Contact Mechanics and Friction

Total Page:16

File Type:pdf, Size:1020Kb

Contact Mechanics and Friction Contact Mechanics and Friction Valentin L. Popov Contact Mechanics and Friction Physical Principles and Applications 1 3 Professor Dr. Valentin L. Popov Berlin University of Technology Institute of Mechanics Strasse des 17.Juni 135 10623 Berlin Germany [email protected] ISBN 978-3-642-10802-0 e-ISBN 978-3-642-10803-7 DOI 10.1007/978-3-642-10803-7 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2010921669 c Springer-Verlag Berlin Heidelberg 2010 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Dr. Valentin L. Popov studied physics and obtained his doctorate from the Moscow State Lomonosow University. He worked at the Institute of Strength Physics and Materials Science of the Russian Academy of Sciences. After a guest-professorship in the field of theoretical physics at the University of Paderborn, he has headed the department of System Dynamics and Friction Physics in the Institute of Mechanics at the Ber- lin University of Technology since 2002. His areas of interest, among others, in- clude tribology, nanotribology, tribology at low temperatures, biotribology, the in- fluence of friction through ultrasound, numerical simulation of frictional processes, research regarding earthquakes, as well as themes relating to materials sciences such as the mechanics of elastoplastic media with microstructure, strength of metals and alloys, and shape memory alloys. He is the joint editor of international journals and regularly organizes international conferences and work- shops over diverse tribological themes. Preface to the English Edition The English edition of “Contact Mechanics and Friction” lying before you is, for the most part, the text of the 1st German edition (Springer Publishing, 2009). The book was expanded by the addition of a chapter on frictional problems in earth- quake research. Additionally, Chapter 15 was supplemented by a section on elasto-hydrodynamics. The problem sections of several chapters were enriched by the addition of new examples. This book would not have been possible without the active support of J. Gray, who translated it from the German edition. I would like to thank Prof. G. G. Ko- charyan and Prof. S. Sobolev for discussions and critical comments on the chapter over earthquake dynamics. Dr. R. Heise made significant contributions to the de- velopment and correction of new problems. I would like to convey my affection- ate thanks to Dr. J. Starcevic for her complete support during the composition of this book. I want to thank Ms. Ch. Koll for her patience in creating figures and Dr. R. Heise, M. Popov, M. Heß, S. Kürscher, and B. Grzemba for their help in proof- reading. Berlin, November 2009 V.L. Popov Preface to the German Edition He who wishes to better understand the subject of Contact Mechanics and the Physics of Friction would quickly discover that there is almost no other field that is so interdisciplinary, exciting, and fascinating. It combines knowledge from fields such as the theories of elasticity and plasticity, viscoelasticity, materials sci- ence, fluid mechanics (including both Newtonian and non-Newtonian fluids), thermodynamics, electrodynamics, system dynamics, and many others. Contact Mechanics and the Physics of Friction have numerous applications ranging from measurement and system technologies on a nanoscale to the understanding of earthquakes and including the sheer overwhelming subject of industrial tribology. One who has studied and understands Contact Mechanics and the Physics of Fric- tion will have acquired a complete overview of the different methods that are used in the engineering sciences. One goal of this book is to collect and clearly present, in one work, the most important aspects of this subject and how they relate to each other. Included in these aspects is, first, the entirety of traditional Contact Mechanics including ad- hesion and capillarity, then the theory of friction on a macro scale, lubrication, the foundations of modern nanotribology, system dynamical aspects of machines with friction (friction induced vibrations), friction related to elastomers, and wear. The interplay between these aspects can be very complicated in particular cases. In practical problems, different aspects are always presented in new ways. There is no simple recipe to solve tribological problems. The only universal recipe is that one must first understand the system from a tribological point of view. A goal of this book is to convey this understanding. It is the solid belief of the author that the essential aspects of mechanical con- tacts and friction are often much easier than they appear. If one limits oneself to qualitative estimations, it is then possible to achieve an extensive qualitative un- derstanding of the countless facets of mechanical contacts and friction. Therefore, qualitative estimations are highly valued in this book. In analytical calculations, we limit ourselves to a few classical examples which we can then take as building blocks and apply them to understand and solve a wealth of problems with real applications. A large number of concrete tribological questions, especially if they deal with meticulous optimization of tribological systems, are not solvable in analytical