, I, :Erin Patricia McCauley hereby grant a non-exclusive, for the full term of copyright protection, license to my University, The University of Prince Edward Island: to archive, preserve, produce, reproduce, publish, communicate, convert into a,riv format, and to make available in print or online by telecommunication to the public for non-commercial purposes; to sub-license to Library and Archives Canada any of the acts mentioned in paragraph (a). I undertake to submit my thesis/dissertation, through my University, to Library and Archives Canada. Any abstract submitted with the .
    [Show full text]
  • Horopito Pseudowintera Axillaris and P
    Horopito Pseudowintera axillaris and P. colorata Botanical Family: Winteraceae Common Names: Horopito, Peppertree, Ramarama Distribution: Occurs naturally throughout both the main islands of New Zealand, except in the very north of the North Island. It is found in the lowlands, to the mountain forests and can form thickets after forest destruction. Parts Used: Leaves, fruits Constituents: Volatile oils including eugenol, polygodial, bicydic sesquiterpenoid dialdehyde (P. colorata only) Possible Pharmacological Actions: • A nti-fungal - an agent that inhibits or destroys fungi. • A ntiseptic - an agent used to prevent, resist and counteract infection. • C ounter-irritant/rubefacient - an agent that increases the circulation to that area of skin, stimulating the dilation of capillaries, causing redness. • A stringent - an agent that contracts tissues, making them firmer and reduces discharges. • I nsecticidal • C irculatory stimulant (internal use) • S timulating expectorant (internal use) - supports the body in the removal of excess amounts of mucus. Medicinal Uses: • Fungal infections, including Candida albicans, ringworm (Trichophyton spp) • Diarrhoea • Stomach ache • Circulatory insufficiency • Respiratory conditions • Toothache. Contraindications: None, though not recommended during pregnancy or lactation Herb-Drug Interactions: None known to date Dosage/Preparation: 10-30ml per week of a 1:2 fluid extract (available by prescription through a Registered Medical Herbalist) References: Phytomed Medicinal Herbs Ltd - Phil Rasmussen Medicines of the Maori - Christina McDonald Maori Healing & Herbal - Murdoch Riley ______________________________________________________________________________ Prepared by Irene Ellis For The Herb Federation of New Zealand’s Herb Awareness Week 9th - 16th March 2008 Inquires to HFNZ, PO Box 42, Katikati Website: www.herbs.org.nz Horopito Seafood Jambalaya Ingredients ½ kg assorted seafood.
    [Show full text]
  • Title Studies on the Lignins of Podocarpus, Gnetum, Drimys and Pseudowintera Author(S)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Studies on the Lignins of Podocarpus, Gnetum, Drimys and Title Pseudowintera Author(s) SHIO, Toru; HIGUCHI, Takayoshi Wood research : bulletin of the Wood Research Institute Kyoto Citation University (1978), 63: 1-10 Issue Date 1978-01-20 URL http://hdl.handle.net/2433/53368 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Studies on the Lignins of Podocarpus, Gnetum, Drimys and Pseudowintera* Torn SHIO** and Takayoshi HIGUCHI** Abstract--The lignins of 7 species in Podocarpaceae, 2 Gnetum's, a Drimys and 2 Pseu­ dowintera's are characterized in respect of methoxyl content, IR spectrum, acidolysis, and permanganate oxidation of the ethylated wood powder. The relative absorptivities (AlA 1505 em-I) of characteristic maxima, and the ratio of syringyl component to guaiacyl component in acidolysis and permanganate oxidation showed that Podocarpus lignin is mostly composed of guaiacyl lignin and that lignins of Gnetum, Pseudowintera and Drimys are composed of guaiacyl-syringyl lignins with increasing amounts of syringyl component in order. Introduction CREIGHTON and HIBBERTD found that lignins of Gnetum and some of Podocarpus give both vanillin and syringaldehyde in nitrobenzene oxidation, and are composed of guaiacyl-syringyl lignin. It is known, however, that the lignins of other species of Podocarpus e. g. P. macrophylla, P. chinensis and P. nagi yield no detectable syring­ aldehyde in nitrobenzene oxidation and are composed of guaiacyl lignin. The lignin of Gnetales which contains both tracheids and vessels as in angiosperm woods gives both vanillin and syringaldehyde and a characteristic IR spectrum of typical angiosperm wood lignin2).
