Contact Mechanics Modeling of Homogeneous and Layered Elastic-Plastic Media: Surface Roughness and Adhesion Effects

Total Page:16

File Type:pdf, Size:1020Kb

Contact Mechanics Modeling of Homogeneous and Layered Elastic-Plastic Media: Surface Roughness and Adhesion Effects Contact Mechanics Modeling of Homogeneous and Layered Elastic-Plastic Media: Surface Roughness and Adhesion Effects By Zhichao Song A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering – Mechanical Engineering in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Kyriakos Komvopoulos, Chair Professor David Bogy Professor Robert Ritchie Fall 2012 Contact Mechanics Modeling of Homogeneous and Layered Elastic-Plastic Media: Surface Roughness and Adhesion Effects Copyright © 2012 By Zhichao Song Abstract Contact Mechanics Modeling of Homogeneous and Layered Elastic-Plastic Media: Surface Roughness and Adhesion Effects by Zhichao Song Doctor of Philosophy in Engineering-Mechanical Engineering University of California, Berkeley Professor Kyriakos Komvopoulos, Chair The main objective of this dissertation was to analyze surface contact interaction at different length scales and to elucidate the effects of material properties (e.g., adhesion and mechanical properties), normal and shear (friction) surface tractions, and topography parameters (e.g., roughness) on contact deformation. To accomplish this objective, a surface adhesion model based on an interatomic potential was incorporated into finite element contact models of rough surfaces exhibiting multi-scale roughness described by statistical and fractal geometry models. The problem of a rigid sphere in contact with an elastic-plastic half-space was first examined in the light of finite element simulations. Four post-yield deformation regimes were identified and the boundaries of neighboring regimes were obtained by curve-fitting of finite element results. Material hardness was shown to significantly deviate from the similarity solution with decreasing elastic modulus-to-yield strength ratio and the logarithmic dependence of the mean contact pressure on the indentation depth was found to hold only when the plastic zone was completely surrounded by elastic material. Constitutive equations were first derived for elastic- perfectly plastic half-spaces from curve-fitting finite element results and were then extended to isotropic, power-law hardening half-spaces, using the concept of the effective strain, which correlates the indentation depth with the indenter size. Finite element simulations of unloading process and repetitive normal contact were used to correlate the residual indentation depth and the dissipated plastic energy with the maximum indentation depth. Elastic shakedown, plastic shakedown, and ratcheting were identified by tracking the accumulation of plasticity for different values of maximum contact load and elastic modulus-to-yield strength ratio. The semi-infinite half-space was characterized by three different regions, named ratcheting region, shakedown region and elastic region, as the distance to contact surface increases. The obtained results have direct implication in material property measurements obtained with indentation method, particularly for materials exhibiting strain hardening behavior, and provide insight into the accumulation of plasticity due to repetitive contact loading, which is important in the understanding of the contact fatigue life of contact-mode devices. 1 Sliding contact between a rigid fractal surface exhibiting multi-scale roughness and an elastic-plastic half-space was examined to elucidate rough-surface deformation due to small- amplitude reciprocating sliding (fretting). Stick-slip at the asperity scale was analyzed based on Mindlin’s theory and a friction model that accounts for both adhesion and plowing effects. Numerical results yield insight into the effects of surface roughness, contact pressure, oscillation amplitude, elastic modulus-to-yield strength ratio, and interfacial adhesion on the friction force, slip index, and energy dissipation. The results of this study illustrate the important role of the contact load and surface topography on the energy dissipation and fretting wear of small- amplitude oscillatory contacts. Surface adhesion modeled as surface traction obeying the Lennard-Jones (LJ) potential was incorporated into the contact analysis of a rigid sphere indenting an elastic half-space to study contact instabilities associated with instantaneous surface contact (jump-in) and detachment (jump-out). This surface traction was introduced into a finite element contact model in the form of nonlinear spring elements and the jump-in/jump-out condition obtained analytically was confirmed by finite element results. Then, adhesive contact between a rigid sphere and an elastic-plastic half-space was analyzed and the effect of plasticity on the pull-off force and the commencement of contact instabilities was interpreted in terms of a modified Tabor parameter. The developed finite element model with nonlinear spring elements representing adhesive surface interaction provides a physics-based, computationally-efficient technique for studying adhesive contacts. The obtained results provide explanation for the contact instabilities encountered during surface probing with microprobe tips and stiction (permanent adhesion) in contact-mode microdevices. Adhesive contact between a rigid sphere and a layered medium analyzed with the finite element method shed light into adhesion-induced contact deformation. Two modes of surface detachment were observed for perfect bonding of the film to the substrate – brittle- and ductile- like surface detachment. Simulation results illustrate the effects of the maximum surface separation, film thickness, film-to-substrate elastic property mismatch, and substrate yield strength on the mode of surface detachment and residual deformation. Introducing a cohesive model that allows for crack formation and growth along the film/substrate interface in the previous finite element model, a residual cohesive zone