1 Possible Drivers in Endophyte Diversity and Transmission in The

Total Page:16

File Type:pdf, Size:1020Kb

1 Possible Drivers in Endophyte Diversity and Transmission in The Possible Drivers in Endophyte Diversity and Transmission in the Tomato Plant Bacterial Microbiome Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Ana María Vázquez, B.S. Graduate Program in Plant Pathology The Ohio State University 2020 Thesis Committee Dr. María Soledad Benítez-Ponce, Advisor Dr. Christine Sprunger Dr. Jonathan M. Jacobs 1 Copyrighted by Ana María Vázquez 2020 2 Abstract It has been documented that beneficial plant-associated bacteria have contributed to disease suppression, growth promotion, and tolerance to abiotic stresses. Advances in high-throughput sequencing have allowed an increase in research regarding bacterial endophytes, which are microbes that colonize the interior of plants without causing disease. Practices associated with minimizing the use of off-farm resources, such as reduced tillage regimes and crop rotations, can cause shifts in plant-associated bacteria and its surrounding agroecosystem. Integrated crop–livestock systems are an option that can provide environmental benefits by implementing diverse cropping systems, incorporating perennial and legume forages and adding animal manure through grazing livestock. It has been found that crop-livestock systems can increase soil quality and fertility, reduce cost of herbicide use and improve sustainability, especially for farmers in poorer areas of the world. This work explores how crop-livestock systems that integrate chicken rotations can impact tomato plant growth, as well as soil and endophytic bacterial communities. Tomato plants were subjected to greenhouse and field studies where biomass was assessed, and bacterial communities were characterized through culture- dependent and -independent approaches. ii In greenhouse experiments, the greater percent of chicken grazed soil incorporated in the planting substrate, the greater the stunting of tomato seedlings. In the field study, bacterial communities differed significantly by sample origin and plant development stage, regardless of chicken grazing history. Our findings suggest stronger contribution of agricultural management practices during early plant stages on endophytic microbiome, as opposed to later on in the host lifecycle. Taxonomic composition of dominant groups of recovered endophytic bacterial isolates were consistent with those found by amplicon sequencing. Plots with history of chicken grazing had a significant increase of soil fertility and differentially abundant ASVs. Dominant phyla (Actinobacteria, Proteobacteria, Bacteroidetes and Firmicutes) of bacterial taxa identified were uniform between culture-dependent and -independent approaches from both greenhouse and field experiments. Most of the recovered isolates were found to be phylogenetically similar to formerly cultured plant endophytes and bacteria found in soil. However, some isolates were similar to bacteria recovered in human clinical settings. Further directions should focus on identification and elucidation of transmission of possible plant growth promoting bacteria, as well as human pathogens, found in crops grown in this type of agricultural management strategy. Moreover, the influence of stage in plant lifecycle on bacterial community composition under specific management strategies remains to be explored. This work provides insight into the influence of crop- livestock rotations on soil- and tomato plant-associated bacterial communities. iii Dedication This thesis is dedicated to the memory of my biggest fan, my grandmother Carmen Leticia Cabrera Amador. Regardless of adversities, Abuela lived by seeing beauty in science, art and human connections. I will always honor her by emulating her tenacity and persistence. iv Acknowledgments First, I would like to acknowledge my advisor, María Soledad Benítez-Ponce for her support and commitment in mentoring me during these past two years. Thank you for always stimulating an intellectually challenging and collaborative environment where I could thrive as a scientist. In addition, thank you for encouraging me to integrate other aspects to my professional skillset. Moreover, I would like to thank the members of my student advisory committee, Christine Sprunger and Jonathan Jacobs, for their valuable and constructive suggestions. I would also like to thank Suranga Basnagala for his advice in setting up my first field experiment at Mellinger Research Farm, as well as his assistance in looking out for my tomato plants and answering all of my questions. I would like to offer my special thanks to Leslie Taylor for all her help with my experiments and much needed cheer during this journey. Through countless emails exchanged, assistance with computational analysis provided by former lab member Matthew Willman was greatly appreciated. In addition, I would like to thank lab members and fellow graduate students Daowen Huo and Ranjana Rawal for their inspiring motivation and persistence. A special thanks to the whole Benitez lab, current v and former members, for making my time in Wooster memorable and cherished. Thank you to undergraduates Nedas Matulionis, Emmily Moses and Yesenia Velez for helping in different aspects of my research project, in and outside the lab. My grateful thanks are also extended to three very special people that have helped me make Wooster a home away from home, Marlia Bosques, Madeline Horvat and Edwin Navarro. In addition, a big thanks to all my friends, back home and in different places, that have encouraged me from afar. Finally, the biggest thanks are for the first supporters and mentors I ever had, my family. Mamá, Michelle, Berto, Carlos, José, Tommy and