    [Show full text]
  • Set 3 Plains Plant List AA
    Food for native birds: F = Fruit TOTARA – bellbird – matai, S = Bird Seed N = Nectar older plains ecosystem B = Bud/foliage I = Insects For lizards: L = fruit Plant Tolerances ■ = tolerates or needs □ = intolerant ½ = tolerant of some * = to establish, protect from frost t = toxic for toddlers Staging 1 = 1st structural 2 = 2nd year PLANT LISTS Selected from vegetation natural to these moist & deep 3 = only after canopy closure Kaiapoi soils Tolerances TALL (NOBLE) TREES (> 12 m) Food sun shade wet dry wind Stages Alectryon excelsus titoki F,I ½ ■ ½ ½ □ 3* Cordyline australis ti kouka, cabbage tree F,N,I ■ ½ ■ ■ ■ 1 Elaeocarpus dentatus hinau F,I ½ ½ ½ ½ □ 3* Pittosporum eugenioides tarata, lemonwood F,I ■ ■ ½ ■ ½ 1 Plagianthus regius manatu, lowland ribbonwood (deciduous) I, B ■ ½ ½ ½ ■ 1 Podocarpus totara totara F ■ ½ ½ ■ ■ 2 Prumnopitys taxifolia matai, black pine F ■ ½ ■ ½ ■ 2 Pseudopanax crassifolius lancewood, horoeka F,N,B,I ■ ½ ½ ■ ■ 2 Sophora microphylla South Island kowhai N,B ■ ½ ½ ■ ■ t 2 SMALL TREES & TALL SHRUBS (> 5 m) Aristotelia serrata makomako, wineberry (semi-decid) F,I,B ½ ½ ½ ½ □ 2 Carpodetus serratus putaputaweta, marbleleaf F,I ½ ■ ½ ½ □ 2 Coprosma areolata net-leaved coprosma F,B ½ ■ ■ ½ □ 2* Coprosma linariifolia linear-leaved coprosma, yellow-wood F ½ ■ ½ ½ ½ 2 Coprosma lucida shining karamu F ½ ■ ½ ½ ■ 2 Coprosma robusta karamu F ■ ■ ■ ½ ½ 1 Coprosma rotundifolia round-leaved coprosma F,B ½ □ ■ □ □ 2* Dodonaea viscosa akeake I □ ½ □ □ □ 2* Fuchsia excorticata kotukutuku, tree fuchsia (decid) F,N,B ½ ■ ½ □ □
    [Show full text]
  • PDF-Document
    SUPPLEMENTARY DATA Characterization of microbial communities associated with ceramic raw materials as potential contributors for the improvement of ceramic rheological properties Angela M. Garcia-Sanchez 1, Bernardino Machado-Moreira 2, Mário Freire 3, Ricardo Santos 3, Sílvia Monteiro 3, Diamantino Dias 4, Orquídia Neves 2, Amélia Dionísio 2 and Ana Z. Miller 5* 1 Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville. Profesor García González 2, 41012 Seville, Spain; 2 CERENA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal; 3 Laboratorio de Análises do Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; 4 Rauschert Portuguesa, SA., Estrada Nacional 249-4, Trajouce, 2785-653 São Domingos de Rana, Portugal; 5 Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Av. Reina Mercedes 10, 41012 Sevilla, Spain; 6 HERCULES Laboratory, University of Évora, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal. * Correspondence: [email protected] The Supplementary data include: Figure S1. Rarefaction curves. Table S1. Phylogenetic affiliations of the 16S rRNA gene sequences of total bacteria obtained from sample 1A (74 sequences, 64 OTUs). Table S2. Phylogenetic affiliations of the 16S rRNA gene sequences of total bacteria obtained from sample 2B (69 sequences, 51 OTUs). Table S3. Phylogenetic affiliations of the 16S rRNA gene sequences of total bacteria obtained from sample 4D (80 sequences, 54 OTUs). Table S4. Phylogenetic affiliations of the 16S rRNA gene sequences of total bacteria obtained from sample 6F (86 sequences, 38 OTUs). Table S5. Phylogenetic affiliations of the 16S rRNA gene sequences of total bacteria obtained from sample 7G (79 sequences, 48 OTUs).