form. This book also offers an overview of methods of Numerical Simulation for Contact Mechanics and Friction. One such method is then explained in detail, which permits a synthesis of several processes related to contact mechanics from different spatial ranges within a single model. Even though this book is primarily a textbook, it can also serve as a reference for the foundations of this field. Many special cases are presented alongside the theoretical fundamentals with this goal in mind. These cases are presented as ex- ercises in their respective chapters. The solutions are provided for every exercise along with a short explanation and results. x Preface to the German Edition The basis of this textbook originates and is drafted from lectures that the author has conducted over Contact Mechanics and the Physics of Friction at the Berlin University of Technology, so that the material can be completed in its entirety in one or two semesters depending on the depth in which it is visited. Thanks This book would not have been possible without the active support of my col- leagues. Several in the department of “System Dynamics and Frictional Physics,” from the Institute for Mechanics, have contributed to the development of the prac- tice exercises. For this, I thank Dr. M. Schargott, Dr. T. Geike, Mr. M. Hess, and Dr. J. Starcevic. I would like to express a heartfelt thanks to Dr. J. Starcevic for her complete support during the writing of this book as well as to Mr. M. Hess, who checked all of the equations and corrected the many errors. I thank Ms. Ch. Koll for her patience constructing figures as well as M. Popov and Dr. G. Putzar for their help with proofreading. I thank the Dean of Faculty V, Transportation and Machine Systems, for granting me a research semester, during which this book was completed. Berlin, October 2008 V.L. Popov Table of Contents 1 Introduction ........................................................................................................1 1.1 Contact and Friction Phenomena and their Applications.............................1 1.2 History of Contact Mechanics and the Physics of Friction..........................3 1.3 Structure of the Book...................................................................................7 2 Qualitative Treatment of Contact Problems – Normal Contact without Adhesion ................................................................................................................9 2.1 Material Properties.....................................................................................10 2.2 Simple Contact Problems ..........................................................................13 2.3 Estimation Method for Contacts with a Three-Dimensional, Elastic Continuum .......................................................................................................16 Problems..........................................................................................................20 3 Qualitative Treatment of Adhesive Contacts.................................................25 3.1 Physical Background .................................................................................26 3.2 Calculation of the Adhesive Force between Curved Surfaces ...................30 3.3 Qualitative Estimation of the Adhesive Force between Elastic Bodies .....31 3.4 Influence of Roughness on Adhesion ........................................................33
Recommended publications
  • J-Integral Analysis of the Mixed-Mode Fracture Behaviour of Composite Bonded Joints
    J-Integral analysis of the mixed-mode fracture behaviour of composite bonded joints FERNANDO JOSÉ CARMONA FREIRE DE BASTOS LOUREIRO novembro de 2019 J-INTEGRAL ANALYSIS OF THE MIXED-MODE FRACTURE BEHAVIOUR OF COMPOSITE BONDED JOINTS Fernando José Carmona Freire de Bastos Loureiro 1111603 Equation Chapter 1 Section 1 2019 ISEP – School of Engineering Mechanical Engineering Department J-INTEGRAL ANALYSIS OF THE MIXED-MODE FRACTURE BEHAVIOUR OF COMPOSITE BONDED JOINTS Fernando José Carmona Freire de Bastos Loureiro 1111603 Dissertation presented to ISEP – School of Engineering to fulfil the requirements necessary to obtain a Master's degree in Mechanical Engineering, carried out under the guidance of Doctor Raul Duarte Salgueiral Gomes Campilho. 2019 ISEP – School of Engineering Mechanical Engineering Department JURY President Doctor Elza Maria Morais Fonseca Assistant Professor, ISEP – School of Engineering Supervisor Doctor Raul Duarte Salgueiral Gomes Campilho Assistant Professor, ISEP – School of Engineering Examiner Doctor Filipe José Palhares Chaves Assistant Professor, IPCA J-Integral analysis of the mixed-mode fracture behaviour of composite Fernando José Carmona Freire de Bastos bonded joints Loureiro ACKNOWLEDGEMENTS To Doctor Raul Duarte Salgueiral Gomes Campilho, supervisor of the current thesis for his outstanding availability, support, guidance and incentive during the development of the thesis. To my family for the support, comprehension and encouragement given. J-Integral analysis of the mixed-mode fracture behaviour of composite
    [Show full text]
  • Contact Mechanics in Gears a Computer-Aided Approach for Analyzing Contacts in Spur and Helical Gears Master’S Thesis in Product Development