Tito. Thanks to my abuela for being my biggest and, arguably, my most outspoken fan. vi Vita 1995………………………………………… Born, Arecibo, Puerto Rico 2013-2018……………………………………B.S. Biology and B.S. Industrial Microbiology, University of Puerto Rico at Mayagüez 2018 to present………………………………Graduate Research Associate, Department of Plant Pathology, The Ohio State University Fields of Study Major Field: Plant Pathology vii Table of Contents Abstract ............................................................................................................................... ii Dedication .......................................................................................................................... iv Acknowledgments ............................................................................................................... v Vita .................................................................................................................................... vii List of Tables .................................................................................................................... xii List of Figures .................................................................................................................. xvi Chapter 1. Literature Review .............................................................................................. 1 Introduction ..................................................................................................................... 1 The Plant Microbiome .................................................................................................... 3 Bacterial Endophytes in Aboveground Plant Tissues ..................................................... 5 Bacteria in Soil and Rhizosphere of Plants ..................................................................... 6 Transmission and Colonization of Plant-Associated Bacterial Communities ................ 8 Role of Bacterial Endophytes ....................................................................................... 12 Summary and Conclusions ........................................................................................... 15 viii References ..................................................................................................................... 18 Chapter 2. Characterization of the Bacterial Endophytic Microbiome of Tomato Seedlings Grown in a Soil Diversity Gradient Using Chicken-Grazed Soils ................... 35 Introduction ................................................................................................................... 35 Materials and Methods .................................................................................................. 40 Field Site Description ............................................................................................... 40 Soil Sampling ............................................................................................................ 41 Planting Substrate, Plant Materials and Growth Conditions .................................... 42 Seedling Sampling and Evaluation ........................................................................... 44 Plant Tissue Sampling and Isolation of Endophytic Bacteria from Tomato Seedling Stem .......................................................................................................................... 45 DNA Extraction, PCR Amplification and Sequencing of the 16S rRNA and rpoB Gene Regions from Individual Bacterial Isolates ..................................................... 45 Isolate Sequence Data Analysis ................................................................................ 48 Plant Growth Data Analysis and Statistics ............................................................... 49 Results ..........................................................................................................................
Recommended publications
  • Microbial Diversity of Molasses Containing Tobacco (Maassel) Unveils Contamination with Many Human Pathogens
    European Review for Medical and Pharmacological Sciences 2021; 25: 4919-4929 Microbial diversity of molasses containing tobacco (Maassel) unveils contamination with many human pathogens M.A.A. ALQUMBER Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Saudi Arabia Abstract. – OBJECTIVE: Tobacco smoking drugs in today’s modern world. Different meth- remains a worldwide health issue, and the use of ods are currently used to consume tobacco, in- flavored varieties (maassel) embedded in glyc- cluding cigarettes, cigars and waterpipes1. Water- erine, molasses, and fruit essence via shisha pipe (shisha) smoking continues to rise globally2. paraphernalia (waterpipe) is growing globally. Smoking flavored tobacco (maassel), through the 16S rRNA gene pyrosequencing was conduct- shisha, is becoming a global preventable cause of ed on 18 different varieties representing 16 fla- 3,4 vors and three brands in order to study the mi- morbidity and mortality . crobiota of maassel and find whether it contains Scientists studied the chemical composition of pathogenic bacteria. tobacco for many years and illustrated the total MATERIALS AND METHODS: The samples number of chemicals identified in tobacco during were selected randomly from the most utilized the years from 1954 to 20055. In addition, a com- brands within Albaha, Saudi Arabia as deter- prehensive review of these chemicals’ classifica- mined through a questionnaire of 253 smok- ers. In addition, ten-fold serially diluted sam- tion, concentration and changes with time due ples were inoculated on blood agar, MacConkey to changes in the shape, design and composition agar, half-strength trypticase soy agar and malt of cigarettes was reported almost a decade ago6.