    [Show full text]
  • Intercontinental Long-Distance Dispersal of Canellaceae from the New to the Old World Revealed by a Nuclear Single Copy Gene and Chloroplast Loci
    Molecular Phylogenetics and Evolution 84 (2015) 205–219 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Intercontinental long-distance dispersal of Canellaceae from the New to the Old World revealed by a nuclear single copy gene and chloroplast loci Sebastian Müller a,1, Karsten Salomo a,1, Jackeline Salazar b, Julia Naumann a, M. Alejandra Jaramillo c, ⇑ Christoph Neinhuis a, Taylor S. Feild d,2, Stefan Wanke a, ,2 a Technische Universität Dresden, Institut für Botanik, Zellescher Weg 20b, 01062 Dresden, Germany b Escuela de Biología, Universidad Autónoma de Santo Domingo (UASD), C/Bartolomé Mitre, Santo Domingo, Dominican Republic c Centro de Investigación para el Manejo Ambiental y el Desarrollo, Cali, Colombia d Centre for Tropical Biodiversity and Climate Change, College of Marine and Environmental Science, Townsville 4810, Campus Townsville, Australia article info abstract Article history: Canellales, a clade consisting of Winteraceae and Canellaceae, represent the smallest order of magnoliid Received 10 July 2014 angiosperms. The clade shows a broad distribution throughout the Southern Hemisphere, across a diverse Revised 16 December 2014 range of dry to wet tropical forests. In contrast to their sister-group, Winteraceae, the phylogenetic rela- Accepted 17 December 2014 tions and biogeography within Canellaceae remain poorly studied. Here we present the phylogenetic Available online 9 January 2015 relationships of all currently recognized genera of Canellales with a special focus on the Old World Canellaceae using a combined dataset consisting of the chloroplast trnK-matK-trnK-psbA and the nuclear Keywords: single copy gene mag1 (Maigo 1). Within Canellaceae we found high statistical support for the mono- Canellales phyly of Warburgia and Cinnamosma.
    [Show full text]
  • Evolution of Endosperm Developmental Patterns Among Basal Flowering Plants
    Int. J. Plant Sci. 161(6 Suppl.):S57–S81. 2000. ᭧ 2000 by The University of Chicago. All rights reserved. 1058-5893/2000/16106S-0005$03.00 EVOLUTION OF ENDOSPERM DEVELOPMENTAL PATTERNS AMONG BASAL FLOWERING PLANTS Sandra K. Floyd1 and William E. Friedman Department of Environmental, Population, and Organismic Biology, CB 334, University of Colorado, Boulder, Colorado 80309, U.S.A. A phylogenetically based comparative investigation of endosperm development was undertaken in a sample of 13 basal angiosperm taxa. The specific goals were to (1) provide a full developmental analysis of all aspects of endosperm in each species, (2) compare patterns among taxa to determine phylogenetic character distri- bution, (3) reconstruct the ancestral developmental pattern for angiosperms, and (4) explore scenarios of ontogenetic evolution that occurred during the early radiation of flowering plants. Five taxa, Acorus calamus, Cabomba caroliniana, Ceratophyllum demersum, Drimys winteri, and Platanus racemosa, are described in detail. Data from an additional eight taxa were analyzed and compared with these five. Endosperm ontogeny can be conceived of as a series of stages (characters) during which differential patterns of development occur among taxa (character states). We discovered that differential developmental fate of chalazal and micropylar domains is a common pattern among the endosperms of all basal angiosperm taxa and suggest that this may be a feature of endosperm development in all angiosperms. Differential development of chalazal and micropylar domains in endosperm in basal angiosperms also bears a marked similarity to what occurs in angiosperm embryos. This may have implications for understanding the evolutionary origin of endosperm. Basal angio- sperms also exhibit variable endosperm developmental characters, indicating that significant ontogenetic trans- formation occurred during the early radiation of the clade, although magnoliid taxa exhibit a high degree of conservation in endosperm characters.
    [Show full text]
  • Pseudowintera Colorata) Leaves
    Korean J. Chem. Eng., 36(2), 272-280 (2019) pISSN: 0256-1115 DOI: 10.1007/s11814-018-0191-9 eISSN: 1975-7220 INVITED REVIEW PAPER INVITED REVIEW PAPER The potential use of pulsed electric field to assist in polygodial extraction from Horopito (Pseudowintera colorata) leaves Joanna Nadia, Marliya Ismail, Kaveh Shahbaz, and Mohammed Farid† Department of Chemical and Materials Engineering, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand (Received 30 July 2018 • accepted 14 November 2018) AbstractHoropito (Pseudowintera colorata) contains polygodial as an active compound that has many health benefi- cial properties. The potential of applying a continuous pulsed electric field (PEF) as a pretreatment step prior to sol- vent extraction of polygodial from Horopito leaves was studied. Horopito leaves suspended in water were subjected to PEF at electric field intensity ranging from 5 to 25 kV/cm and pulse frequencies from 200 to 800 Hz. The interaction between electric field intensity and pulse frequency was found to have a significant role in extraction. Both electro-per- meabilization and temperature increase from treatment caused some polygodial leaching from the leaves prior to sol- vent extraction. The study revealed that PEF at low electric field intensity and high frequency is the most effective way to achieve higher solvent extraction yield while minimizing the effect of leaching. The maximum improvement was obtained when PEF at 5 kV/cm and 800 Hz for 348 s were applied, giving a polygodial extraction yield of about 16.6% higher than that of non-PEF treated leaves. Keywords: Extraction, Horopito (Pseudowintera colorata), Polygodial, Pulsed Electric Field INTRODUCTION organic solvent [5,17], hydrodistillation [18], and steam distillation [19].
    [Show full text]