Late Quaternary Faulting in the Kaikoura Region, Southeastern Marlborough, New Zealand

Total Page:16

File Type:pdf, Size:1020Kb

Late Quaternary Faulting in the Kaikoura Region, Southeastern Marlborough, New Zealand AN ABSTRACT OF THE THESIS OF Russell J. Van Dissen for the degree of Master of Science in Geology presented on February 15, 1989. Title: Late Quaternary Faulting in the Kaikoura Region, Southeastern Marlborough, New Zealand Redacted for privacy Abstract approved: Dr. Robert 8.0eats Active faults in the Kaikoura region include the Hope, Kekerengu, and Fidget Faults, and the newly discovered Jordan Thrust, Fyffe, and Kowhai Faults. Ages of faulted alluvial terraces along the Hope Fault and the Jordan Thrust were estimated using radiocarbon-calibrated weathering-rind measurements on graywacke clasts. Within the study area, the Hope Fault is divided, from west to east, into the Kahutara, Mt. Fyffe, and Seaward segments. The Kahutara segment has a relatively constant Holocene right-lateral slip rate of 20-32 mm/yr, and an earthquake recurrence interval of 86 to 600 yrs: based on single-event displacements of 3 to 12 m. The western portion of the Mt. Fyffe segment has a minimum Holocene lateral slip rate of 16 + 5 mm/yr .(southeast side up); the eastern portion has horizontal and vertical slip rates of 4.8+ 2.7 mm/yr and 1.7 + 0.2 mm/yr, respectively (northwest side up). There is no dated evidence for late Quaternary movementon the Seaward segment, and its topographic expression is much more subdued than that of the two western segments. The Jordan Thrust extends northeast from the Hope Fault, west of the Seaward segment. The thrust has horizontal and vertical slip rates of 2.2 + 1.3 mm/yr and 2.1 + 0.5 mm/yr, respectively (northwest side up), and a maximum recurrence interval of 1200 yrs: based on 3 events within the last 3.5 ka. Drainage-divide elevation and mountain-front morphology of the Seaward Kaikoura Range, abundant evidence for recent activity on the Jordan Thrust, and lack of activity on the Seaward segment indicate that the late Quaternary displacement on the Hope Fault is transferred northward, west of the Seaward segment. The low slip rates for the thrust, compared to the higher lateral slip rates along the Kahutara and Mt. Fyffe segments, suggest that displacement on the Jordan Thrust does not accommodate all the displacement transferred from the Hope Fault. The remaining displacement is accommodated by distributed shear within the Torlesse rocks behind the thrust, and folds in front of and behind the thrust, although the latter was not documented for the Holocene. Late Quaternary Faulting in the Kaikoura Region, Southeastern Marlborough, New Zealand by Russell J. Van Dissen A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science Completed February 15, 1989 Commencement June 1989 APPROVED: Redacted for privacy Professor of Geology/in charge of major Redacted for privacy n of depat-tment of Geology Redacted for privacy Dean of Gradua0School (7 Date thesis is presented February 15, 1989 Typed by researcher for Russell J. Van Dissen ACKNOWLEDGMENTS For logistical assistance in the office and in the field, I am indebted to the New Zealand Geological Survey, especially the Earth Deformation Section. R.I. Walcott, Victoria University of Wellington, aided in the arrangements necessary in getting me to New Zealand. For help with various phases of field work I thank S. Beanland, K.R. Berryman, L.J. Brown, G.H. Browne, H.N.C. Cutten, D.L. Fellows, M.G. Laird, J. Pedersen, R. Williams, and P.R. Wood. Aerial photography of the field area was provided for by the New Zealand Geological Survey; I thank D.L. Fellows, D.L. Homer, and P.R. Wood for their help. J. van Berkel provided the use of the University of Canterbury field station at Kaikoura. I would also like to acknowledge the farmers and residents of the Kaikoura area, the Marlborough Catchment Board, especially D.A. Mackay, and the New Zealand Forest Service in Kaikoura, without their help and cooperation this project would have been much more difficult and much less enjoyable. I thank S. Beanland and R.S. Yeats for their discussions about and critical reviews of this manuscript. With deep gratitude I thank the New Zealand-United States Educational Foundation whose award of a Fulbright Study Grant to me made funding for this project possible. TABLE OF