    [Show full text]
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Leaf-Associated Shifts in Bacterial and Fungal Communities in Response to Chicken Rearing Under Moso Bamboo Forests in Subtropical China
    Article Leaf-Associated Shifts in Bacterial and Fungal Communities in Response to Chicken Rearing Under Moso Bamboo Forests in Subtropical China Xiaoping Zhang 1, Zheke Zhong 1,*, Xu Gai 1, Jiafu Ying 2, Weifen Li 2, Xuhua Du 1, Fangyuan Bian 1 and Chuanbao Yang 1 1 China National Bamboo Research Center, Key Laboratory of Resources and Utilization of Bamboo of State Forestry Administration, Hangzhou 310012, China; [email protected] (X.Z.); [email protected] (X.G.); [email protected] (X.D.); [email protected] (F.B.); [email protected] (C.Y.) 2 College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; [email protected] (J.Y.); wfl[email protected] (W.L.) * Correspondence: [email protected]; Tel.: +86-0571-88860734 Received: 25 January 2019; Accepted: 25 February 2019; Published: 1 March 2019 Abstract: Integrated bamboo-chicken farming (BCF) systems are a traditional agroforestry pattern with large economic benefits in subtropical China. However, little is known regarding the effect of this integration on the bamboo leaf-associated microbiome, which can be very important for disease control and nutrient turnover. In the present study, we compared the leaf-associated bacterial and fungal communities of moso bamboo (Phyllostachys edulis) in a BCF system and an adjacent moso bamboo forest (MBF). The results showed that Cyanobacteria and Ascomycota were the predominant microbial phyla associated with bamboo leaves. Chicken farming under the bamboo forest significantly increased the bacterial and fungal alpha diversity (observed operational taxonomic units (OTUs) and Simpson’s index) associated with bamboo leaves. Principal components analysis (PCoA) further confirmed the shifts in the bacterial and fungal communities caused by chicken farming.
    [Show full text]
  • Major Clades of Agaricales: a Multilocus Phylogenetic Overview
    Mycologia, 98(6), 2006, pp. 982–995. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 Major clades of Agaricales: a multilocus phylogenetic overview P. Brandon Matheny1 Duur K. Aanen Judd M. Curtis Laboratory of Genetics, Arboretumlaan 4, 6703 BD, Biology Department, Clark University, 950 Main Street, Wageningen, The Netherlands Worcester, Massachusetts, 01610 Matthew DeNitis Vale´rie Hofstetter 127 Harrington Way, Worcester, Massachusetts 01604 Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708 Graciela M. Daniele Instituto Multidisciplinario de Biologı´a Vegetal, M. Catherine Aime CONICET-Universidad Nacional de Co´rdoba, Casilla USDA-ARS, Systematic Botany and Mycology de Correo 495, 5000 Co´rdoba, Argentina Laboratory, Room 304, Building 011A, 10300 Baltimore Avenue, Beltsville, Maryland 20705-2350 Dennis E. Desjardin Department of Biology, San Francisco State University, Jean-Marc Moncalvo San Francisco, California 94132 Centre for Biodiversity and Conservation Biology, Royal Ontario Museum and Department of Botany, University Bradley R. Kropp of Toronto, Toronto, Ontario, M5S 2C6 Canada Department of Biology, Utah State University, Logan, Utah 84322 Zai-Wei Ge Zhu-Liang Yang Lorelei L. Norvell Kunming Institute of Botany, Chinese Academy of Pacific Northwest Mycology Service, 6720 NW Skyline Sciences, Kunming 650204, P.R. China Boulevard, Portland, Oregon 97229-1309 Jason C. Slot Andrew Parker Biology Department, Clark University, 950 Main Street, 127 Raven Way, Metaline Falls, Washington 99153- Worcester, Massachusetts, 01609 9720 Joseph F. Ammirati Else C. Vellinga University of Washington, Biology Department, Box Department of Plant and Microbial Biology, 111 355325, Seattle, Washington 98195 Koshland Hall, University of California, Berkeley, California 94720-3102 Timothy J.