    Two Contact Mechanics in Gears A Computer-Aided Approach for Analyzing Contacts in Spur and Helical Gears Master’s Thesis in Product Development MARCUS SLOGÉN Department of Product and Production Development Division of Product Development CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden, 2013 MASTER’S THESIS IN PRODUCT DEVELOPMENT Contact Mechanics in Gears A Computer-Aided Approach for Analyzing Contacts in Spur and Helical Gears Marcus Slogén Department of Product and Production Development Division of Product Development CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2013 Contact Mechanics in Gear A Computer-Aided Approach for Analyzing Contacts in Spur and Helical Gears MARCUS SLOGÉN © MARCUS SLOGÉN 2013 Department of Product and Production Development Division of Product Development Chalmers University of Technology SE-412 96 Göteborg Sweden Telephone: + 46 (0)31-772 1000 Cover: The picture on the cover page shows the contact stress distribution over a crowned spur gear tooth. Department of Product and Production Development Göteborg, Sweden 2013 Contact Mechanics in Gears A Computer-Aided Approach for Analyzing Contacts in Spur and Helical Gears Master’s Thesis in Product Development MARCUS SLOGÉN Department of Product and Production Development Division of Product Development Chalmers University of Technology ABSTRACT Computer Aided Engineering, CAE, is becoming more and more vital in today's product development. By using reliable and efficient computer based tools it is possible to replace initial physical testing. This will result in cost savings, but it will also reduce the development time and material waste, since the demand of physical prototypes decreases. This thesis shows how a computer program for analyzing contact mechanics in spur and helical gears has been developed at the request of Vicura AB.
    [Show full text]
  • Cookbook for Rheological Models ‒ Asphalt Binders
    CAIT-UTC-062 Cookbook for Rheological Models – Asphalt Binders FINAL REPORT May 2016 Submitted by: Offei A. Adarkwa Nii Attoh-Okine PhD in Civil Engineering Professor Pamela Cook Unidel Professor University of Delaware Newark, DE 19716 External Project Manager Karl Zipf In cooperation with Rutgers, The State University of New Jersey And State of Delaware Department of Transportation And U.S. Department of Transportation Federal Highway Administration Disclaimer Statement The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated under the sponsorship of the Department of Transportation, University Transportation Centers Program, in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof. The Center for Advanced Infrastructure and Transportation (CAIT) is a National UTC Consortium led by Rutgers, The State University. Members of the consortium are the University of Delaware, Utah State University, Columbia University, New Jersey Institute of Technology, Princeton University, University of Texas at El Paso, Virginia Polytechnic Institute, and University of South Florida. The Center is funded by the U.S. Department of Transportation. TECHNICAL REPORT STANDARD TITLE PAGE 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. CAIT-UTC-062 4. Title and Subtitle 5. Report Date Cookbook for Rheological Models – Asphalt Binders May 2016 6. Performing Organization Code CAIT/University of Delaware 7. Author(s) 8. Performing Organization Report No. Offei A. Adarkwa Nii Attoh-Okine CAIT-UTC-062 Pamela Cook 9. Performing Organization Name and Address 10.
    [Show full text]
  • AC Fischer-Cripps
    A.C. Fischer-Cripps Introduction to Contact Mechanics Series: Mechanical Engineering Series ▶ Includes a detailed description of indentation stress fields for both elastic and elastic-plastic contact ▶ Discusses practical methods of indentation testing ▶ Supported by the results of indentation experiments under controlled conditions Introduction to Contact Mechanics, Second Edition is a gentle introduction to the mechanics of solid bodies in contact for graduate students, post doctoral individuals, and the beginning researcher. This second edition maintains the introductory character of the first with a focus on materials science as distinct from straight solid mechanics theory. Every chapter has been 2nd ed. 2007, XXII, 226 p. updated to make the book easier to read and more informative. A new chapter on depth sensing indentation has been added, and the contents of the other chapters have been completely overhauled with added figures, formulae and explanations. Printed book Hardcover ▶ 159,99 € | £139.99 | $199.99 The author begins with an introduction to the mechanical properties of materials, ▶ *171,19 € (D) | 175,99 € (A) | CHF 189.00 general fracture mechanics and the fracture of brittle solids. This is followed by a detailed description of indentation stress fields for both elastic and elastic-plastic contact. The discussion then turns to the formation of Hertzian cone cracks in brittle materials, eBook subsurface damage in ductile materials, and the meaning of hardness. The author Available from your bookstore or concludes with an overview of practical methods of indentation. ▶ springer.com/shop MyCopy Printed eBook for just ▶ € | $ 24.99 ▶ springer.com/mycopy Order online at springer.com ▶ or for the Americas call (toll free) 1-800-SPRINGER ▶ or email us at: [email protected].
