Geophysical Structure of the Southern Alps Orogen, South Island, New Zealand
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Greenpeace Deep Sea Oil Briefing
May 2012 Out of our depth: Deep-sea oil exploration in New Zealand greenpeace.org.nz Contents A sea change in Government strategy ......... 4 Safety concerns .............................................. 5 The risks of deep-sea oil ............................... 6 International oil companies in the dock ..... 10 Where is deep-sea oil exploration taking place in New Zealand? ..................... 12 Cover: A view from an altitude of 3200 ft of the oil on the sea surface, originated by the leaking of the Deepwater Horizon wellhead disaster. The BP leased oil platform exploded April 20 and sank after burning, leaking an estimate of more than 200,000 gallons of crude oil per day from the broken pipeline into the sea. © Daniel Beltrá / Greenpeace Right: A penguin lies in oil spilt from the wreck of the Rena © GEMZ Photography 2 l Greenpeace Deep-Sea Oil Briefing l May 2012 The inability of the authorities to cope with the effects of the recent oil spill from the Rena cargo ship, despite the best efforts of Maritime New Zealand, has brought into sharp focus the environmental risks involved in the Government’s decision to open up vast swathes of the country’s coastal waters for deep-sea oil drilling. The Rena accident highlighted the devastation that can be caused by what in global terms is actually still a relatively small oil spill at 350 tonnes and shows the difficulties of mounting a clean-up operation even when the source of the leaking oil is so close to shore. It raised the spectre of the environmental catastrophe that could occur if an accident on the scale of the Deepwater Horizon disaster in the Gulf of Mexico were to occur in New Zealand’s remote waters. -
Using Campaign GPS Data to Model Slip Rates on the Alpine Fault
New Zealand Journal of Geology and Geophysics ISSN: 0028-8306 (Print) 1175-8791 (Online) Journal homepage: http://www.tandfonline.com/loi/tnzg20 A geodetic study of the Alpine Fault through South Westland: using campaign GPS data to model slip rates on the Alpine Fault Chris J. Page, Paul H. Denys & Chris F. Pearson To cite this article: Chris J. Page, Paul H. Denys & Chris F. Pearson (2018): A geodetic study of the Alpine Fault through South Westland: using campaign GPS data to model slip rates on the Alpine Fault, New Zealand Journal of Geology and Geophysics, DOI: 10.1080/00288306.2018.1494006 To link to this article: https://doi.org/10.1080/00288306.2018.1494006 View supplementary material Published online: 09 Aug 2018. Submit your article to this journal View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tnzg20 NEW ZEALAND JOURNAL OF GEOLOGY AND GEOPHYSICS https://doi.org/10.1080/00288306.2018.1494006 RESEARCH ARTICLE A geodetic study of the Alpine Fault through South Westland: using campaign GPS data to model slip rates on the Alpine Fault Chris J. Page, Paul H. Denys and Chris F. Pearson School of Surveying, University of Otago, Dunedin, New Zealand ABSTRACT ARTICLE HISTORY Although the Alpine Fault has been studied extensively, there have been few geodetic studies Received 11 December 2017 in South Westland. We include a series of new geodetic measurements from sites across the Accepted 25 June 2018 Haast Pass and preliminary results from a recently established network, the Cascade array KEYWORDS that extends from the Arawhata River to Lake McKerrow, a region that previously had few Alpine Fault; slip rates; South geodetic measurements. -
Subduction Initiation May Depend on a Tectonic Plate's History 22 June 2021, by David Shultz