CONTENTS INTRODUCTION 1 Location and Previous Work 5 Methods and Quaternary Geology 6 DESCRIPTION OF THE ACTIVE FAULTS IN THE KAIKOURA REGION 13 Hope Fault 13 Kahutara Segment 13 Mt. Fyffe Segment 20 Seaward Segment 28 Jordan Thrust 29 Kekerengu Fault 40 Fidget Fault 41 Fyffe Fault 42 Kowhai Fault 46 DISCUSSION 48 Slip Rate on Hope Fault 48 Comparison of Slip Rate on Hope Fault with Pacific-Indian Plate Motion 55 Earthquake Recurrence Interval 56 Transfer of Displacement on Jordan Thrust 57 CONCLUSIONS 67 REFERENCES CITED 69 LIST OF FIGURES Figure Page 1. Active faults in the Kaikoura region 2 2. Marlborough faults and offshore deformation 3 3. Calibration curve for modal weathering-rind thickness of surface Torlesse rocks 9 4. Faulted alluvial terraces at Sawyers Creek, Kahutara segment of the Hope Fault 17 5. Weathering-rind data from Sawyers Creek 18 6. Faulted alluvial fan at Mt. Fyffe Gate, Mt. Fyffe segment of the Hope Fault 21 7. Faulted and warped alluvial terraces at Waimangarara River, Mt. Fyffe segment of the Hope Fault 23 8. Profiles P-P of deformed alluvial terraces, 1 Waimangarara River 24 9. Faulted alluvial terraces at Hapuku River, Mt. Fyffe segment of the Hope Fault 26 10. Profile of Seaward Kaikoura Range drainage divide 31 11. Faulted alluvial terraces at Clinton River, Jordan Thrust 32 12. Profiles Pi-P of faulted alluvial terraces, Clinton 33 13. Weathering-rind data from Clinton River 34 14. Jordan Thrust exposure in Happy Valley. 38 15. Fyffe Fault exposure at Big Hau 43 16. Fyffe Fault where it makes a 35° turn in strike north of Big Hau 45 17. Faulted alluvial terraces at Charwell River, Kahutara segment of the Hope Fault 49 LIST OF FIGURES - continued Figure Page 18. Latest Pleistocene slip-rate for the Hope Fault 54 19. Idealized relation between Hope Fault, Jordan Thrust, and Puhi Puhi syncline 60 20. Schematic cross-section across the Inland and Seaward Kaikoura Ranges 62 21. Elevation of Seaward and Inland Kaikoura Ranges projected parallel to direction of tectonic transport 65 LIST OF TABLES Table Page 1. Late Quaternary displacements and ages for faulted terraces in the Kaikoura region 14 2. Late Quaternary lateral and vertical slip- rates for the active faults in the Kaikoura region 15 3. Late Quaternary lateral slip-rates for the Hope and Kakapo Faults near Glynn Wye 52 4. Average recurrence interval of earthquakes on the Kahutara segment with varying single- event displacement and varying slip-rate 58 LATE QUATERNARY FAULTING IN THE KAIKOURA REGION, SOUTHEASTERN MARLBOROUGH, NEW ZEALAND INTRODUCTION The present-day tectonic setting of New Zealand is dominated by the diffuse transform boundary between the Indian and Pacific plates, a transform that links the east- facing Tonga-Kermadec Trench and the west-facing Puysegur Trench and Macquarie Ridge (McKenzie and Morgan 1969). The major element of this transform is the right-lateral strike-slip Alpine Fault. The Alpine Fault includes a restraining bend (inset of Fig. 1, and Fig. 2). Yeats and Berryman (1987) point out that there isa tendency to straighten out a restraining bend by shifting the plate boundary onto new faults that are on trend with the boundary on the opposite side of the bend. The plate motion east of the bend is taken up by the Marlborough fault system (inset of Fig. 1, and Fig. 2) which is made up of the Wairau, Awatere, Clarence, and Hope Faults. In the Marlborough region, the convergence rate of the Pacific plate with respect to the Indian plate is 47 mm/yr at an azimuth of 264 ± 2° (Walcott 1979). The Wairau Fault, formerly the most important of the Marlborough faults, shows all the separation of Paleozoic and Mesozoic tectonostratigraphic terranes between Nelson and south Westland (inset of Fig. 1). It thus predates the 2 Active thrust fault showing 173'451 dip direction. Teeth toward I upthrown side. .# k" 70 Active strike-slip fault showing GS 3\ir GR. dip direction.u, upthrown fid9e side. 70 Ae Middle MII M Possible active fault showing dip direction. Late Quaternary (905 m) displacement not documented. Te 00 i 4 Whekere 4 Drainage divide of Seaward (2596 ml # Kaikoura Range. &M(tm) Al exander , 0 kau.,...,./ 28 cy, (2610 rn)Ar. ee J *km `t .0 48 4.-C> N Sounders .,* 4e15' 5 Half Moon Soy mt. CA (215,1-79r .iir/40 illokAt 68 11... / 85 t ngNite. 