was found at the crack tip after complete unloading. Contact instabilities and interface delamination were interpreted by the competing effects of surface adhesion and interfacial cohesion. Crack closure and crack-tip opening displacement (CTOD) were studied by performing a parametric study of the cohesive strength, interfacial energy, surface energy, surface adhesive strength, substrate yield strength, and initial defect size. The obtained results can be used to explain thin-film failure in contact systems due to the effect of adhesion and to improve the endurance of thin-film media subjected to surface tractions. Adhesive contact of two elastic rough surfaces was analyzed by integrating asperity-scale constitutive equations into the model of Greenwood and Williamson (1966) to account for the effect of contact instabilities at asperity level on the macroscopic contact response. The strength of adhesion was found to be mostly affected by the Tabor parameter and the surface roughness. The widely used adhesion parameter of Fuller and Tabor (1977) was shown to be appropriate only for contact systems characterized by a high Tabor parameter. Therefore, a new adhesion 2 parameter that governs the strength of adhesion of contact systems with a low Tabor parameter was introduced. Finally, a generalized adhesion parameter was derived by using the concept of the effective interatomic separation, defined as the ratio of the elastic stretch due to adhesion and the equilibrium interatomic distance. The research carried out in this dissertation provides fundamental understanding of the evolution of the stress and strain fields in contacting surfaces, the evolution of plasticity in indentation, the development of friction and dissipation of energy in fretting contacts, the occurrence of adhesion-induced contact instabilities and interfacial delamination, and the factors affecting the strength of adhesion for rough surfaces in normal contact. The results of this thesis have direct implications in various technologies, including high-efficiency gas turbines, magnetic storage devices, and microelectromechanical systems. 3 Dedications To my father, mother and girlfriend for their support, encouragement and unselfish love i Table of Contents List of Figures................................................................................................................................v List of Tables...............................................................................................................................xiv Acknowledgements......................................................................................................................xv Chapter 1 Introduction.................................................................................................................1 Chapter 2 Elastic-plastic spherical indentation: deformation regimes, evolution of plasticity and hardening effect...................................................................................................6 2.1 Introduction...................................................................................................................6 2.2 Method of analysis........................................................................................................8 2.2.1 Problem definition...............................................................................................8 2.2.2 Finite element model...........................................................................................8 2.2.3 Constitutive material model...............................................................................10
Recommended publications
  • Mechanics of Materials Plasticity
    Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use. This article was originally published in the Reference Module in Materials Science and Materials Engineering, published by Elsevier, and the attached copy is provided by Elsevier for the author’s benefit and for the benefit of the author’s institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier’s permissions site at: http://www.elsevier.com/locate/permissionusematerial Lubarda V.A., Mechanics of Materials: Plasticity. In: Saleem Hashmi (editor-in-chief), Reference Module in Materials Science and Materials Engineering. Oxford: Elsevier; 2016. pp. 1-24. ISBN: 978-0-12-803581-8 Copyright © 2016 Elsevier Inc. unless otherwise stated. All rights reserved. Author's personal copy Mechanics of Materials: Plasticity$ VA Lubarda, University of California, San Diego, CA, USA r 2016 Elsevier Inc. All rights reserved. 1 Yield Surface 1 1.1 Yield Surface in Strain Space 2 1.2 Yield Surface in Stress Space 2 2 Plasticity Postulates, Normality and Convexity
    [Show full text]
  • An Effective Stress Equation for Unsaturated Granular Media in Pendular Regime
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2014-04-28 An Effective Stress Equation for Unsaturated Granular Media in Pendular Regime Khosravani, Sarah Khosravani, S. (2014). An Effective Stress Equation for Unsaturated Granular Media in Pendular Regime (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/24849 http://hdl.handle.net/11023/1443 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY An Effective Stress Equation for Unsaturated Granular Media in Pendular Regime by Sarah Khosravani A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF CIVIL ENGINEERING CALGARY, ALBERTA April, 2014 c Sarah Khosravani 2014 Abstract The mechanical behaviour of a wet granular material is investigated through a microme- chanical analysis of force transport between interacting particles with a given packing and distribution of capillary liquid bridges. A single effective stress tensor, characterizing the ten- sorial contribution of the matric suction and encapsulating evolving liquid bridges, packing, interfaces, and water saturation, is derived micromechanically. The physical significance of the effective stress parameter (χ) as originally introduced in Bishop’s equation is examined and it turns out that Bishop’s equation is incomplete.