    [Show full text]
  • Bioprospecting from Marine Sediments of New Brunswick, Canada: Exploring the Relationship Between Total Bacterial Diversity and Actinobacteria Diversity
    Mar. Drugs 2014, 12, 899-925; doi:10.3390/md12020899 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Bioprospecting from Marine Sediments of New Brunswick, Canada: Exploring the Relationship between Total Bacterial Diversity and Actinobacteria Diversity Katherine Duncan 1, Bradley Haltli 2, Krista A. Gill 2 and Russell G. Kerr 1,2,* 1 Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada; E-Mail: [email protected] 2 Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada; E-Mails: [email protected] (B.H.); [email protected] (K.A.G.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-902-566-0565; Fax: +1-902-566-7445. Received: 13 November 2013; in revised form: 7 January 2014 / Accepted: 21 January 2014 / Published: 13 February 2014 Abstract: Actinomycetes are an important resource for the discovery of natural products with therapeutic properties. Bioprospecting for actinomycetes typically proceeds without a priori knowledge of the bacterial diversity present in sampled habitats. In this study, we endeavored to determine if overall bacterial diversity in marine sediments, as determined by 16S rDNA amplicon pyrosequencing, could be correlated with culturable actinomycete diversity, and thus serve as a powerful tool in guiding future bioprospecting efforts. Overall bacterial diversity was investigated in eight marine sediments from four sites in New Brunswick, Canada, resulting in over 44,000 high quality sequences (x̄ = 5610 per sample). Analysis revealed all sites exhibited significant diversity (H’ = 5.4 to 6.7).
    [Show full text]
  • The Subway Microbiome: Seasonal Dynamics and Direct Comparison Of
    Gohli et al. Microbiome (2019) 7:160 https://doi.org/10.1186/s40168-019-0772-9 RESEARCH Open Access The subway microbiome: seasonal dynamics and direct comparison of air and surface bacterial communities Jostein Gohli1* , Kari Oline Bøifot1,2, Line Victoria Moen1, Paulina Pastuszek3, Gunnar Skogan1, Klas I. Udekwu4 and Marius Dybwad1,2 Abstract Background: Mass transit environments, such as subways, are uniquely important for transmission of microbes among humans and built environments, and for their ability to spread pathogens and impact large numbers of people. In order to gain a deeper understanding of microbiome dynamics in subways, we must identify variables that affect microbial composition and those microorganisms that are unique to specific habitats. Methods: We performed high-throughput 16S rRNA gene sequencing of air and surface samples from 16 subway stations in Oslo, Norway, across all four seasons. Distinguishing features across seasons and between air and surface were identified using random forest classification analyses, followed by in-depth diversity analyses. Results: There were significant differences between the air and surface bacterial communities, and across seasons. Highly abundant groups were generally ubiquitous; however, a large number of taxa with low prevalence and abundance were exclusively present in only one sample matrix or one season. Among the highly abundant families and genera, we found that some were uniquely so in air samples. In surface samples, all highly abundant groups were also well represented in air samples. This is congruent with a pattern observed for the entire dataset, namely that air samples had significantly higher within-sample diversity. We also observed a seasonal pattern: diversity was higher during spring and summer.