1 / F It. 7 / 0,000men e i 0:` 11 se9 Mt. Fiffe AC, 6 4)(1602) /90# liluku 47 eSIA River CI\ Vt. col"to 000m tudy Area 044) ':41* APqe N 0°1 . Oavhoi Chorwell 17330.E Riker River Location Mop Figure 1. Map of active faults in the Kaikoura region. Localities and features discussed in the textare Big Hau (BH), Charwell River (CW), Clinton River (CR),Floodgate Creek (FC), George Saddle (GR), George Stream (GS), Goidmine Creek (GM), Happy Valley (HV), Hapuku River (HR), Jordan Stream (JS), Kowhai Saddle (KS), Luke Creek (LC), Mt. Fyffe Bends (MB), McLean Stream (MS), Puhi Puhi River (PPR), Upper Kowhai Fault (UK),Sawyers Creek (SC), Snowflake Stream (SF), and Waimangarara River (WR). Inset shows Alpine Fault, Marlborough faults (seealso Fig. 2), Southern Alps, and offset tectonostratigraphicterranes (dots). Arrow shows azimuth and rate, in mm/yr, of relative motion of the Pacific Plate with respectto the Indian Plate.
Recommended publications
  • Introduction San Andreas Fault: an Overview
    Introduction This volume is a general geology field guide to the San Andreas Fault in the San Francisco Bay Area. The first section provides a brief overview of the San Andreas Fault in context to regional California geology, the Bay Area, and earthquake history with emphasis of the section of the fault that ruptured in the Great San Francisco Earthquake of 1906. This first section also contains information useful for discussion and making field observations associated with fault- related landforms, landslides and mass-wasting features, and the plant ecology in the study region. The second section contains field trips and recommended hikes on public lands in the Santa Cruz Mountains, along the San Mateo Coast, and at Point Reyes National Seashore. These trips provide access to the San Andreas Fault and associated faults, and to significant rock exposures and landforms in the vicinity. Note that more stops are provided in each of the sections than might be possible to visit in a day. The extra material is intended to provide optional choices to visit in a region with a wealth of natural resources, and to support discussions and provide information about additional field exploration in the Santa Cruz Mountains region. An early version of the guidebook was used in conjunction with the Pacific SEPM 2004 Fall Field Trip. Selected references provide a more technical and exhaustive overview of the fault system and geology in this field area; for instance, see USGS Professional Paper 1550-E (Wells, 2004). San Andreas Fault: An Overview The catastrophe caused by the 1906 earthquake in the San Francisco region started the study of earthquakes and California geology in earnest.
    [Show full text]
  • The 2016 Kaikōura Earthquake
    Earth and Planetary Science Letters 482 (2018) 44–51 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl The 2016 Kaikoura¯ earthquake: Simultaneous rupture of the subduction interface and overlying faults ∗ Teng Wang a, Shengji Wei a,b, , Xuhua Shi a, Qiang Qiu c, Linlin Li a, Dongju Peng a, Ray J. Weldon a,d, Sylvain Barbot a,b a Earth Observatory of Singapore, Nanyang Technological University, Singapore b Asian School of the Environment, Nanyang Technological University, Singapore c School of Earth and Environment, University of Leeds, United Kingdom d Department of Geological Science, University of Oregon, United States a r t i c l e i n f o a b s t r a c t Article history: The distribution of slip during an earthquake and how it propagates among faults in the subduction Received 2 August 2017 system play a major role in seismic and tsunami hazards, yet they are poorly understood because Received in revised form 22 October 2017 offshore observations are often lacking. Here we derive the slip distribution and rupture evolution during Accepted 26 October 2017 the 2016 Mw 7.9 Kaikoura¯ (New Zealand) earthquake that reconcile the surface rupture, space geodetic Available online xxxx measurements, seismological and tsunami waveform records. We use twelve fault segments, with eleven Editor: P. Shearer in the crust and one on the megathrust interface, to model the geodetic data and match the major Keywords: features of the complex surface ruptures. Our modeling result indicates that a large portion of the finite rupture model moment is distributed on the subduction interface, making a significant contribution to the far field strong motion surface deformation and teleseismic body waves.
