Repeated Loading Model for Elastic-Plastic Contact of Geomaterial

Total Page:16

File Type:pdf, Size:1020Kb

Repeated Loading Model for Elastic-Plastic Contact of Geomaterial Missouri University of Science and Technology Scholars' Mine Materials Science and Engineering Faculty Research & Creative Works Materials Science and Engineering 01 Jul 2018 Repeated Loading Model for Elastic-Plastic Contact of Geomaterial Jian Wang Qimin Li Changwei Yang Caizhi Zhou Missouri University of Science and Technology, [email protected] Follow this and additional works at: https://scholarsmine.mst.edu/matsci_eng_facwork Part of the Materials Science and Engineering Commons Recommended Citation J. Wang et al., "Repeated Loading Model for Elastic-Plastic Contact of Geomaterial," Advances in Mechanical Engineering, vol. 10, no. 7, SAGE Publications Inc., Jul 2018. The definitive version is available at https://doi.org/10.1177/1687814018788778 This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Materials Science and Engineering Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. Research Article Advances in Mechanical Engineering 2018, Vol. 10(7) 1–15 Ó The Author(s) 2018 Repeated loading model for elastic– DOI: 10.1177/1687814018788778 plastic contact of geomaterial journals.sagepub.com/home/ade Jian Wang1,2,3 ,QiminLi4, Changwei Yang1 and Caizhi Zhou5 Abstract A new nonlinear hysteretic model with considering the loading, unloading, and reloading processes is developed based on Drucker–Prager yield criterion and finite-element analysis. This model can be used for multiple repeated elastic– plastic normal direction contact problems between two identical spherical geomaterials. After examining the influence of material properties, strain hardening, and loading histories, we found that the hysteretic phenomena (represented by residual displacement and plastic work) become weak after the first cycle, and the subsequent cycles step into elastic shakedown state eventually. A critical number of cycles can be used to estimate the state of ratchetting, plastic shake- down, as well as elastic shakedown. It also found that the subsequent curves will be stiffer than the previous ones, espe- cially when the yield strength is high and ratchetting effect is not strong. This new model can be used for a wide range of geomaterials under different loading levels, and it can also be extended to describe the constitutive behavior of spheres under earthquake as well as aftershocks. Keywords Contact mechanics, elastic–plastic contact, cyclic loading–unloading, Drucker–Prager criterion, elastic shakedown Date received: 28 February 2018; accepted: 20 June 2018 Handling Editor: Shun-Peng Zhu Introduction than other types of models with dampers for the energy dissipation. The contact zone is under locally plastic Interaction between two spheres is the most fundamen- tal problems for discrete geological material simulation, among which repeated loading and unloading is espe- cially important for dynamic action, such as compacted 1School of Civil Engineering, Southwest Jiaotong University, Chengdu, discrete rock mass or soil under seismic force. China 2MOE Key Laboratory of High-Speed Railway Engineering, Southwest Usually, very simple linear models of contact, like Jiaotong University, Chengdu, China linear viscoelastic models, are used in Discrete Element 3National Engineering Laboratory for Technology of Geological Disaster Methods, which account for more than 60% of all Prevention in Land Transportation, Southwest Jiaotong University, cases.1 The main disadvantage of non-hysteretic models Chengdu, China 4 is their artificial assumption of force–displacement School of Water Resources and Environment, China University of Geosciences, Beijing, Beijing, China behavior, which would not guarantee their accuracy to 5Department of Materials Science and Engineering, Missouri University of describe the overall macroscope response of particle sys- Science and Technology, Rolla, MO, USA tems under repeated loading in elastic–plastic regime. With regard to the interaction without cohesion, it Corresponding author: Changwei Yang, School of Civil Engineering, Southwest Jiaotong has been realized that hysteretic models consisted of University, Chengdu 610031, China. springs and sliders would be more physically intuitive Email: [email protected] Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/ open-access-at-sage). 