    [Show full text]
  • Idealized 3D Auxetic Mechanical Metamaterial: an Analytical, Numerical, and Experimental Study
    materials Article Idealized 3D Auxetic Mechanical Metamaterial: An Analytical, Numerical, and Experimental Study Naeim Ghavidelnia 1 , Mahdi Bodaghi 2 and Reza Hedayati 3,* 1 Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran 1591634311, Iran; [email protected] 2 Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; [email protected] 3 Novel Aerospace Materials, Faculty of Aerospace Engineering, Delft University of Technology (TU Delft), Kluyverweg 1, 2629 HS Delft, The Netherlands * Correspondence: [email protected] or [email protected] Abstract: Mechanical metamaterials are man-made rationally-designed structures that present un- precedented mechanical properties not found in nature. One of the most well-known mechanical metamaterials is auxetics, which demonstrates negative Poisson’s ratio (NPR) behavior that is very beneficial in several industrial applications. In this study, a specific type of auxetic metamaterial structure namely idealized 3D re-entrant structure is studied analytically, numerically, and experi- mentally. The noted structure is constructed of three types of struts—one loaded purely axially and two loaded simultaneously flexurally and axially, which are inclined and are spatially defined by angles q and j. Analytical relationships for elastic modulus, yield stress, and Poisson’s ratio of the 3D re-entrant unit cell are derived based on two well-known beam theories namely Euler–Bernoulli and Timoshenko. Moreover, two finite element approaches one based on beam elements and one based on volumetric elements are implemented. Furthermore, several specimens are additively Citation: Ghavidelnia, N.; Bodaghi, manufactured (3D printed) and tested under compression.
    [Show full text]
  • RHEOLOGY and DYNAMIC MECHANICAL ANALYSIS – What They Are and Why They’Re Important
    RHEOLOGY AND DYNAMIC MECHANICAL ANALYSIS – What They Are and Why They’re Important Presented for University of Wisconsin - Madison by Gregory W Kamykowski PhD TA Instruments May 21, 2019 TAINSTRUMENTS.COM Rheology: An Introduction Rheology: The study of the flow and deformation of matter. Rheological behavior affects every aspect of our lives. Dynamic Mechanical Analysis is a subset of Rheology TAINSTRUMENTS.COM Rheology: The study of the flow and deformation of matter Flow: Fluid Behavior; Viscous Nature F F = F(v); F ≠ F(x) Deformation: Solid Behavior F Elastic Nature F = F(x); F ≠ F(v) 0 1 2 3 x Viscoelastic Materials: Force F depends on both Deformation and Rate of Deformation and F vice versa. TAINSTRUMENTS.COM 1. ROTATIONAL RHEOLOGY 2. DYNAMIC MECHANICAL ANALYSIS (LINEAR TESTING) TAINSTRUMENTS.COM Rheological Testing – Rotational - Unidirectional 2 Basic Rheological Methods 10 1 10 0 1. Apply Force (Torque)and 10 -1 measure Deformation and/or 10 -2 (rad/s) Deformation Rate (Angular 10 -3 Displacement, Angular Velocity) - 10 -4 Shear Rate Shear Controlled Force, Controlled 10 3 10 4 10 5 Angular Velocity, Velocity, Angular Stress Torque, (µN.m)Shear Stress 2. Control Deformation and/or 10 5 Displacement, Angular Deformation Rate and measure 10 4 10 3 Force needed (Controlled Strain (Pa) ) Displacement or Rotation, 10 2 ( Controlled Strain or Shear Rate) 10 1 Torque, Stress Torque, 10 -1 10 0 10 1 10 2 10 3 s (s) TAINSTRUMENTS.COM Steady Simple Shear Flow Top Plate Velocity = V0; Area = A; Force = F H y Bottom Plate Velocity = 0 x vx = (y/H)*V0 .