    [Show full text]
  • Western States Seismic Policy Council Policy Recommendation 18-3
    WESTERN STATES SEISMIC POLICY COUNCIL POLICY RECOMMENDATION 18-3 Definitions of Recency of Surface Faulting for the Basin and Range Province Policy Recommendation 18-3 WSSPC recommends that each state in the Basin and Range physiographic province (BRP), through consultation with state and federal geological surveys and other earthquake-hazard experts, define scientifically and societally relevant categories for recency of surface faulting (generally earthquake magnitude ≥M 6.5). WSSPC further recommends that in the absence of information to the contrary, all Quaternary faults be considered to have the recency of activity documented in the USGS Quaternary fault and fold database until more adequate data can be developed. Executive Summary Fault recency definitions are limited to the Quaternary because this period of geologic time is considered by the scientific community to be most relevant to paleoseismic studies of earthquake faults (Machette and others, 2004). The recency class of a fault is the youngest class based on the demonstrated age of most recent surface faulting. Latest Pleistocene-Holocene faults are included within the definition of late Quaternary faults, and both latest Pleistocene-Holocene and late Quaternary faults are included in Quaternary faults. Establishment/definition of surface-faulting recency categories are based on the ways that faults are portrayed on geologic maps and on the availability of geologic data in the BRP. Policy makers (owners, regulators, governmental agencies) should consult with state and federal geological surveys and other earthquake-hazard experts in using these recency categories and additional geologic data in developing definitions of hazardous faults to be considered in planning for development or infrastructure projects.
    [Show full text]
  • Geophysical Structure of the Southern Alps Orogen, South Island, New Zealand
    Regional Geophysics chapter 15/04/2007 1 GEOPHYSICAL STRUCTURE OF THE SOUTHERN ALPS OROGEN, SOUTH ISLAND, NEW ZEALAND. F J Davey1, D Eberhart-Phillips2, M D Kohler3, S Bannister1, G Caldwell1, S Henrys1, M Scherwath4, T Stern5, and H van Avendonk6 1GNS Science, Gracefield, Lower Hutt, New Zealand, [email protected] 2GNS Science, Dunedin, New Zealand 3Center for Embedded Networked Sensing, University of California, Los Angeles, California, USA 4Leibniz-Institute of Marine Sciences, IFM-GEOMAR, Kiel, Germany 5School of Earth Sciences, Victoria University of Wellington, Wellington, New Zealand 6Institute of Geophysics, University of Texas, Austin, Texas, USA ABSTRACT The central part of the South Island of New Zealand is a product of the transpressive continental collision of the Pacific and Australian plates during the past 5 million years, prior to which the plate boundary was largely transcurrent for over 10 My. Subduction occurs at the north (west dipping) and south (east dipping) of South Island. The deformation is largely accommodated by the ramping up of the Pacific plate over the Australian plate and near-symmetric mantle shortening. The initial asymmetric crustal deformation may be the result of an initial difference in lithospheric strength or an inherited suture resulting from earlier plate motions. Delamination of the Pacific plate occurs resulting in the uplift and exposure of mid- crustal rocks at the plate boundary fault (Alpine fault) to form a foreland mountain chain. In addition, an asymmetric crustal root (additional 8 - 17 km) is formed, with an underlying mantle downwarp. The crustal root, which thickens southwards, comprises the delaminated lower crust and a thickened overlying middle crust.