Subduction initiation may depend on a tectonic plate's history 22 June 2021, by David Shultz geological history makes it an ideal location to study how subduction starts. The team's seismic structural analysis showed that subduction zone initiation begins along existing weaknesses in Earth's crust and relies on differences in lithospheric density. The conditions necessary for the subduction zone's formation began about 45 million years ago, when the Australian and Pacific plates started to pull apart from each other. During that period, extensional forces led to seafloor spreading and the creation of new high-density oceanic lithosphere in the south. However, in the north, the thick and buoyant continental crust of Zealandia was merely stretched and slightly thinned. Over the next several million years, the plates rotated, and strike- The Puysegur Trench follows the natural curvature of slip deformation moved the high-density oceanic New Zealand’s South Island, extending southwest from lithosphere from the south to the north, where it the island’s southern tip. Credit: NASA slammed into low-density continental lithosphere, allowing subduction to begin. Subduction zones are cornerstone components of The researchers contend that the differences in plate tectonics, with one plate sliding beneath lithospheric density combined with existing another back into Earth's mantle. But the very weaknesses along the strike-slip boundary from the beginning of this process—subduction previous tectonic phases facilitated subduction initiation—remains somewhat mysterious to initiation. The team concludes that strike-slip might scientists because most of the geological record of be a key driver of subduction zone initiation subduction is buried and overwritten by the because of its ability to efficiently bring together extreme forces at play. -
Tectonic Setting Seismic Hazard Epicentral Region
U.S. DEPARTMENT OF THE INTERIOR EARTHQUAKE SUMMARY MAP U.S. GEOLOGICAL SURVEY Prepared in cooperation with the M8.0 Samoa Islands Region Earthquake of 29 September 2009 Global Seismographic Network M a r s Epicentral Region h a M A R S H A L L l I S TL A eN DcS tonic Setting l 174° 176° 178° 180° 178° 176° 174° 172° 170° 168° 166° C e n t r a l 160° 170° I 180° 170° 160° 150° s l a P a c i f i c K M e l a n e s i a n n L NORTH a d B a s i n i p B a s i n s n Chris tmas Island i H e BISMARCK n C g I R N s PLATE a l B R I TA i G E I s E W N T R 0° m a 0° N E R N e i n P A C I F I C 10° 10° C a H l T d b r s a e r C P L A T E n t E g I D n e i s A o Z l M e a t u r SOUTH n R r a c d E K I R I B A T I s F s K g o BISMARCK l a p a PLATE P A C I F I C G a Solomon Islands P L A T E S O L O M O N T U V A L U V I T Y I S L A N D S A Z TR FUTUNA PLATE 12° 12° S EN O U C BALMORAL C 10° T H H o 10° S O REEF o WOODLARK L Santa k O M Cruz PLATE I PLATE O N T RE N C H Sam sl Is lands oa I NIUAFO'OU a N s n C o r a l S e a S A M O A lan d SOLOMON SEA O ds PLATE s T U B a s i n R A M E R I C A N (N A PLATE T M H . -
Mylonitization Temperatures and Geothermal Gradient from Ti-In
Solid Earth Discuss., https://doi.org/10.5194/se-2018-12 Manuscript under review for journal Solid Earth Discussion started: 7 March 2018 c Author(s) 2018. CC BY 4.0 License. Constraints on Alpine Fault (New Zealand) Mylonitization Temperatures and Geothermal Gradient from Ti-in-quartz Thermobarometry Steven Kidder1, Virginia Toy2, Dave Prior2, Tim Little3, Colin MacRae 4 5 1Department of Earth and Atmospheric Science, City College New York, New York, 10031, USA 2Department of Geology, University of Otago, Dunedin, New Zealand 3School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand 4CSIRO Mineral Resources, Microbeam Laboratory, Private Bag 10, 3169 Clayton South, Victoria, Australia Correspondence to: Steven B. Kidder ([email protected]) 10 Abstract. We constrain the thermal state of the central Alpine Fault using approximately 750 Ti-in-quartz SIMS analyses from a suite of variably deformed mylonites. Ti-in-quartz concentrations span more than an order of magnitude from 0.24 to ~5 ppm, suggesting recrystallization of quartz over a 300° range in temperature. Most Ti-in-quartz concentrations in mylonites, protomylonites, and the Alpine Schist protolith are between 2 and 4 ppm and do not vary as a function of grain size or bulk rock composition. Analyses of 30 large, inferred-remnant quartz grains (>250 µm), as well as late, cross-cutting, chlorite-bearing 15 quartz veins also reveal restricted Ti concentrations of 2-4 ppm. These results indicate that the vast majority of Alpine Fault mylonitization occurred within a restricted zone of pressure-temperature conditions where 2-4 ppm Ti-in-quartz concentrations are stable. -