    [Show full text]
  • Corynebacterium Sp.|NML98-0116
    1 Limnochorda_pilosa~GCF_001544015.1@NZ_AP014924=Bacteria-Firmicutes-Limnochordia-Limnochordales-Limnochordaceae-Limnochorda-Limnochorda_pilosa 0,9635 Ammonifex_degensii|KC4~GCF_000024605.1@NC_013385=Bacteria-Firmicutes-Clostridia-Thermoanaerobacterales-Thermoanaerobacteraceae-Ammonifex-Ammonifex_degensii 0,985 Symbiobacterium_thermophilum|IAM14863~GCF_000009905.1@NC_006177=Bacteria-Firmicutes-Clostridia-Clostridiales-Symbiobacteriaceae-Symbiobacterium-Symbiobacterium_thermophilum Varibaculum_timonense~GCF_900169515.1@NZ_LT827020=Bacteria-Actinobacteria-Actinobacteria-Actinomycetales-Actinomycetaceae-Varibaculum-Varibaculum_timonense 1 Rubrobacter_aplysinae~GCF_001029505.1@NZ_LEKH01000003=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_aplysinae 0,975 Rubrobacter_xylanophilus|DSM9941~GCF_000014185.1@NC_008148=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_xylanophilus 1 Rubrobacter_radiotolerans~GCF_000661895.1@NZ_CP007514=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_radiotolerans Actinobacteria_bacterium_rbg_16_64_13~GCA_001768675.1@MELN01000053=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_rbg_16_64_13 1 Actinobacteria_bacterium_13_2_20cm_68_14~GCA_001914705.1@MNDB01000040=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_13_2_20cm_68_14 1 0,9803 Thermoleophilum_album~GCF_900108055.1@NZ_FNWJ01000001=Bacteria-Actinobacteria-Thermoleophilia-Thermoleophilales-Thermoleophilaceae-Thermoleophilum-Thermoleophilum_album
    [Show full text]
  • Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
    Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr.
    [Show full text]
  • 1 Supplementary Information Ugly Ducklings – the Dark Side of Plastic
    Supplementary Information Ugly ducklings – The dark side of plastic materials in contact with potable water Lisa Neu1,2, Carola Bänziger1, Caitlin R. Proctor1,2, Ya Zhang3, Wen-Tso Liu3, Frederik Hammes1,* 1 Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland 2 Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland 3 Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, USA Table of contents Table S1 Exemplary online blog entries on biofouling in bath toys Figure S1 Images of all examined bath toys Figure S2 Additional images of bath toy biofilms by OCT Figure S3 Additional images on biofilm composition by SEM Figure S4 Number of bacteria and proportion of intact cells in bath toy biofilms Table S2 Classification of shared OTUs between bath toys Table S3 Shared and ‘core’ communities in bath toys from single households Table S4 Richness and diversity Figure S5 Classification of abundant OTUs in real bath toy biofilms Table S5 Comparison of most abundant OTUs in control bath toy biofilms Figure S6 Fungal community composition in bath toy biofilms Table S6 Conventional plating results for indicator bacteria and groups Table S7 Bioavailability of migrating carbon from control bath toys’ material Water chemistry Method and results (Table S8) Table S9 Settings for Amplification PCR and Index PCR reactions 1 Table S1: Exemplary online blog entries on biofouling inside bath toys Issue - What is the slime? Link Rub-a-dub-dub, https://www.babble.com/baby/whats-in-the-tub/ what’s in the tub? What’s the black stuff http://blogs.babycenter.com/momstories/whats-the-black- in your squeeze toys? stuff-in-your-squeeze-toys/ Friday Find: NBC’s http://www.bebravekeepgoing.com/2010/03/friday-find-nbcs- Today Show segment: today-show-segment-do.html Do bath toys carry germs? Yuck.
    [Show full text]
  • Bacterial Community Structure in High-Arctic Snow and Freshwater As Revealed by Pyrosequencing of 16S Rrna Genes and Cultivation Annette K
    RESEARCH/REVIEW ARTICLE Bacterial community structure in High-Arctic snow and freshwater as revealed by pyrosequencing of 16S rRNA genes and cultivation Annette K. Møller,1 Ditte A. Søborg,1 Waleed Abu Al-Soud,2 Søren J. Sørensen2 & Niels Kroer1 1 Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark 2 Department of Biology, University of Copenhagen, Sølvgade 83H, DK-1307 K Copenhagen, Denmark Keywords Abstract Taxonomic diversity; microbial assemblages; bacterial density; DOC. The bacterial community structures in High-Arctic snow over sea ice and an ice-covered freshwater lake were examined by pyrosequencing of 16S rRNA Correspondence genes and 16S rRNA gene sequencing of cultivated isolates. Both the Niels Kroer, pyrosequence and cultivation data indicated that the phylogenetic composition Department of Environmental Science, of the microbial assemblages was different within the snow layers and between Aarhus University, snow and freshwater. The highest diversity was seen in snow. In the middle Frederiksborgvej 399, and top snow layers, , and dominated, DK-4000 Roskilde, Denmark. Proteobacteria Bacteroidetes Cyanobacteria E-mail: [email protected] although Actinobacteria and Firmicutes were relatively abundant also. High numbers of chloroplasts were also observed. In the deepest snow layer, large percentages of Firmicutes and Fusobacteria were seen. In freshwater, Bacter- oidetes, Actinobacteria and Verrucomicrobia were the most abundant phyla while relatively few Proteobacteria and Cyanobacteria were present. Possibly, light intensity controlled the distribution of the Cyanobacteria and algae in the snow while carbon and nitrogen fixed by these autotrophs in turn fed the heterotrophic bacteria. In the lake, a probable lower light input relative to snow resulted in low numbers of Cyanobacteria and chloroplasts and, hence, limited input of organic carbon and nitrogen to the heterotrophic bacteria.