    [Show full text]
  • Transpressional Rupture Cascade of the 2016 Mw 7.8
    PUBLICATIONS Journal of Geophysical Research: Solid Earth RESEARCH ARTICLE Transpressional Rupture Cascade of the 2016 Mw 10.1002/2017JB015168 7.8 Kaikoura Earthquake, New Zealand Key Points: Wenbin Xu1 , Guangcai Feng2, Lingsen Meng3 , Ailin Zhang3, Jean Paul Ampuero4 , • Complex coseismic ground 5 6 deformation can be explained by slip Roland Bürgmann , and Lihua Fang on six crustal fault segments 1 2 • Rupture process across multiple faults Department of Land Surveying and Geo-informatics, Hong Kong Polytechnic University, Hong Kong, China, School of 3 likely resulted from a triggering Geosciences and Info-Physics, Central South University, Changsha, China, Department of Earth Planetary and Space cascade between crustal faults Sciences, University of California, Los Angeles, CA, USA, 4Seismological Laboratory, California Institute of Technology, • Rupture speed was overall slow, but Pasadena, CA, USA, 5Department of Earth and Planetary Science, University of California, Berkeley, CA, USA, 6Institute of locally faster along individual fault segments Geophysics, China Earthquake Administration, Beijing, China Supporting Information: Abstract Large earthquakes often do not occur on a simple planar fault but involve rupture of multiple • Supporting Information S1 • Data Set S1 geometrically complex faults. The 2016 Mw 7.8 Kaikoura earthquake, New Zealand, involved the rupture of • Data Set S2 at least 21 faults, propagating from southwest to northeast for about 180 km. Here we combine space • Data Set S3 geodesy and seismology techniques to study subsurface fault geometry, slip distribution, and the kinematics of the rupture. Our finite-fault slip model indicates that the fault motion changes from predominantly Correspondence to: W. Xu, G. Feng, and L. Meng, right-lateral slip near the epicenter to transpressional slip in the northeast with a maximum coseismic surface [email protected]; displacement of about 10 m near the intersection between the Kekerengu and Papatea faults.
    [Show full text]
  • Contest 2015 Title: “Slip Rate and Paleoseismicity of the Kekerengu Fault: an Anchor Point for Deformation Rates and Seismic H
    Contest 2015 Title: “Slip Rate and Paleoseismicity of the Kekerengu Fault: An anchor point for deformation rates and seismic hazard through central New Zealand” Leader: Timothy A. Little Organisation: Victoria University of Wellington Total funding (GST ex): $182,778 Title: Slip Rate and Paleoseismicity of the Kekerengu Fault: An anchor point for deformation rates and seismic hazard through central New Zealand Programme Leader: Timothy A. Little Affiliation: Victoria University of Wellington Co-P.I.: Russ Van Dissen (GNS Science) A.I.: Kevin Norton (VUW) Has this report been peer reviewed? Provide name and affiliation. Part of it: the paper by Little et al. was published in 2018 in the Bulletin of Seismological Society of America, which is a peer-reviewed international journal. Table of Contents: 1. Key Message for Media 2. Abstract 3. Introduction/ Background 4. Research Aim 1: Determining Kekerengu Fault Paleoseismic History 5. Research Aim 2: Determining the Late Quaternary Slip Rate of the Kekerengu Fault 6. Conclusions & Recommendations 7. Acknowledgments 8. References 9. Appendices Key Message for Media: [Why are these findings important? Plain language; 5 sentences.] Prior to this study, little scientific data existed about the rate of activity and earthquake hazard posed by the active Kekerengu Fault near the Marlborough coast in northeastern South Island. Our study was designed to test the hypothesis that this fault carries most of the Pacific-Australia plate motion through central New Zealand, and is a major source of seismic hazard for NE South Island and adjacent regions straddling Cook Strait—something that had previously been encoded in the NZ National Seismic Hazard Model.
    [Show full text]
  • Multimillennial Incremental Slip Rate Variability of the Clarence Fault at the Tophouse Road Site, Marlborough Fault System, New Zealand
    This is a repository copy of Multimillennial incremental slip rate variability of the Clarence fault at the Tophouse Road site, Marlborough Fault System, New Zealand. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/142880/ Version: Published Version Article: Zinke, R., Dolan, J.F., Rhodes, E.J. orcid.org/0000-0002-0361-8637 et al. (5 more authors) (2019) Multimillennial incremental slip rate variability of the Clarence fault at the Tophouse Road site, Marlborough Fault System, New Zealand. Geophysical Research Letters, 46 (2). pp. 717-725. ISSN 0094-8276 https://doi.org/10.1029/2018GL080688 © 2018 American Geophysical Union. Reproduced in accordance with the publisher's self-archiving policy. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Geophysical Research Letters RESEARCH LETTER Multimillennial Incremental Slip Rate Variability 10.1029/2018GL080688 of the Clarence Fault at the Tophouse Road Site, Key Points: Marlborough Fault System, New Zealand • Geomorphic analysis of lidar data and a luminescence dating protocol Robert Zinke1 , James F.