SEASAT Geoid Anomalies and the Macquarie Ridge Complex Larry Ruff *
Physics of the Earth and Planetary Interiors, 38 (1985) 59-69 59 Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands SEASAT geoid anomalies and the Macquarie Ridge complex Larry Ruff * Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109 (U.S.A.) Anny Cazenave CNES-GRGS, 18Ave. Edouard Belin, Toulouse, 31055 (France) (Received August 10, 1984; revision accepted September 5, 1984) Ruff, L. and Cazenave, A., 1985. SEASAT geoid anomalies and the Macquarie Ridge complex. Phys. Earth Planet. Inter., 38: 59-69. The seismically active Macquarie Ridge complex forms the Pacific-India plate boundary between New Zealand and the Pacific-Antarctic spreading center. The Late Cenozoic deformation of New Zealand and focal mechanisms of recent large earthquakes in the Macquarie Ridge complex appear consistent with the current plate tectonic models. These models predict a combination of strike-slip and convergent motion in the northern Macquarie Ridge, and strike-slip motion in the southern part. The Hjort trench is the southernmost expression of the Macquarie Ridge complex. Regional considerations of the magnetic lineations imply that some oceanic crust may have been consumed at the Hjort trench. Although this arcuate trench seems inconsistent with the predicted strike-slip setting, a deep trough also occurs in the Romanche fracture zone. Geoid anomalies observed over spreading ridges, subduction zones, and fracture zones are different. Therefore, geoid anomalies may be diagnostic of plate boundary type. We use SEASAT data to examine the Maequarie Ridge complex and find that the geoid anomalies for the northern Hjort trench region are different from the geoid anomalies for the Romanche trough. -
Transpressional Rupture Cascade of the 2016 Mw 7.8
PUBLICATIONS Journal of Geophysical Research: Solid Earth RESEARCH ARTICLE Transpressional Rupture Cascade of the 2016 Mw 10.1002/2017JB015168 7.8 Kaikoura Earthquake, New Zealand Key Points: Wenbin Xu1 , Guangcai Feng2, Lingsen Meng3 , Ailin Zhang3, Jean Paul Ampuero4 , • Complex coseismic ground 5 6 deformation can be explained by slip Roland Bürgmann , and Lihua Fang on six crustal fault segments 1 2 • Rupture process across multiple faults Department of Land Surveying and Geo-informatics, Hong Kong Polytechnic University, Hong Kong, China, School of 3 likely resulted from a triggering Geosciences and Info-Physics, Central South University, Changsha, China, Department of Earth Planetary and Space cascade between crustal faults Sciences, University of California, Los Angeles, CA, USA, 4Seismological Laboratory, California Institute of Technology, • Rupture speed was overall slow, but Pasadena, CA, USA, 5Department of Earth and Planetary Science, University of California, Berkeley, CA, USA, 6Institute of locally faster along individual fault segments Geophysics, China Earthquake Administration, Beijing, China Supporting Information: Abstract Large earthquakes often do not occur on a simple planar fault but involve rupture of multiple • Supporting Information S1 • Data Set S1 geometrically complex faults. The 2016 Mw 7.8 Kaikoura earthquake, New Zealand, involved the rupture of • Data Set S2 at least 21 faults, propagating from southwest to northeast for about 180 km. Here we combine space • Data Set S3 geodesy and seismology techniques to study subsurface fault geometry, slip distribution, and the kinematics of the rupture. Our finite-fault slip model indicates that the fault motion changes from predominantly Correspondence to: W. Xu, G. Feng, and L. Meng, right-lateral slip near the epicenter to transpressional slip in the northeast with a maximum coseismic surface [email protected]; displacement of about 10 m near the intersection between the Kekerengu and Papatea faults. -