2 Advances in Mechanical Engineering deformation, rather than the artificial damper subsequent load–unload process after the initial loading– behavior.2 unloading cycle would be fully elastic. They proposed an Although many contact models of the hysteretic unloading model of the power law relation with noncon- type have been developed for corresponding materials stant exponent, which was also been adopted by Song separately,3–7 relatively few attentions have been paid and Komvopoulos.11 Jackson et al.13 found high residual to the unloading and reloading responses of elastic– stresses remained after an elastic–plastic hemispherical plastic deformation especially, which is essential for contact being unloaded. Kadin et al.14 presented the cyclic loading simulation between spheres. numerical results of two successive loading and unload- The main difficulties for cyclic loading model with ing cycles on the same model as Etsion et al.12 and hysteretic law result from the definition of stiffness inferred that the secondary plastic flow might reach a coefficients and assessment of the evolution of stress steady state and the successive loading–unloading cycles state during the unloading and reloading processes. become fully elastic from the evolution of equivalent von Literatures concerned include the elastic–plastic inden- Mises stress distribution. Later, Zait et al.15 extended the tation of rigid sphere to compliant base and interference unloading contact model of Etsion et al.12 including stick between two flexible spheres, which could be mutually contact condition. emulated substantially. All the above-mentioned results are mainly fit for Generally speaking, the understanding of unloading metallic material following the von Mises yield criterion process goes through elastic assumption to elastic– (i.e. Maxwell–Huber–Hencky–von Mises theory), which plastic verification. Assuming the unloading behavior are not suitable for more complicated geo materials with purely elastic, Johnson8 proposed the analytical model hydrostatic pressure dependence. Besides, the reloading of unloading for elastic–plastic indentation. Later, the model based on reliable FEA results has not been put model had been modified by Li and Gu9 based on forward, which is crucial for cyclic loading problems. the superposition of Steuermann solutions instead of Although Sadd et al.16 developed a nonlinear hys- the original contact surface curvature. That modifica- teretic contact law including loading, unloading, and tion made it more closely fit with the numerical results reloading stages for dry cohesionless granular media 10 with large plastic deformation. Yan and Li studied the simulation based on photo-elastic experiment, the inter- deformation of a rigid sphere under cyclic indentation. particle contact behavior did not exceed the elastic In their study, an elastic–perfectly plastic half-space was regime substantially. adopted and they found that the deformation during Kostek17 presented a nonlinear mathematical model unloading from a contact beyond the elastic limit was describing the hysteresis of dry contact of rough planar perfectly elastic and the reloading curve was the same as surfaces loaded in the normal direction, which is hard the unloading curve. The material of the half-space used to transform to spherical contact. by them represented a typical steel material, with high Therefore, the main purpose of this article is to develop elastic modulus and yield stress. However, it is still unloading and reloading models for geomaterial under unclear whether the unloading and reloading response cyclic loading and with elastic–plastic deformation. Also, would be different for other materials with low elastic the influence of material properties and loading histories modulus and yield stress. on the evolution of elastic–plastic deformation will be 11 Song and Komvopoulos examined the unloading examined. This article is structured as follows. FEA model behavior of indented elastic–plastic materials as well as and yield criterion are described in sections ‘‘Numerical the evolution of plasticity due to four consecutive inden- model’’ and ‘‘Material constitutive model,’’ respectively. tation cycles by finite-element analysis (FEA) and found Schematic contact model is presented in section ‘‘Contact the occurrence of plastic deformation during unloading model,’’ and loading model of the first cycle, unloading was attributed to the effect of the residual stresses in the model, and reloading model are discussed in sections elastic material surrounded by the plastic regime. Also, ‘‘Loading model,’’‘‘Unloading model,’’ and ‘‘Reloading they deduced