    [Show full text]
  • Active and Potentially Active Faults in Or Near the Alaska Highway Corridor, Dot Lake to Tetlin Junction, Alaska
    Division of Geological & Geophysical Surveys PRELIMINARY INTERPRETIVE REPORT 2010-1 ACTIVE AND POTENTIALLY ACTIVE FAULTS IN OR NEAR THE ALASKA HIGHWAY CORRIDOR, DOT LAKE TO TETLIN JUNCTION, ALASKA by Gary A. Carver, Sean P. Bemis, Diana N. Solie, Sammy R. Castonguay, and Kyle E. Obermiller September 2010 THIS REPORT HAS NOT BEEN REVIEWED FOR TECHNICAL CONTENT (EXCEPT AS NOTED IN TEXT) OR FOR CONFORMITY TO THE EDITORIAL STANDARDS OF DGGS. Released by STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES Division of Geological & Geophysical Surveys 3354 College Rd. Fairbanks, Alaska 99709-3707 $4.00 CONTENTS Abstract ............................................................................................................................................................ 1 Introduction ....................................................................................................................................................... 1 Seismotectonic setting of the Tanana River valley region of Alaska ................................................................ 3 2008 fi eld studies .............................................................................................................................................. 5 Field and analytical methods ............................................................................................................................ 5 Dot “T” Johnson fault ....................................................................................................................................... 7 Robertson
    [Show full text]
  • Quantifying the Incompleteness of New Zealand's Prehistoric
    Quantifying the incompleteness of New Zealand’s prehistoric earthquake record A. Nicol, R.J. Van Dissen, M.W. Stirling, M.C. Gerstenberger BIBLIOGRAPHIC REFERENCE Nicol, A.; Van Dissen, R.J.; Stirling, M.W., Gerstenberger, M.C. 2017. Quantifying the incompleteness of New Zealand’s prehistoric earthquake record. EQC project 14/668 Final Report, 25 p. A. Nicol, University of Canterbury, Private Bag 4800, Christchurch, New Zealand R.J. Van Dissen, PO Box 30368, Lower Hutt 5040, New Zealand M.W. Stirling, University of Otago, PO Box 56, Dunedin 9054, New Zealand M.C. Gerstenberger, PO Box 30368, Lower Hutt 5040, New Zealand EQC Project 14/668 Final Report 2 CONTENTS LAYMANS ABSTRACT ....................................................................................................... IV TECHNICAL ABSTRACT ..................................................................................................... V KEYWORDS ......................................................................................................................... V 1.0 INTRODUCTION ........................................................................................................ 6 2.0 DATA SOURCES ....................................................................................................... 8 2.1 Historical Earthquakes .................................................................................................. 8 2.2 active fault earthquake source identification ............................................................... 10 3.0 PROBABILITY OF
    [Show full text]
  • Variability in Single Event Slip and Recurrence Intervals for Large
    Variability of single event slip and recurrence intervals for large magnitude paleoearthquakes on New Zealand’s active faults A. Nicol R. Robinson R. J. Van Dissen A. Harvison GNS Science Report 2012/41 December 2012 BIBLIOGRAPHIC REFERENCE Nicol, A.; Robinson, R.; Van Dissen, R. J.; Harvison, A. 2012. Variability of single event slip and recurrence intervals for large magnitude paleoearthquakes on New Zealand’s active faults, GNS Science Report 2012/41. 57 p. A. Nicol, GNS Science, PO Box 30368, Lower Hutt 5040, New Zealand R. Robinson, PO Box 30368, Lower Hutt 5040, New Zealand R. J. Van Dissen, PO Box 30368, Lower Hutt 5040, New Zealand A. Harvison, PO Box 30368, Lower Hutt 5040, New Zealand © Institute of Geological and Nuclear Sciences Limited, 2012 ISSN 1177-2425 ISBN 978-1-972192-29-0 CONTENTS LAYMANS ABSTRACT ....................................................................................................... IV TECHNICAL ABSTRACT ..................................................................................................... V KEYWORDS ......................................................................................................................... V 1.0 INTRODUCTION ........................................................................................................ 1 2.0 GEOLOGICAL EARTHQUAKES ................................................................................ 2 2.1 Data Sources ................................................................................................................. 2 2.2