Late Quaternary Faulting in the Kaikoura Region, Southeastern Marlborough, New Zealand
AN ABSTRACT OF THE THESIS OF Russell J. Van Dissen for the degree of Master of Science in Geology presented on February 15, 1989. Title: Late Quaternary Faulting in the Kaikoura Region, Southeastern Marlborough, New Zealand Redacted for privacy Abstract approved: Dr. Robert 8.0eats Active faults in the Kaikoura region include the Hope, Kekerengu, and Fidget Faults, and the newly discovered Jordan Thrust, Fyffe, and Kowhai Faults. Ages of faulted alluvial terraces along the Hope Fault and the Jordan Thrust were estimated using radiocarbon-calibrated weathering-rind measurements on graywacke clasts. Within the study area, the Hope Fault is divided, from west to east, into the Kahutara, Mt. Fyffe, and Seaward segments. The Kahutara segment has a relatively constant Holocene right-lateral slip rate of 20-32 mm/yr, and an earthquake recurrence interval of 86 to 600 yrs: based on single-event displacements of 3 to 12 m. The western portion of the Mt. Fyffe segment has a minimum Holocene lateral slip rate of 16 + 5 mm/yr .(southeast side up); the eastern portion has horizontal and vertical slip rates of 4.8+ 2.7 mm/yr and 1.7 + 0.2 mm/yr, respectively (northwest side up). There is no dated evidence for late Quaternary movementon the Seaward segment, and its topographic expression is much more subdued than that of the two western segments. The Jordan Thrust extends northeast from the Hope Fault, west of the Seaward segment. The thrust has horizontal and vertical slip rates of 2.2 + 1.3 mm/yr and 2.1 + 0.5 mm/yr, respectively (northwest side up), and a maximum recurrence interval of 1200 yrs: based on 3 events within the last 3.5 ka. -
Contest 2015 Title: “Slip Rate and Paleoseismicity of the Kekerengu Fault: an Anchor Point for Deformation Rates and Seismic H
Contest 2015 Title: “Slip Rate and Paleoseismicity of the Kekerengu Fault: An anchor point for deformation rates and seismic hazard through central New Zealand” Leader: Timothy A. Little Organisation: Victoria University of Wellington Total funding (GST ex): $182,778 Title: Slip Rate and Paleoseismicity of the Kekerengu Fault: An anchor point for deformation rates and seismic hazard through central New Zealand Programme Leader: Timothy A. Little Affiliation: Victoria University of Wellington Co-P.I.: Russ Van Dissen (GNS Science) A.I.: Kevin Norton (VUW) Has this report been peer reviewed? Provide name and affiliation. Part of it: the paper by Little et al. was published in 2018 in the Bulletin of Seismological Society of America, which is a peer-reviewed international journal. Table of Contents: 1. Key Message for Media 2. Abstract 3. Introduction/ Background 4. Research Aim 1: Determining Kekerengu Fault Paleoseismic History 5. Research Aim 2: Determining the Late Quaternary Slip Rate of the Kekerengu Fault 6. Conclusions & Recommendations 7. Acknowledgments 8. References 9. Appendices Key Message for Media: [Why are these findings important? Plain language; 5 sentences.] Prior to this study, little scientific data existed about the rate of activity and earthquake hazard posed by the active Kekerengu Fault near the Marlborough coast in northeastern South Island. Our study was designed to test the hypothesis that this fault carries most of the Pacific-Australia plate motion through central New Zealand, and is a major source of seismic hazard for NE South Island and adjacent regions straddling Cook Strait—something that had previously been encoded in the NZ National Seismic Hazard Model. -
Multimillennial Incremental Slip Rate Variability of the Clarence Fault at the Tophouse Road Site, Marlborough Fault System, New Zealand