Recommended publications
  • Contact Mechanics in Gears a Computer-Aided Approach for Analyzing Contacts in Spur and Helical Gears Master’S Thesis in Product Development
    Two Contact Mechanics in Gears A Computer-Aided Approach for Analyzing Contacts in Spur and Helical Gears Master’s Thesis in Product Development MARCUS SLOGÉN Department of Product and Production Development Division of Product Development CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden, 2013 MASTER’S THESIS IN PRODUCT DEVELOPMENT Contact Mechanics in Gears A Computer-Aided Approach for Analyzing Contacts in Spur and Helical Gears Marcus Slogén Department of Product and Production Development Division of Product Development CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2013 Contact Mechanics in Gear A Computer-Aided Approach for Analyzing Contacts in Spur and Helical Gears MARCUS SLOGÉN © MARCUS SLOGÉN 2013 Department of Product and Production Development Division of Product Development Chalmers University of Technology SE-412 96 Göteborg Sweden Telephone: + 46 (0)31-772 1000 Cover: The picture on the cover page shows the contact stress distribution over a crowned spur gear tooth. Department of Product and Production Development Göteborg, Sweden 2013 Contact Mechanics in Gears A Computer-Aided Approach for Analyzing Contacts in Spur and Helical Gears Master’s Thesis in Product Development MARCUS SLOGÉN Department of Product and Production Development Division of Product Development Chalmers University of Technology ABSTRACT Computer Aided Engineering, CAE, is becoming more and more vital in today's product development. By using reliable and efficient computer based tools it is possible to replace initial physical testing. This will result in cost savings, but it will also reduce the development time and material waste, since the demand of physical prototypes decreases. This thesis shows how a computer program for analyzing contact mechanics in spur and helical gears has been developed at the request of Vicura AB.
    [Show full text]
  • AC Fischer-Cripps
    A.C. Fischer-Cripps Introduction to Contact Mechanics Series: Mechanical Engineering Series ▶ Includes a detailed description of indentation stress fields for both elastic and elastic-plastic contact ▶ Discusses practical methods of indentation testing ▶ Supported by the results of indentation experiments under controlled conditions Introduction to Contact Mechanics, Second Edition is a gentle introduction to the mechanics of solid bodies in contact for graduate students, post doctoral individuals, and the beginning researcher. This second edition maintains the introductory character of the first with a focus on materials science as distinct from straight solid mechanics theory. Every chapter has been 2nd ed. 2007, XXII, 226 p. updated to make the book easier to read and more informative. A new chapter on depth sensing indentation has been added, and the contents of the other chapters have been completely overhauled with added figures, formulae and explanations. Printed book Hardcover ▶ 159,99 € | £139.99 | $199.99 The author begins with an introduction to the mechanical properties of materials, ▶ *171,19 € (D) | 175,99 € (A) | CHF 189.00 general fracture mechanics and the fracture of brittle solids. This is followed by a detailed description of indentation stress fields for both elastic and elastic-plastic contact. The discussion then turns to the formation of Hertzian cone cracks in brittle materials, eBook subsurface damage in ductile materials, and the meaning of hardness. The author Available from your bookstore or concludes with an overview of practical methods of indentation. ▶ springer.com/shop MyCopy Printed eBook for just ▶ € | $ 24.99 ▶ springer.com/mycopy Order online at springer.com ▶ or for the Americas call (toll free) 1-800-SPRINGER ▶ or email us at: [email protected].