    [Show full text]
  • 1 Classical Theory and Atomistics
    1 1 Classical Theory and Atomistics Many research workers have pursued the friction law. Behind the fruitful achievements, we found enormous amounts of efforts by workers in every kind of research field. Friction research has crossed more than 500 years from its beginning to establish the law of friction, and the long story of the scientific historyoffrictionresearchisintroducedhere. 1.1 Law of Friction Coulomb’s friction law1 was established at the end of the eighteenth century [1]. Before that, from the end of the seventeenth century to the middle of the eigh- teenth century, the basis or groundwork for research had already been done by Guillaume Amontons2 [2]. The very first results in the science of friction were found in the notes and experimental sketches of Leonardo da Vinci.3 In his exper- imental notes in 1508 [3], da Vinci evaluated the effects of surface roughness on the friction force for stone and wood, and, for the first time, presented the concept of a coefficient of friction. Coulomb’s friction law is simple and sensible, and we can readily obtain it through modern experimentation. This law is easily verified with current exper- imental techniques, but during the Renaissance era in Italy, it was not easy to carry out experiments with sufficient accuracy to clearly demonstrate the uni- versality of the friction law. For that reason, 300 years of history passed after the beginning of the Italian Renaissance in the fifteenth century before the friction law was established as Coulomb’s law. The progress of industrialization in England between 1750 and 1850, which was later called the Industrial Revolution, brought about a major change in the production activities of human beings in Western society and later on a global scale.
    [Show full text]
  • What Engineers Should Know About Bending Steel
    bending and rolling What Engineers Should Know About Bending Steel With these tips under your belt, you’ll be ahead of the curve on your next bending or rolling project. BY TODD A. ALWOOD HOW MUCH DO YOU KNOW ABOUT BENDING STRUCTURAL STEEL? Do you know what you need to show on con- struction drawings to transfer the idea of what the result should actually look like? Do you know how tight of a radius you Hcan roll a W12×19, and what to expect it to look like? If you have bending questions, who do you ask? AISC’s bender-roller com- mittee is taking steps to address these ques- tions, which are coming up more and more within the structural steel industry. Bender = Fabricator? Not so! The bender is typically a spe- cialty subcontractor of the fabricator. Benders receive the steel from the fabri- cator (or sometimes furnish it themselves), and then ship the curved steel back to the fabricator. Benders usually have limited fabrication capabilities, such as hole drill- ing and plate welding, but they are gener- ally used for smaller jobs that usually are not structural in nature. Typical fabrication is still carried out through the main project fabricator who organizes the steel package from procurement through delivery to the site for erection. Kottler Metal Products, Inc. Kottler Metal Products, Todd Alwood is the senior advisor for AISC’s Steel Solutions Center and is Secretary of AISC’s Bender-Roller Committee. MODERN STEEL CONSTRUCTION MAY 2006 Common Terminology and Essential Dimensions for Curving Common Hot-Rolled Shapes There’s only one type of bending, right? Nope! There are five typical methods of bending in the industry: roll- ing, incremental bending, hot bending, rotary-draw bending, and induc- tion bending.
    [Show full text]
  • Elastic Metamaterials for Independent Realization of Negativity in Density
    Elastic metamaterials for independent realization of negativity in density and stiffness Joo Hwan Oh1, Young Eui Kwon2, Hyung Jin Lee3 and Yoon Young Kim1, 3* 1Institute of Advanced Machinery and Design, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-744, Korea 2Korea Institute of Nuclear Safety, 62 Gwahak-ro, Yuseoung-gu, Daejeon 305-338, Korea 3School of Mechanical and Aerospace Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-744, Korea Abstract In this paper, we present the realization of an elastic metamaterial allowing independent tuning of negative density and stiffness for elastic waves propagating along a designated direction. In electromagnetic (or acoustic) metamaterials, it is now possible to tune permittivity (bulk modulus) and permeability (density) independently. Apparently, the tuning methods seem to be directly applicable for elastic case, but no realization has yet been made due to the unique tensorial physics of elasticity that makes wave motions coupled in a peculiar way. To realize independent tunability, we developed a single-phased elastic metamaterial supported by theoretical analysis and numerical/experimental validations. Keywords: Elastic metamaterial, Independently tuning parameters, Negative density, Negative stiffness PACS numbers: 46.40.-f, 46.40.Ff, 62.30.+d * Corresponding Author, Professor, [email protected], phone +82-2-880-7154, fax +82-2-872-1513 -1- Interest in negative material properties has initially grown in electromagnetic field1-3, being realized by metamaterials. Since then, several interesting applications in antennas, lenses, wave absorbers and others have been discussed. The advances in electromagnetic metamaterials are largely due to independent tuning of the negativity in permittivity and permeability.