    [Show full text]
  • A Plasticity Model with Yield Surface Distortion for Non Proportional Loading
    page 1 A plasticity model with yield surface distortion for non proportional loading. Int. J. Plast., 17(5), pages :703–718 (2001) M.L.M. FRANÇOIS LMT Cachan (ENS de Cachan /CNRS URA 860/Université Paris 6) ABSTRACT In order to enhance the modeling of metallic materials behavior in non proportional loadings, a modification of the classical elastic-plastic models including distortion of the yield surface is proposed. The new yield criterion uses the same norm as in the classical von Mises based criteria, and a "distorted stress" Sd replacing the usual stress deviator S. The obtained yield surface is then “egg-shaped” similar to those experimentally observed and depends on only one new material parameter. The theory is built in such a way as to recover the classical one for proportional loading. An identification procedure is proposed to obtain the material parameters. Simulations and experiments are compared for a 2024 T4 aluminum alloy for both proportional and nonproportional tension-torsion loading paths. KEYWORDS constitutive behavior; elastic-plastic material. SHORTENED TITLE A model for the distortion of yield surfaces. ADDRESS Marc François, LMT, 61 avenue du Président Wilson, 94235 Cachan CEDEX, France. E-MAIL [email protected] INTRODUCTION Most of the phenomenological plasticity models for metals use von Mises based yield criteria. This implies that the yield surface is a hypersphere whose center is the back stress X in the 5-dimensional space of stress deviator tensors. For proportional loadings, the exact shape of the yield surface has no importance since all the deviators governing plasticity remain colinear tensors.
    [Show full text]
  • Analysis of Deformation
    Chapter 7: Constitutive Equations Definition: In the previous chapters we’ve learned about the definition and meaning of the concepts of stress and strain. One is an objective measure of load and the other is an objective measure of deformation. In fluids, one talks about the rate-of-deformation as opposed to simply strain (i.e. deformation alone or by itself). We all know though that deformation is caused by loads (i.e. there must be a relationship between stress and strain). A relationship between stress and strain (or rate-of-deformation tensor) is simply called a “constitutive equation”. Below we will describe how such equations are formulated. Constitutive equations between stress and strain are normally written based on phenomenological (i.e. experimental) observations and some assumption(s) on the physical behavior or response of a material to loading. Such equations can and should always be tested against experimental observations. Although there is almost an infinite amount of different materials, leading one to conclude that there is an equivalently infinite amount of constitutive equations or relations that describe such materials behavior, it turns out that there are really three major equations that cover the behavior of a wide range of materials of applied interest. One equation describes stress and small strain in solids and called “Hooke’s law”. The other two equations describe the behavior of fluidic materials. Hookean Elastic Solid: We will start explaining these equations by considering Hooke’s law first. Hooke’s law simply states that the stress tensor is assumed to be linearly related to the strain tensor.