    [Show full text]
  • 1 Classical Theory and Atomistics
    1 1 Classical Theory and Atomistics Many research workers have pursued the friction law. Behind the fruitful achievements, we found enormous amounts of efforts by workers in every kind of research field. Friction research has crossed more than 500 years from its beginning to establish the law of friction, and the long story of the scientific historyoffrictionresearchisintroducedhere. 1.1 Law of Friction Coulomb’s friction law1 was established at the end of the eighteenth century [1]. Before that, from the end of the seventeenth century to the middle of the eigh- teenth century, the basis or groundwork for research had already been done by Guillaume Amontons2 [2]. The very first results in the science of friction were found in the notes and experimental sketches of Leonardo da Vinci.3 In his exper- imental notes in 1508 [3], da Vinci evaluated the effects of surface roughness on the friction force for stone and wood, and, for the first time, presented the concept of a coefficient of friction. Coulomb’s friction law is simple and sensible, and we can readily obtain it through modern experimentation. This law is easily verified with current exper- imental techniques, but during the Renaissance era in Italy, it was not easy to carry out experiments with sufficient accuracy to clearly demonstrate the uni- versality of the friction law. For that reason, 300 years of history passed after the beginning of the Italian Renaissance in the fifteenth century before the friction law was established as Coulomb’s law. The progress of industrialization in England between 1750 and 1850, which was later called the Industrial Revolution, brought about a major change in the production activities of human beings in Western society and later on a global scale.
    [Show full text]
  • C: Contact Mechanics, in "Principles and Techniques for Desiging Precision Machines." MIT Phd Thesis, 1999
    C Contact MechanicsI The theory developed by Hertz in 1880 remains the foundation for most contact problems encountered in engineering. It applies to normal contact between two elastic solids that are smooth and can be described locally with orthogonal radii of curvature such as a toroid. Further, the size of the actual contact area must be small compared to the dimensions of each body and to the radii of curvature. Hertz made the assumption based on observations that the contact area is elliptical in shape for such three-dimensional bodies. The equations simplify when the contact area is circular such as with spheres in contact. At extremely elliptical contact, the contact area is assumed to have constant width over the length of contact such as between parallel cylinders. The first three sections present the Hertz equations for these distinct cases. In addition, Section C.4 presents the equations for a sphere contacting a conical socket. Hertz theory does not account for tangential forces that may develop in applications where the surfaces slide or carry traction. Extensions to Hertz theory approximate this behavior to reasonable accuracy. Section C.5 presents the more useful equations. The final section C.6 contains MathcadÔ documents that implement these equations for computer analysis. The Hertz equations are important in the engineering of kinematic couplings particularly if the loads carried are relatively high. For a particular choice of material and contact geometry, the pertinent calculations reduce to families of curves that are convenient for sizing purposes. The typical material used is hardened bearing steel, for example, 52100 steel or 440C stainless steel heat treated to 58-62 Rockwell C.
    [Show full text]
  • Contact Mechanics and Friction
    Contact Mechanics and Friction Valentin L. Popov Contact Mechanics and Friction Physical Principles and Applications 1 3 Professor Dr. Valentin L. Popov Berlin University of Technology Institute of Mechanics Strasse des 17.Juni 135 10623 Berlin Germany [email protected] ISBN 978-3-642-10802-0 e-ISBN 978-3-642-10803-7 DOI 10.1007/978-3-642-10803-7 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2010921669 c Springer-Verlag Berlin Heidelberg 2010 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Dr. Valentin L. Popov studied physics and obtained his doctorate from the Moscow State Lomonosow University. He worked at the Institute of Strength Physics and Materials Science of the Russian Academy of Sciences.
    [Show full text]
  • Introduction the Failure Process
    Introduction The subject of this thesis is the surface damage due to rolling contact fatigue. Surfaces that are repeatedly loaded by rolling and sliding motion may be exposed to contact fatigue. Typical mechanical applications where such contact arises are: gears; cams; bearings; rail/wheel contacts. These components are in general exposed to high contact stresses. Despite the different purposes, they will according to Tallian [1] sooner or later suffer to contact fatigue damage if other failure modes are avoided. Even if the contact stresses may be of the same magnitude for different applications the resulting fatigue damage may vary. This is due to the fact that the contact conditions differ between the applications. The objective with the work was to verify the asperity point load mechanism for surface initiated rolling contact fatigue damage. The main focus has been on surface fatigue damage in spur gears. However, similar surface damage has been found in the other applications as well. The hypothesis was that local surface contacts can be of importance for surface initiated contact damage. The hypothesis can be visualized as local contact between asperities. When two surfaces are brought into contact the real contact area will be smaller than the apparent, this due too the fact that the contact surface is not perfectly smooth. Thus, the asperities will support the contact; see for instance Johnson [2]. The local asperity contacts will introduce stress concentrations, which will change the nominal stress field. A single asperity contact can be viewed as a Boussinesq point contact [2]. For non-conformal mechanical contacts that are susceptible for rolling contact fatigue the nominal stress fields are of Hertzian type.