    [Show full text]
  • Characterization of Arsenite-Oxidizing Bacteria Isolated from Arsenic-Rich Sediments, Atacama Desert, Chile
    microorganisms Article Characterization of Arsenite-Oxidizing Bacteria Isolated from Arsenic-Rich Sediments, Atacama Desert, Chile Constanza Herrera 1, Ruben Moraga 2,*, Brian Bustamante 1, Claudia Vilo 1, Paulina Aguayo 1,3,4, Cristian Valenzuela 1, Carlos T. Smith 1 , Jorge Yáñez 5, Victor Guzmán-Fierro 6, Marlene Roeckel 6 and Víctor L. Campos 1,* 1 Laboratory of Environmental Microbiology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; [email protected] (C.H.); [email protected] (B.B.); [email protected] (C.V.); [email protected] (P.A.); [email protected] (C.V.); [email protected] (C.T.S.) 2 Microbiology Laboratory, Faculty of Renewable Natural Resources, Arturo Prat University, Iquique 1100000, Chile 3 Faculty of Environmental Sciences, EULA-Chile, Universidad de Concepcion, Concepcion 4070386, Chile 4 Institute of Natural Resources, Faculty of Veterinary Medicine and Agronomy, Universidad de Las Américas, Sede Concepcion, Campus El Boldal, Av. Alessandri N◦1160, Concepcion 4090940, Chile 5 Faculty of Chemical Sciences, Department of Analytical and Inorganic Chemistry, University of Concepción, Concepción 4070386, Chile; [email protected] 6 Department of Chemical Engineering, Faculty of Engineering, University of Concepción, Concepcion 4070386, Chile; victorguzmanfi[email protected] (V.G.-F.); [email protected] (M.R.) * Correspondence: [email protected] (R.M.); [email protected] (V.L.C.) Abstract: Arsenic (As), a semimetal toxic for humans, is commonly associated
    [Show full text]
  • Phylogenomic Analysis of 589 Metagenome-Assembled Genomes Encompassing All Major Prokaryotic Lineages from the Gut of Higher Termites
    Phylogenomic analysis of 589 metagenome-assembled genomes encompassing all major prokaryotic lineages from the gut of higher termites Vincent Hervé1, Pengfei Liu1, Carsten Dietrich1, David Sillam-Dussès2, Petr Stiblik3, Jan Šobotník3 and Andreas Brune1 1 Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany 2 Laboratory of Experimental and Comparative Ethology EA 4443, Université Paris 13, Villetaneuse, France 3 Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic ABSTRACT “Higher” termites have been able to colonize all tropical and subtropical regions because of their ability to digest lignocellulose with the aid of their prokaryotic gut microbiota. Over the last decade, numerous studies based on 16S rRNA gene amplicon libraries have largely described both the taxonomy and structure of the prokaryotic communities associated with termite guts. Host diet and microenvironmental conditions have emerged as the main factors structuring the microbial assemblages in the different gut compartments. Additionally, these molecular inventories have revealed the existence of termite-specific clusters that indicate coevolutionary processes in numerous prokaryotic lineages. However, for lack of representative isolates, the functional role of most lineages remains unclear. We reconstructed 589 metagenome-assembled genomes (MAGs) from the different Submitted 29 August 2019 gut compartments of eight higher termite species that encompass 17 prokaryotic
    [Show full text]