    [Show full text]
  • J-Integral Analysis of the Mixed-Mode Fracture Behaviour of Composite Bonded Joints
    J-Integral analysis of the mixed-mode fracture behaviour of composite bonded joints FERNANDO JOSÉ CARMONA FREIRE DE BASTOS LOUREIRO novembro de 2019 J-INTEGRAL ANALYSIS OF THE MIXED-MODE FRACTURE BEHAVIOUR OF COMPOSITE BONDED JOINTS Fernando José Carmona Freire de Bastos Loureiro 1111603 Equation Chapter 1 Section 1 2019 ISEP – School of Engineering Mechanical Engineering Department J-INTEGRAL ANALYSIS OF THE MIXED-MODE FRACTURE BEHAVIOUR OF COMPOSITE BONDED JOINTS Fernando José Carmona Freire de Bastos Loureiro 1111603 Dissertation presented to ISEP – School of Engineering to fulfil the requirements necessary to obtain a Master's degree in Mechanical Engineering, carried out under the guidance of Doctor Raul Duarte Salgueiral Gomes Campilho. 2019 ISEP – School of Engineering Mechanical Engineering Department JURY President Doctor Elza Maria Morais Fonseca Assistant Professor, ISEP – School of Engineering Supervisor Doctor Raul Duarte Salgueiral Gomes Campilho Assistant Professor, ISEP – School of Engineering Examiner Doctor Filipe José Palhares Chaves Assistant Professor, IPCA J-Integral analysis of the mixed-mode fracture behaviour of composite Fernando José Carmona Freire de Bastos bonded joints Loureiro ACKNOWLEDGEMENTS To Doctor Raul Duarte Salgueiral Gomes Campilho, supervisor of the current thesis for his outstanding availability, support, guidance and incentive during the development of the thesis. To my family for the support, comprehension and encouragement given. J-Integral analysis of the mixed-mode fracture behaviour of composite
    [Show full text]
  • Contact Mechanics in Gears a Computer-Aided Approach for Analyzing Contacts in Spur and Helical Gears Master’S Thesis in Product Development
    Two Contact Mechanics in Gears A Computer-Aided Approach for Analyzing Contacts in Spur and Helical Gears Master’s Thesis in Product Development MARCUS SLOGÉN Department of Product and Production Development Division of Product Development CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden, 2013 MASTER’S THESIS IN PRODUCT DEVELOPMENT Contact Mechanics in Gears A Computer-Aided Approach for Analyzing Contacts in Spur and Helical Gears Marcus Slogén Department of Product and Production Development Division of Product Development CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2013 Contact Mechanics in Gear A Computer-Aided Approach for Analyzing Contacts in Spur and Helical Gears MARCUS SLOGÉN © MARCUS SLOGÉN 2013 Department of Product and Production Development Division of Product Development Chalmers University of Technology SE-412 96 Göteborg Sweden Telephone: + 46 (0)31-772 1000 Cover: The picture on the cover page shows the contact stress distribution over a crowned spur gear tooth. Department of Product and Production Development Göteborg, Sweden 2013 Contact Mechanics in Gears A Computer-Aided Approach for Analyzing Contacts in Spur and Helical Gears Master’s Thesis in Product Development MARCUS SLOGÉN Department of Product and Production Development Division of Product Development Chalmers University of Technology ABSTRACT Computer Aided Engineering, CAE, is becoming more and more vital in today's product development. By using reliable and efficient computer based tools it is possible to replace initial physical testing. This will result in cost savings, but it will also reduce the development time and material waste, since the demand of physical prototypes decreases. This thesis shows how a computer program for analyzing contact mechanics in spur and helical gears has been developed at the request of Vicura AB.
    [Show full text]
  • Cookbook for Rheological Models ‒ Asphalt Binders
    CAIT-UTC-062 Cookbook for Rheological Models – Asphalt Binders FINAL REPORT May 2016 Submitted by: Offei A. Adarkwa Nii Attoh-Okine PhD in Civil Engineering Professor Pamela Cook Unidel Professor University of Delaware Newark, DE 19716 External Project Manager Karl Zipf In cooperation with Rutgers, The State University of New Jersey And State of Delaware Department of Transportation And U.S. Department of Transportation Federal Highway Administration Disclaimer Statement The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated under the sponsorship of the Department of Transportation, University Transportation Centers Program, in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof. The Center for Advanced Infrastructure and Transportation (CAIT) is a National UTC Consortium led by Rutgers, The State University. Members of the consortium are the University of Delaware, Utah State University, Columbia University, New Jersey Institute of Technology, Princeton University, University of Texas at El Paso, Virginia Polytechnic Institute, and University of South Florida. The Center is funded by the U.S. Department of Transportation. TECHNICAL REPORT STANDARD TITLE PAGE 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. CAIT-UTC-062 4. Title and Subtitle 5. Report Date Cookbook for Rheological Models – Asphalt Binders May 2016 6. Performing Organization Code CAIT/University of Delaware 7. Author(s) 8. Performing Organization Report No. Offei A. Adarkwa Nii Attoh-Okine CAIT-UTC-062 Pamela Cook 9. Performing Organization Name and Address 10.