    [Show full text]
  • Contact Mechanics and Tribology Match
    FEATURE ARTICLE Jeanna Van Rensselar / Contributing Editor Beneath the Why contact mechanics and tribology are a natural match KEY CONCEPTCONCEPTSS • CoContacntact mechanics iiss a sometimes oveoverlookedrlooked bbutut ccriticalritical asaspectpect of ttribology.ribology. • FriFrictionction rereductionduction iiss maximizmaximizeded by lleveragingeveraging the dydynaminamic bbetweenetween ssurfaceurface mmaterialaterial gengineeringg aandnd lublubricationrication genengineering. gineering. g. ••A Atetexturedxtured bbearinbearingg susurfacrface acts ass a lublubricantricant ,reservoirreservoir,, sstoringtoring daandnd ddispens-ispens- ing ththee llubricantubricant directly taatt ththee ppotinintt of ccontactontact wherwheree iitt makes mmostost ssense.ense. 52 • JULY 2015 TRIBOLOGY & LUBRICATION TECHNOLOGY WWW.STLE.ORG surface: Leveraging both disciplines together can yield results neither can achieve alone. WHEN THE THEORY OF CONTACT MECHANICS WAS FIRST DEVELOPED IN 1882, lubricants were not factored into the equation at all. Experts say that may be due to the lack of powerful ana- lytical and numerical tools that necessitated simplicity.1 The omission of lubrication from contact mechanics theory was resolved four years later when Osborne Reynolds developed what is now known as the Reynolds Equation. It describes the pressure distribution in nearly any type of fluid film bearing. WWW.STLE.ORG TRIBOLOGY & LUBRICATION TECHNOLOGY JULY 2015 • 53 Even with that breakthrough, how- WHY IS IT THE STRIBECK CURVE?4 ever, it was decades later before
    [Show full text]
  • Contact Mechanics of Adhesive Beams. Part I: Moderate Indentation. Arxiv:1707.07543V1
    Contact mechanics of adhesive beams. Part I: Moderate indentation. V. S. Punati∗, I. Sharma and P. Wahi Mechanics & Applied Mathematics Group, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India - 208016. Abstract We investigate the contact of a rigid cylindrical punch with an adhesive beam mounted on flexible end supports. Adhesion is modeled through an adhesive zone model. The resulting Fredholm integral equation of the first kind is solved by a Galerkin projection method in terms of Chebyshev polynomials. Results are re- ported for several combinations of adhesive strengths, beam thickness, and support flexibilities characterized through torsional and vertical translational spring stiff- nesses. Special attention is paid to the important extreme cases of clamped and simply supported beams. The popular Johnson-Kendall-Roberts (JKR) model for adhesion is obtained as a limit of the adhesive zone model. Finally, we compare our predictions with preliminary experiments and also demonstrate the utility of our approach in modeling complex structural adhesives. Keywords: contact mechanics; adhesive beams; integral transforms. 1 Introduction Research in patterned adhesives is often motivated by the structures of natural adhe- sives, such as those present in the feet of gekkos; see e.g. Hiller (1976), and Arul and Ghatak (2008). In conventional adhesives, such as thin, sticky tapes, only the top and bottom surfaces are active. However, multiple surfaces may be activated with appropri- ate patterning. With more surfaces participating in the adhesion process the adhesives show increased hysteresis and, so, better performance. One example of a patterned ad- hesive is the structural adhesive shown in Fig.