    [Show full text]
  • Surface Rupture of the 14 Nov 2016 Kaikoura
    The 14 Nov 2016 Mw 7.8 Kaikoura Earthquake: Surface rupture ... and much more Pilar Villamor on behalf of the Earthquake Geology Response Team (54): Adrian Benson, Alan Bischoff, Alex Hatem, Andrea Barrier, Andy Nicol, Anekant Wandres, Biljana Lukovic, Brendan Hall, Caleb Gasston, Callum Margetts, Cam Asher, Chris Grimshaw, Chris Madugo, Clark Fenton, Dan Hale, David Barrell, David Heron, Delia Strong, Dougal Townsend, Duncan Noble, Jamie Howarth, Jarg Pettinga, Jesse Kearse, Jack Williams, Joel Bensing, John Manousakis, Josh Borella, Joshu Mountjoy, Julie Rowland, Kate Clark, Kate Pedley, Katrina Sauer, Kelvin Berryman, Mark Hemphill-Haley, Mark Stirling, Marlene Villeneuve, Matt Cockroft, Narges Khajavi, Nick Griffiths, Philip Barnes, Pilar Villamor, Rachel Carne, Robert Langridge, Robert Zinke, Russ van Dissen, Sam McColl, Simon Cox, Steve Lawson, Tim Little, Tim Stahl, Ursula Cochran, Virgina Toy, William Ries, Zoe Juniper GNS Science 14 November Kaikoura Earthquake This talk - Background - Kaikoura Earthquake - Seismicity, ground motions - InSAR and GNSS - Preliminary rupture models - Surface Rupture - Tsunami, Landslides (if we have time..) Photo: Sally Dellow, GNS Science Surface rupture of the Papatea Fault displacing the coastal platform, road, railway and hill country. GNS Science Background • The 14 Nov event occurred in the region between the Hikurangi subduction system of the North Island and the oblique collisional regime of the South Island (Alpine Fault) GNS Science Background • The 14 Nov event ruptured several faults that expand into different tectonic domains: o The strike-slip Marlborough fault system consists of a series of right lateral strike-slip faults, some with reverse component, that link to the Alpine fault on the west and to the subduction margin fore-arc to the east.
    [Show full text]
  • Surface Rupture Database for Seismic Hazard Assessment
    RAPPORT Surface rupture database for Seismic Hazard Assessment 2015 Report of the Kick-Off Meeting of the “SURE Database” Working Group RT/PRP-DGE/2016-00022 Pôle radioprotection, environnement, déchets et crise Service de caractérisation des sites et des aléas naturels ABSTRACT The goal of the fault displacement hazard assessment is to describe and quantify the permanent displacement that can occur during an earthquake at the ground surface. One of the methods to do so is probabilistic (PFDHA: Probabilistic Fault Displacement Hazard Analysis) and is basically based on empirical approaches which allows predicting the possible displacement on the earthquake fault (« on-fault » displacement) and off this major fault on other fault segments (« off-fault » displacement). Predictive relationships (also called “regressions”) were published in the last 15 years (e.g. Youngs et al., 2003; Petersen et al., 2011; Takao et al., 2013) and they are based on data catalogs limited in case numbers and in magnitude ranges. Because there are practical applications of PFDHA in terms of engineering, there is concern in the geologists and engineers communities, for instance in the INQUA and the IAEA-ISSC groups, to improve the methodology. A first and critical step is to build up a community-sourced, worldwide, unified database of surface rupturing earthquakes to include a large number of earthquake cases in various seismotectonic contexts. This is the core task of the SURE (Surface Rupture Earthquake) Working Group which is growing with the support of INQUA and IAEA-ISSC. During the kick-off meeting held in Paris (October 2015) and sponsored by the Institut de Radioprotection et Sûreté Nucléaire (IRSN), earthquake geology experts from the USA, Europe (France, Italy, UK, Germany), Japan, New Zealand, South America (Argentina) formed this group and exchanged their experience in surface rupturing events during 3 days.
    [Show full text]