    [Show full text]
  • C: Contact Mechanics, in "Principles and Techniques for Desiging Precision Machines." MIT Phd Thesis, 1999
    C Contact MechanicsI The theory developed by Hertz in 1880 remains the foundation for most contact problems encountered in engineering. It applies to normal contact between two elastic solids that are smooth and can be described locally with orthogonal radii of curvature such as a toroid. Further, the size of the actual contact area must be small compared to the dimensions of each body and to the radii of curvature. Hertz made the assumption based on observations that the contact area is elliptical in shape for such three-dimensional bodies. The equations simplify when the contact area is circular such as with spheres in contact. At extremely elliptical contact, the contact area is assumed to have constant width over the length of contact such as between parallel cylinders. The first three sections present the Hertz equations for these distinct cases. In addition, Section C.4 presents the equations for a sphere contacting a conical socket. Hertz theory does not account for tangential forces that may develop in applications where the surfaces slide or carry traction. Extensions to Hertz theory approximate this behavior to reasonable accuracy. Section C.5 presents the more useful equations. The final section C.6 contains MathcadÔ documents that implement these equations for computer analysis. The Hertz equations are important in the engineering of kinematic couplings particularly if the loads carried are relatively high. For a particular choice of material and contact geometry, the pertinent calculations reduce to families of curves that are convenient for sizing purposes. The typical material used is hardened bearing steel, for example, 52100 steel or 440C stainless steel heat treated to 58-62 Rockwell C.
    [Show full text]
  • Bending of Beam
    BENDING OF BEAM When a beam is loaded under pure moment M, it can be shown that the beam will bend in a circular arc. If we assume that plane cross-sections will remain plane after bending, then to form the circular arc, the top layers of the beam have to shorten in length (compressive strain) and the bottom layers have to elongate in length (tensile strain) to produce the M curvature. The compression amount will gradually diminish as we go down from the Compressed top layer, eventually changing from layer compression to tension, which will then gradually increase as we reach the bottom layer. Elongated layer Thus, in this type of loading, the top layer M will have maximum compressive strain, the bottom layer will have maximum tensile Un-strained layer strain and there will be a middle layer where the length of the layer will remain unchanged and hence no normal strain. This layer is known as Neutral Layer, and in 2D representation, it is known as Neutral Axis (NA). NA= Neutral Axis Because the beam is made of elastic Compression A material, compressive and tensile strains will N also give rise to compressive and tensile stresses (stress and strain is proportional – Hook’s Law), respectively. Unchanged More the applied moment load more is Elongation the curvature, which will produce more strains and thus more stresses. Two Dimensional View Our objective is to estimate the stress from bending. We can determine the bending strain and stress from the geometry of bending. Let us take a small cross section of width dx, at a distance x from the left edge of the beam.
    [Show full text]
  • The Viscous Catenary
    J. Fluid Mech. (2003), vol. 478, pp. 71–80. c 2003 Cambridge University Press 71 DOI: 10.1017/S0022112002003038 Printed in the United Kingdom The viscous catenary By J. TEICHMAN AND L. MAHADEVAN Hatsopoulos Microfluids Laboratory, Massachusetts Institute of Technology,† 77 Massachusetts Avenue, Cambridge, MA 02139, USA (Received 29 September 2002 and in revised form 21 October 2002) A filament of an incompressible highly viscous fluid that is supported at its ends sags under the influence of gravity. Its instantaneous shape resembles that of a catenary, but evolves with time. At short times, the shape is dominated by bending deformations. At intermediate times, the effects of stretching become dominant everywhere except near the clamping boundaries where bending boundary layers persist. Finally, the filament breaks off in finite time via strain localization and pinch-off. 1. Introduction In 1690, Jacob Bernoulli issued the following challenge: determine the shape of a heavy filament or chain hanging between two points on the same horizontal line. Leibniz, Huygens and Johann Bernoulli independently discovered the equation for the shape of the catenary (derived from the Latin for chain), providing one of the first exact solutions of a nonlinear problem in continuum mechanics. Here we consider the fluid analogue of a catenary, shown in figure 1(a–f ). When a thin filament of an incompressible highly viscous fluid forms a bridge across the gap between two solid vertical walls, it will sag under the influence of gravity. After a very short initial transient when it falls quickly, it slows down in response to the resistance to extension.
    [Show full text]