    [Show full text]
  • Contact Mechanics
    International Journal of Solids and Structures 37 (2000) 29±43 www.elsevier.com/locate/ijsolstr Contact mechanics J.R. Barber a,*, M. Ciavarella b, 1 aDepartment of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor, MI 48109-2125, USA bDepartment of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK Abstract Contact problems are central to Solid Mechanics, because contact is the principal method of applying loads to a deformable body and the resulting stress concentration is often the most critical point in the body. Contact is characterized by unilateral inequalities, describing the physical impossibility of tensile contact tractions (except under special circumstances) and of material interpenetration. Additional inequalities and/or non-linearities are introduced when friction laws are taken into account. These complex boundary conditions can lead to problems with existence and uniqueness of quasi-static solution and to lack of convergence of numerical algorithms. In frictional problems, there can also be lack of stability, leading to stick±slip motion and frictional vibrations. If the material is non-linear, the solution of contact problems is greatly complicated, but recent work has shown that indentation of a power-law material by a power law punch is self-similar, even in the presence of friction, so that the complete history of loading in such cases can be described by the (usually numerical) solution of a single problem. Real contacting surfaces are rough, leading to the concentration of contact in a cluster of microscopic actual contact areas. This aects the conduction of heat and electricity across the interface as well as the mechanical contact process.
    [Show full text]
  • Introduction to Contact Mechanics
    4 Anthony C. Fischer-Cripps Introduction to Contact Mechanics With 93 Figures Springer Contents Series Preface vii Preface ix List of Symbols xvii History xix Chapter 1. Mechanical Properties of Materials 1 1.1 Introduction 1 1.2 Elasticity 1 1.2.1 Forces between atoms 1 7.2.2 Hooke's law 2 1.2.3 Strain energy 4 1.2.4 Surface energy 4 1.2.5 Stress 5 1.2.6 Strain 10 1.2.7 Poisson's ratio 14 1.2.8 Linear elasticity (generalized Hooke's law) 14 1.2.9 2-D Plane stress, plane strain 16 1.2.10 Principal stresses 18 1.2.11 Equations of equilibrium and compatibility 23 1.2.12 Saint-Venant's principle 25 1.2.13 Hydrostatic stress and stress deviation 25 1.2.14 Visualizing stresses 26 1.3 Plasticity 27 1.3.1 Equations of plastic flow 27 1.4 Stress Failure Criteria 28 1.4.1 Tresca failure criterion 28 1.4.2 Von Mises failure criterion 29 References 30 Chapter 2. Linear Elastic Fracture Mechanics 31 2.1 Introduction 31 2.2 Stress Concentrations 31 ^cii Contents 2.3 Energy Balance Criterion 32 2.4 Linear Elastic Fracture Mechanics 37 2.4.1 Stress intensity factor 37 2.4.2 Crack tip plastic zone 40 2.4.3 Crack resistance 41 2.4.4 KIC, the critical value ofK, 41 2.4.5 Equivalence ofG and K. 42 2.5 Determining Stress Intensity Factors 43 2.5.7 Measuring stress intensity factors experimentally 43 2.5.2 Calculating stress intensity factors from prior stresses 44 2.5.3 Determining stress intensity factors using the finite-element method 46 References 48 Chapter 3.