This is a repository copy of Multimillennial incremental slip rate variability of the Clarence fault at the Tophouse Road site, Marlborough Fault System, New Zealand. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/142880/ Version: Published Version Article: Zinke, R., Dolan, J.F., Rhodes, E.J. orcid.org/0000-0002-0361-8637 et al. (5 more authors) (2019) Multimillennial incremental slip rate variability of the Clarence fault at the Tophouse Road site, Marlborough Fault System, New Zealand. Geophysical Research Letters, 46 (2). pp. 717-725. ISSN 0094-8276 https://doi.org/10.1029/2018GL080688 © 2018 American Geophysical Union. Reproduced in accordance with the publisher's self-archiving policy. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Geophysical Research Letters RESEARCH LETTER Multimillennial Incremental Slip Rate Variability 10.1029/2018GL080688 of the Clarence Fault at the Tophouse Road Site, Key Points: Marlborough Fault System, New Zealand • Geomorphic analysis of lidar data and a luminescence dating protocol Robert Zinke1 , James F. -
Constraints on Alpine Fault (New Zealand) Mylonitization Temperatures and the Geothermal Gradient from Ti-In-Quartz Thermobarometry
Solid Earth, 9, 1123–1139, 2018 https://doi.org/10.5194/se-9-1123-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Constraints on Alpine Fault (New Zealand) mylonitization temperatures and the geothermal gradient from Ti-in-quartz thermobarometry Steven B. Kidder1, Virginia G. Toy2, David J. Prior2, Timothy A. Little3, Ashfaq Khan1, and Colin MacRae4 1Department of Earth and Atmospheric Science, City College New York, New York, 10031, USA 2Department of Geology, University of Otago, Dunedin, New Zealand 3School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand 4CSIRO Mineral Resources, Microbeam Laboratory, Private Bag 10, 3169 Clayton South, Victoria, Australia Correspondence: Steven B. Kidder ([email protected]) Received: 22 February 2018 – Discussion started: 7 March 2018 Revised: 28 August 2018 – Accepted: 3 September 2018 – Published: 25 September 2018 Abstract. We constrain the thermal state of the central when more fault-proximal parts of the fault were deforming Alpine Fault using approximately 750 Ti-in-quartz sec- exclusively by brittle processes. ondary ion mass spectrometer (SIMS) analyses from a suite of variably deformed mylonites. Ti-in-quartz concentrations span more than 1 order of magnitude from 0.24 to ∼ 5 ppm, suggesting recrystallization of quartz over a 300 ◦C range in 1 Introduction temperature. Most Ti-in-quartz concentrations in mylonites, protomylonites, and the Alpine Schist protolith are between The Alpine Fault is the major structure of the Pacific– 2 and 4 ppm and do not vary as a function of grain size Australian plate boundary through New Zealand’s South Is- or bulk rock composition. -
Quantifying the Incompleteness of New Zealand's Prehistoric
Quantifying the incompleteness of New Zealand’s prehistoric earthquake record A. Nicol, R.J. Van Dissen, M.W. Stirling, M.C. Gerstenberger BIBLIOGRAPHIC REFERENCE Nicol, A.; Van Dissen, R.J.; Stirling, M.W., Gerstenberger, M.C. 2017. Quantifying the incompleteness of New Zealand’s prehistoric earthquake record. EQC project 14/668 Final Report, 25 p. A. Nicol, University of Canterbury, Private Bag 4800, Christchurch, New Zealand R.J. Van Dissen, PO Box 30368, Lower Hutt 5040, New Zealand M.W. Stirling, University of Otago, PO Box 56, Dunedin 9054, New Zealand M.C. Gerstenberger, PO Box 30368, Lower Hutt 5040, New Zealand EQC Project 14/668 Final Report 2 CONTENTS LAYMANS ABSTRACT ....................................................................................................... IV TECHNICAL ABSTRACT ..................................................................................................... V KEYWORDS ......................................................................................................................... V 1.0 INTRODUCTION ........................................................................................................ 6 2.0 DATA SOURCES ....................................................................................................... 8 2.1 Historical Earthquakes .................................................................................................. 8 2.2 active fault earthquake source identification ............................................................... 10 3.0 PROBABILITY OF