    [Show full text]
  • Yield Surface Effects on Stablity and Failure
    XXIV ICTAM, 21-26 August 2016, Montreal, Canada YIELD SURFACE EFFECTS ON STABLITY AND FAILURE William M. Scherzinger * Solid Mechanics, Sandia National Laboratories, Albuquerque, New Mexico, USA Summary This work looks at the effects of yield surface description on the stability and failure of metal structures. We consider a number of different yield surface descriptions, both isotropic and anisotropic, that are available for modeling material behavior. These yield descriptions can all reproduce the same nominal stress-strain response for a limited set of load paths. However, for more general load paths the models can give significantly different results that can have a large effect on stability and failure. Results are shown for the internal pressurization of a cylinder and the differences in the predictions are quantified. INTRODUCTION Stability and failure in structures is an important field of study that provides solutions to many practical problems in solid mechanics. The boundary value problems require careful consideration of the geometry, the boundary conditions, and the material description. In metal structures the material is usually described with an elastic-plastic constitutive model, which can account for many effects observed in plastic deformation. Crystal plasticity models can account for many microstructural effects, but these models are often too fine scaled for production modeling and simulation. In this work we limit the study to rate independent continuum plasticity models. When using a continuum plasticity model, the hardening behavior is important and much attention is focused on it. Equally important, but less well understood, is the effect of the yield surface description. For classical continuum metal plasticity models that assume associated flow the yield surface provides a definition for the elastic region of stress space along with the direction of plastic flow when the stress state is on the yield surface.
    [Show full text]
  • AC Fischer-Cripps
    A.C. Fischer-Cripps Introduction to Contact Mechanics Series: Mechanical Engineering Series ▶ Includes a detailed description of indentation stress fields for both elastic and elastic-plastic contact ▶ Discusses practical methods of indentation testing ▶ Supported by the results of indentation experiments under controlled conditions Introduction to Contact Mechanics, Second Edition is a gentle introduction to the mechanics of solid bodies in contact for graduate students, post doctoral individuals, and the beginning researcher. This second edition maintains the introductory character of the first with a focus on materials science as distinct from straight solid mechanics theory. Every chapter has been 2nd ed. 2007, XXII, 226 p. updated to make the book easier to read and more informative. A new chapter on depth sensing indentation has been added, and the contents of the other chapters have been completely overhauled with added figures, formulae and explanations. Printed book Hardcover ▶ 159,99 € | £139.99 | $199.99 The author begins with an introduction to the mechanical properties of materials, ▶ *171,19 € (D) | 175,99 € (A) | CHF 189.00 general fracture mechanics and the fracture of brittle solids. This is followed by a detailed description of indentation stress fields for both elastic and elastic-plastic contact. The discussion then turns to the formation of Hertzian cone cracks in brittle materials, eBook subsurface damage in ductile materials, and the meaning of hardness. The author Available from your bookstore or concludes with an overview of practical methods of indentation. ▶ springer.com/shop MyCopy Printed eBook for just ▶ € | $ 24.99 ▶ springer.com/mycopy Order online at springer.com ▶ or for the Americas call (toll free) 1-800-SPRINGER ▶ or email us at: [email protected].
    [Show full text]
  • Idealized 3D Auxetic Mechanical Metamaterial: an Analytical, Numerical, and Experimental Study
    materials Article Idealized 3D Auxetic Mechanical Metamaterial: An Analytical, Numerical, and Experimental Study Naeim Ghavidelnia 1 , Mahdi Bodaghi 2 and Reza Hedayati 3,* 1 Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran 1591634311, Iran; [email protected] 2 Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; [email protected] 3 Novel Aerospace Materials, Faculty of Aerospace Engineering, Delft University of Technology (TU Delft), Kluyverweg 1, 2629 HS Delft, The Netherlands * Correspondence: [email protected] or [email protected] Abstract: Mechanical metamaterials are man-made rationally-designed structures that present un- precedented mechanical properties not found in nature. One of the most well-known mechanical metamaterials is auxetics, which demonstrates negative Poisson’s ratio (NPR) behavior that is very beneficial in several industrial applications. In this study, a specific type of auxetic metamaterial structure namely idealized 3D re-entrant structure is studied analytically, numerically, and experi- mentally. The noted structure is constructed of three types of struts—one loaded purely axially and two loaded simultaneously flexurally and axially, which are inclined and are spatially defined by angles q and j. Analytical relationships for elastic modulus, yield stress, and Poisson’s ratio of the 3D re-entrant unit cell are derived based on two well-known beam theories namely Euler–Bernoulli and Timoshenko. Moreover, two finite element approaches one based on beam elements and one based on volumetric elements are implemented. Furthermore, several specimens are additively Citation: Ghavidelnia, N.; Bodaghi, manufactured (3D printed) and tested under compression.