    [Show full text]
  • Contact Mechanics and Elements of Tribology 5Pt Foreword
    Contact Mechanics and Elements of Tribology Foreword Vladislav A. Yastrebov MINES ParisTech, PSL Research University, Centre des Matériaux, CNRS UMR 7633, Evry, France @ Centre des Matériaux February 8, 2016 Outline Acquaintance Questionnaire Course content Historical remark Complexity Notations Questionnaire Please fill in the questionnaire Message to DMS students : Rank all suggested topics1 for your report in the order of decreasing attractiveness Before the lunch one topic will be assigned to everybody On Friday (12/02) you will have 10 minutes to present briefly your topic to other students If you are not a DMS student but would like to follow, you are welcome Basava, Andrei and Paolo will also present rapidly their research projects on 12/02 By Friday (19/02) you will need to send me your report on your topic ( 10 pages in Français/English) ≈ Criteria of evaluation : no plagiarism, scientifically sound report 1or suggest a different one but not related to your master project V.A. Yastrebov 3/10 Course content Lectures : 1 Motivation : industrial applications 2 Contact Mechanics I & II 3 Contact at small scales : surface roughness 4 Computational Contact Mechanics 5 Contact rheology & friction laws 6 Elements of tribology : friction, adhesion, wear 7 Wear and fretting (by Henry Proudhon) 8 Multiphysical problems in contact 9 Your presentations V.A. Yastrebov 4/10 Course content Lectures : 1 Motivation : industrial applications 2 Contact Mechanics I & II 3 Contact at small scales : surface roughness 4 Computational Contact Mechanics 5 Contact rheology & friction laws 6 Elements of tribology : friction, adhesion, wear 7 Wear and fretting (by Henry Proudhon) 8 Multiphysical problems in contact 9 Your presentations Practice : 1 Chalk and blackboard : Boussinesq, Cerruti, Flamant 2 Chalk and blackboard : Hertz contact 3 Computer : rough contact 4 Computer : frictionless and frictional cylindrical contact 5 Computer : elasto-plastic spherical indentation V.A.
    [Show full text]
  • Mechanical Engineering Series
    Mechanical Engineering Series Frederick F. Ling Editor-in-Chief Mechanical Engineering Series A.C. Fischer-Cripps, Introduction to Contact Mechanics, 2nd ed. W. Cheng and I. Finnie, Residual Stress Measurement and the Slitting Method J. Angeles, Fundamentals of Robotic Mechanical Systems: Theory Methods and Algorithms, 3rd ed. J. Angeles, Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms, 2nd ed. P. Basu, C. Kefa, and L. Jestin, Boilers and Burners: Design and Theory J.M. Berthelot, Composite Materials: Mechanical Behavior and Structural Analysis I.J. Busch-Vishniac, Electromechanical Sensors and Actuators J. Chakrabarty, Applied Plasticity K.K. Choi and N.H. Kim, Structural Sensitivity Analysis and Optimization 1: Linear Systems K.K. Choi and N.H. Kim, Structural Sensitivity Analysis and Optimization 2: Nonlinear Systems and Applications G. Chryssolouris, Laser Machining: Theory and Practice V.N. Constantinescu, Laminar Viscous Flow G.A. Costello, Theory of Wire Rope, 2nd ed. K. Czolczynski, Rotordynamics of Gas-Lubricated Journal Bearing Systems M.S. Darlow, Balancing of High-Speed Machinery W.R. DeVries, Analysis of Material Removal Processes J.F. Doyle, Nonlinear Analysis of Thin-Walled Structures: Statics, Dynamics, and Stability J.F. Doyle, Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms, 2nd ed. P.A. Engel, Structural Analysis of Printed Circuit Board Systems A.C. Fischer-Cripps, Introduction to Contact Mechanics A.C. Fischer-Cripps, Nanoindentation, 2nd ed. (continued after index) Anthony C. Fischer-Cripps Introduction to Contact Mechanics Second Edition 1 3 Anthony C. Fischer-Cripps Fischer-Cripps Laboratories Pty Ltd. New South Wales, Australia Introduction to Contact Mechanics, Second Edition Library of Congress Control Number: 2006939506 ISBN 0-387-68187-6 e-ISBN 0-387-68188-4 ISBN 978-0-387-68187-0 e-ISBN 978-0-387-68188-7 Printed on acid-free paper.
    [Show full text]