    [Show full text]
  • Durability of Adhesively Bonded Joints in Aerospace Structures
    Durability of adhesive bonded joints in aerospace structures Washington State University Date: 11/08/2017 AMTAS Fall meeting Seattle, WA Durability of Bonded Aircraft Structure • Principal Investigators & Researchers • Lloyd Smith • Preetam Mohapatra, Yi Chen, Trevor Charest • FAA Technical Monitor • Ahmet Oztekin • Other FAA Personnel Involved • Larry Ilcewicz • Industry Participation • Boeing: Will Grace, Peter VanVoast, Kay Blohowiak 2 Durability of adhesive bonded joints in aerospace structures 1. Influence of yield criteria Yield criterion 2. Biaxial tests (Arcan) Plasticity 3. Cyclic tests Hardening rule 4. FEA model Nonlinearity in Bonded Joints 1. Creep, non-linear response Tension (closed form) 2. Ratcheting, experiment Time Dependence 3. Creep, model development Shear (FEA) 4. Ratcheting, model application Approach: Plasticity vPrimary Research Aim: Modeling of adhesive plasticity to describe nonlinear stress-strain response. ØSub Task: 1. Identify the influence of yield criterion and hardening rule on bonded joints (complete) 2. Characterizing hardening rule (complete Dec 2017) 3. Characterizing yield criterion (complete Dec 2017) 4. Numerically combining hardening rule and yield criterion (complete Feb 2017) Approach: Plasticity 1. Identify yield criterion and hardening rule of bonded joints • Input properties: Bulk and Thin film adhesive properties in Tension. 60 Characterization of Tensile properties 55 50 45 40 35 30 25 Bulk Tension: Tough Adheisve 20 Tensile Stress [MPa] Bulk Tension: Standard Adhesive 15 10 Thin film Tension: Tough Adhesive 5 Thin film Tension: Standard Adhesive 0 0 0.05 0.1 0.15 0.2 0.25 0.3 Axial Strain Approach: Plasticity 1. Identify the influence of yield criterion and hardening rule on bonded joints • Background: Investigate yield criterion and hardening rule of bonded joints.
    [Show full text]
  • Circular Birefringence in Crystal Optics
    Circular birefringence in crystal optics a) R J Potton Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Greater Manchester M5 4WT, UK. Abstract In crystal optics the special status of the rest frame of the crystal means that space- time symmetry is less restrictive of electrodynamic phenomena than it is of static electromagnetic effects. A relativistic justification for this claim is provided and its consequences for the analysis of optical activity are explored. The discrete space-time symmetries P and T that lead to classification of static property tensors of crystals as polar or axial, time-invariant (-i) or time-change (-c) are shown to be connected by orientation considerations. The connection finds expression in the dynamic phenomenon of gyrotropy in certain, symmetry determined, crystal classes. In particular, the degeneracies of forward and backward waves in optically active crystals arise from the covariance of the wave equation under space-time reversal. a) Electronic mail: [email protected] 1 1. Introduction To account for optical activity in terms of the dielectric response in crystal optics is more difficult than might reasonably be expected [1]. Consequently, recourse is typically had to a phenomenological account. In the simplest cases the normal modes are assumed to be circularly polarized so that forward and backward waves of the same handedness are degenerate. If this is so, then the circular birefringence can be expanded in even powers of the direction cosines of the wave normal [2]. The leading terms in the expansion suggest that optical activity is an allowed effect in the crystal classes having second rank property tensors with non-vanishing symmetrical, axial parts.
    [Show full text]